1
|
Batista-Silva JP, Gomes D, Sousa SF, Sousa Â, Passarinha LA. Advances in structure-based drug design targeting membrane protein markers in prostate cancer. Drug Discov Today 2024; 29:104130. [PMID: 39103143 DOI: 10.1016/j.drudis.2024.104130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Prostate cancer (PCa) is one of the leading cancers in men and the lack of suitable biomarkers or their modulators results in poor prognosis. Membrane proteins (MPs) have a crucial role in the development and progression of PCa and can be attractive therapeutic targets. However, experimental limitations in targeting MPs hinder effective biomarker and inhibitor discovery. To overcome this barrier, computational methods can yield structural insights and screen large libraries of compounds, accelerating lead identification and optimization. In this review, we examine current breakthroughs in computer-aided drug design (CADD), with emphasis on structure-based approaches targeting the most relevant membrane-bound PCa biomarkers.
Collapse
Affiliation(s)
- João P Batista-Silva
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Diana Gomes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Sérgio F Sousa
- LAQV/REQUIMTE, BioSIM - Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
| | - Luís A Passarinha
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal.
| |
Collapse
|
2
|
Peng S, Li H, Cui W, Xiong T, Hu J, Qi H, Lin S, Wu D, Ji M, Xu H. Design, synthesis and biological evaluation of a novel PSMA-PI3K small molecule drug conjugate. RSC Med Chem 2024:d4md00246f. [PMID: 39246749 PMCID: PMC11378010 DOI: 10.1039/d4md00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
Small molecule drug conjugates are an emerging targeted therapy for cancer treatment. Building upon the overexpressed prostate-specific membrane antigen (PSMA) in prostate cancer, we herein report the design and synthesis of a novel PSMA-PI3K small molecule drug conjugate 1. Conjugate 1 demonstrates potent inhibition against PI3K with an IC50 value of 0.40 nM and simultaneously targets PSMA, giving rise to selective growth inhibition activity for PSMA-positive cancer cells. Conjugate 1 also potently inhibits the phosphorylation of PI3K main downstream effectors and arrests the cell cycle in the G0/G1 phase in PSMA-positive 22Rv1 prostate cancer cells. Further in vivo evaluation shows that conjugate 1 has favorable efficacy and tolerability in a 22Rv1 xenograft model, demonstrating its potential application in targeted cancer therapy.
Collapse
Affiliation(s)
- Shouguo Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Haixia Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences Beijing 100053 China
| | - Weilu Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences Beijing 100053 China
| | - Tianning Xiong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Jiaqi Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Haixiang Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| |
Collapse
|
3
|
Machulkin AE, Petrov SA, Bodenko V, Larkina MS, Plotnikov E, Yuldasheva F, Tretyakova M, Bezverkhniaia E, Zyk NY, Stasyuk E, Zelchan R, Majouga AG, Tolmachev V, Orlova A, Beloglazkina EK, Yusubov MS. Synthesis and Preclinical Evaluation of Urea-Based Prostate-Specific Membrane Antigen-Targeted Conjugates Labeled with 177Lu. ACS Pharmacol Transl Sci 2024; 7:1457-1473. [PMID: 38751647 PMCID: PMC11092120 DOI: 10.1021/acsptsci.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
177Lu-labeled small-molecule prostate-specific membrane antigen (PSMA) targeted tracers are therapeutic agents for metastatic castration-resistant prostate cancer. Optimizing molecular design holds the potential to further enhance the pharmacokinetic properties of PSMA-targeted agents while preserving their potent therapeutic effects. In this study, six novel N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-(S)-l-lysine (DCL) urea-based PSMA ligand 2,2',2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid conjugates were synthesized. These conjugates feature polypeptide linkers containing the Phe-Phe peptide sequence and an aromatic fragment at the ε-NH-Lys group of the DCL fragment. The synthesis yielded products with satisfactory yields ranging from 60% to 72%, paving the way for their preclinical evaluation. The labeling of the new variants of urea-based PSMA inhibitors provided a radiochemical yield of over 95%. The 177Lu-labeled conjugates demonstrated specific and moderate affinity binding to PSMA-expressing human cancer cells PC3-pip in vitro and specific accumulation in PSMA-expressing xenografts in vivo. Based on the results, both the lipophilicity and the type of substituent in the linker significantly influence the binding properties of the PSMA inhibitor and its biodistribution profile. Specifically, the studied variants containing a bromine substituent or a hydroxyl group introduced into the aromatic fragment of the phenylalanyl residue in DCL exhibit higher affinities to PSMA compared to variants with only a chlorine-substituted aromatic fragment or variants without any substituents. The [177Lu]Lu-13C with the bromine substituent was characterized by the highest activity accumulation in blood, salivary glands, muscle, bone, and gastrointestinal tract and had inasmuch as an unfavorable pharmacokinetic profile. The negative charge of the carboxyl group in the phenyl moiety of the [177Lu]Lu-13A variant has demonstrated a positive effect on reducing the retention of activity in the liver and the kidneys (the ratio of tumor to kidneys was 1.3-fold). Low accumulation in normal tissues in vivo indicates that this novel PSMA-targeting inhibitor is a promising radioligand.
Collapse
Affiliation(s)
- Aleksei E. Machulkin
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Leninskie
Gory 1-3, Moscow 119991, Russian Federation
- Department
for Biochemistry, People’s Friendship
University of Russia Named after Patrice Lumumba (RUDN University), Moscow 117198, Russia
| | - Stanislav A. Petrov
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Leninskie
Gory 1-3, Moscow 119991, Russian Federation
| | - Vitalina Bodenko
- Research
Centrum for Oncotheranostics, Research School of Chemistry and Applied
Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
- Scientific
and Educational Laboratory of Chemical and Pharmaceutical Research, Siberian State Medical University, Tomsk 634050, Russia
| | - Mariia S. Larkina
- Research
Centrum for Oncotheranostics, Research School of Chemistry and Applied
Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
- Department
of Pharmaceutical Analysis, Siberian State
Medical University, Tomsk 634050, Russia
| | - Evgenii Plotnikov
- Research
Centrum for Oncotheranostics, Research School of Chemistry and Applied
Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
- Mental
Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia
| | - Feruza Yuldasheva
- Research
Centrum for Oncotheranostics, Research School of Chemistry and Applied
Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Maria Tretyakova
- Research
Centrum for Oncotheranostics, Research School of Chemistry and Applied
Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Ekaterina Bezverkhniaia
- Research
Centrum for Oncotheranostics, Research School of Chemistry and Applied
Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
- Department
of Medicinal Chemistry, Uppsala University, Uppsala 75183, Sweden
| | - Nikolay Yu. Zyk
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Leninskie
Gory 1-3, Moscow 119991, Russian Federation
| | - Elena Stasyuk
- School of
Nuclear Science and Engineering, Tomsk Polytechnic
University, Tomsk 634050, Russia
| | - Roman Zelchan
- Research
Centrum for Oncotheranostics, Research School of Chemistry and Applied
Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Alexander G. Majouga
- Dmitry
Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
| | - Vladimir Tolmachev
- Department
of Immunology, Genetics and Pathology, Uppsala
University, Uppsala 75185, Sweden
| | - Anna Orlova
- Department
of Medicinal Chemistry, Uppsala University, Uppsala 75183, Sweden
| | - Elena K. Beloglazkina
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Leninskie
Gory 1-3, Moscow 119991, Russian Federation
| | - Mekhman S. Yusubov
- Research
Centrum for Oncotheranostics, Research School of Chemistry and Applied
Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
| |
Collapse
|
4
|
Nakajima R. Targeted Therapy for Prostate Cancer by Prostate-Specific Membrane Antigen-Targeted Small-Molecule Drug Conjugates. Chem Pharm Bull (Tokyo) 2024; 72:136-142. [PMID: 38296554 DOI: 10.1248/cpb.c23-00535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
In the aging global population, prostate cancer is a worldwide health problem because the incidence rate of this disease increases at advanced ages. Although early-stage prostate cancer can be treated by total prostatectomy, the surgery causes side effects, such as incontinence and dysuria, that lower QOL. Once the disease progresses to metastatic castration-resistant prostate cancer (mCRPC), there are no effective chemotherapeutic agents without systematic side effects. Therefore, targeted therapies for mCPRC are urgently needed. Traditional antibody-drug conjugate treatments for prostate cancer have been tested in clinical trials and several side effects have been observed. Meanwhile, small-molecule drug conjugates (SMDCs) have certain advantages over antibody drug conjugates in terms of non-immunogenicity, reproducibility, and permeability. In this review, prostate-specific membrane antigen-targeted SMDCs for treating prostate cancer are summarized.
Collapse
Affiliation(s)
- Ryo Nakajima
- Department of Synthetic Organic Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
5
|
Chen M, Cai L, Xiang Y, Zhong L, Shi J. Advances in non-radioactive PSMA-targeted small molecule-drug conjugates in the treatment of prostate cancer. Bioorg Chem 2023; 141:106889. [PMID: 37813074 DOI: 10.1016/j.bioorg.2023.106889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Most patients with advanced prostate cancer (PCa) will develop metastatic castration-resistant prostate cancer (mCRPC) after androgen deprivation therapy, at this time the tumor enters the end stage, and the clinical treatment is very complicated, which requires rationalization of drugs to prolong the life of patients while improving their quality of life. Prostate-specific membrane antigen (PSMA) is a promising biological target for drug delivery in mCRPC due to its high level of specific expression in PCa cell membranes and low expression in normal tissues. Non-radioactive PSMA-targeted small molecule-drug conjugates (SMDCs) are gradually becoming a heat of discovery due to their good affinity and specificity; simple synthesis steps and transport management methods. Non-radioactive PSMA-targeted SMDCs under investigation can be divided into two categories: SMDCs and dual-ligand coupled drugs, among which SMDCs are the most widespread form of this type of conjugate. SMDCs have three key components: cytotoxic load, linker, and small molecule targeting ligands. SMDCs are internalized into the cell after binding to PSMA on the cell membrane and stored in endosomes and lysosomes, where they are usually enzymatically cleaved to allow precise release of cytotoxic molecules and uniform diffusion into the tumor tissue. More than a dozen non-radioactive PSMA-targeted SMDCs have been developed, many of which have shown favorable properties in both in vitro and in vivo evaluations, demonstrating more favorable results than unmodified cytotoxic drugs. Therefore, non-radioactive PSMA-targeted SMDCs have great therapeutic potential for mCRPC as a form of targeted therapy.
Collapse
Affiliation(s)
- Min Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Linxuan Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Andrade KHS, Coelho JAS, Frade R, Madureira AM, Nunes JPM, Caddick S, Gomes RFA, Afonso CAM. Functionalized Cyclopentenones with Low Electrophilic Character as Anticancer Agents. ChemMedChem 2023; 18:e202300104. [PMID: 37062707 DOI: 10.1002/cmdc.202300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
In this study were synthesized non-Michael acceptor cyclopentenones (CP) from biomass derivative furfural as anticancer agents. Cyclic enones, both from natural sources and synthetic analogues, have been described as cytotoxic agents. Most of these agents were unsuccessful in becoming valuable therapeutic agents due to toxicity problems derived from unselective critical biomacromolecule alkylation. This may be caused by Michael addition to the enone system. Ab initio studies revealed that 2,4-substituted CPs are less prone to Michael additions, and as such were tested three families of those derivatives. We prepare the new CPs from furfural through a tandem furan ring opening/Nazarov electrocyclization and further functionalization. Experimentally the 2,4-substituted CPs exhibited no reactivity towards sulphur nucleophiles, while maintaining cytotoxicity against HT-29, MCF-7, NCI-H460, HCT-116 and MDA-MB 231 cells lines. Moreover, the selected CP are non-toxic against healthy HEK 293T cell lines and present proper calculated drug-like properties.
Collapse
Affiliation(s)
- Késsia H S Andrade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| | - Raquel Frade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Ana M Madureira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - João P M Nunes
- Abzena Ltd., Babraham Research Campus, Cambridge, CB22 3AT, UK
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Stephen Caddick
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Rafael F A Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, 1749-024, Lisboa, Portugal
| | - Carlos A M Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| |
Collapse
|
7
|
Tiburcius S, Krishnan K, Jose L, Patel V, Ghosh A, Sathish CI, Weidenhofer J, Yang JH, Verrills NM, Karakoti A, Vinu A. Egg-yolk core-shell mesoporous silica nanoparticles for high doxorubicin loading and delivery to prostate cancer cells. NANOSCALE 2022; 14:6830-6845. [PMID: 35441642 DOI: 10.1039/d2nr00783e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mesoporous silica-based nanoparticles (MSNs) have gained rapid interest as a drug delivery system (DDS) and demonstrated their versatility in delivering drugs for the treatment of various cancers. However, the drug loading efficiency of MSNs is low and is usually improved by improving textural properties through complicated synthesis methods or by post synthesis modification of the surface that can result in the loss of surface area and modify its drug release properties. In this study, we report a direct single-step synthesis of MSNs with a unique egg-yolk core-shell morphology, large pore volume and a hydrophilic surface, decorated with nitrogen rich surface functionalities for increasing its drug loading capacity. This combination of excellent textural properties and surface functionalisation was achieved by a simple soft templating method using dual surfactants and the silica sources assisted by employing either triethylamine (TEA) or triethanolamine (TEO) as the hydrolysis agent. The morphology and well-ordered mesoporous structure can simply be tuned by changing the pH of the synthesis medium that affects the self-assembly mechanism of the micelles. HRTEM image of samples clearly revealed an egg-yolk core-shell morphology with a thin mesoporous silica shell. The optimised MSN samples synthesized at a pH of 11 using either TEA or TEO depicted a higher doxorubicin (Dox) loading capacity of 425 μg mg-1 and 481 μg mg-1 respectively, as compared to only 347 μg mg-1 for MSN samples due to the uniform distribution of nitrogen functionalities. The anticancer activity of Dox loaded MSNs evaluated in two different prostate cancer cell lines (PC-3 and LNCaP) showed a higher cytotoxicity of the drug loaded on optimised MSN samples as compared to pristine MSNs without affecting the cellular uptake of the particles. These results suggest that the unique single-step synthesis and functionalisation method resulted in successfully achieving higher drug loading in egg-yolk core-shell nitrogen functionalised MSNs and could be implemented as an effective carrier of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Steffi Tiburcius
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| | - Kannan Krishnan
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| | - Linta Jose
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| | - Vaishwik Patel
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| | - Arnab Ghosh
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, 2308, NSW, Australia
| | - C I Sathish
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| | - Judith Weidenhofer
- Hunter Medical Research Institute (HMRI), New Lambton Heights, 2305, NSW, Australia
| | - Jae-Hun Yang
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
8
|
Metamorphosis of prostate specific membrane antigen (PSMA) inhibitors. Biophys Rev 2022; 14:303-315. [PMID: 35340601 PMCID: PMC8921357 DOI: 10.1007/s12551-021-00919-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/18/2021] [Indexed: 01/16/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA), also called glutamate carboxypeptidase II (GCP(II)), is a Zn-dependent metalloprotease that is known as a well prostate cancer indication and a potential targeting towards anti-cancer medicines and drug delivery. Because of its centrality in the diagnostics and treatment of prostate cancer, several types of inhibitors are designed with particular scaffolds. In this study, important groups of related inhibitors as well as reported experimental and computational studies are being reviewed, in which we examined three functional groups on each group of structures. The importance of computational biochemistry and the necessity of extensive research in this area on PSMA and its effective ligands are recommended.
Collapse
|
9
|
Machulkin AE, Uspenskaya AA, Zyk NY, Nimenko EA, Ber AP, Petrov SA, Shafikov RR, Skvortsov DA, Smirnova GB, Borisova YA, Pokrovsky VS, Kolmogorov VS, Vaneev AN, Ivanenkov YA, Khudyakov AD, Kovalev SV, Erofeev AS, Gorelkin PV, Beloglazkina EK, Zyk NV, Khazanova ES, Majouga AG. PSMA-targeted small-molecule docetaxel conjugate: Synthesis and preclinical evaluation. Eur J Med Chem 2021; 227:113936. [PMID: 34717125 DOI: 10.1016/j.ejmech.2021.113936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Prostate cancer is one of the most commonly diagnosed men's cancers and remains one of the leading causes of cancer death. The development of approaches to the treatment of this oncological disease is an ongoing process. In this work, we have carried out the selection of ligands for the creation of conjugates based on the drug docetaxel and synthesized a series of three docetaxel conjugates. In vitro cytotoxicity of these molecules was evaluated using the MTT assay. Based on the assay results, we selected the conjugate which showed cytotoxic potential close to unmodified docetaxel. At the same time, the molar solubility of the resulting compound increased up to 20 times in comparison with the drug itself. In vivo evaluation on 22Rv1 (PSMA+) xenograft model demonstrated a good potency of the synthesized conjugate to inhibit tumor growth: the inhibition turned out to be more than 80% at a dose of 30 mg/kg. Pharmacokinetic parameters of conjugate distribution were analyzed. Also, it was found that PSMA-targeted docetaxel conjugate is less toxic than docetaxel itself, the decrease of molar acute toxicity in comparison with free docetaxel was up to 20%. Obtained conjugate PSMA-DOC is a good candidate for further expanded preclinical trials because of high antitumor activity, fewer side toxic effects and better solubility.
Collapse
Affiliation(s)
- Aleksei E Machulkin
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation.
| | - Anastasia A Uspenskaya
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Nikolay Y Zyk
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Ekaterina A Nimenko
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Anton P Ber
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Stanislav A Petrov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Radik R Shafikov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow, 117997, Russian Federation
| | - Dmitry A Skvortsov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Faculty of Biology and Biotechnologies, Higher School of Economics, Myasnitskaya 13, Moscow, 101000, Russia
| | - Galina B Smirnova
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia
| | - Yulia A Borisova
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia
| | - Vadim S Pokrovsky
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia; RUDN University, Miklukho-Maklaya Str.6, Moscow, 117198, Russian Federation
| | - Vasilii S Kolmogorov
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Alexander N Vaneev
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Yan A Ivanenkov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region, 141700, Russian Federation; National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation; The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow, 127055, Russia; Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Sciences (IBG RAS), Oktyabrya Prospekt 71, Ufa, 450054, Russian Federation
| | - Alexander D Khudyakov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Sergei V Kovalev
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Alexander S Erofeev
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Petr V Gorelkin
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Elena K Beloglazkina
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Nikolay V Zyk
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Elena S Khazanova
- LLC Izvarino-Pharma, V. Vnukovskoe, Vnukovskoe Sh., 5th Km., Building 1, Moscow, 108817, Russian Federation
| | - Alexander G Majouga
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation; Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow, 125047, Russian Federation
| |
Collapse
|
10
|
Protease-triggered bioresponsive drug delivery for the targeted theranostics of malignancy. Acta Pharm Sin B 2021; 11:2220-2242. [PMID: 34522585 PMCID: PMC8424222 DOI: 10.1016/j.apsb.2021.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Proteases have a fundamental role in maintaining physiological homeostasis, but their dysregulation results in severe activity imbalance and pathological conditions, including cancer onset, progression, invasion, and metastasis. This striking importance plus superior biological recognition and catalytic performance of proteases, combining with the excellent physicochemical characteristics of nanomaterials, results in enzyme-activated nano-drug delivery systems (nanoDDS) that perform theranostic functions in highly specific response to the tumor phenotype stimulus. In the tutorial review, the key advances of protease-responsive nanoDDS in the specific diagnosis and targeted treatment for malignancies are emphatically classified according to the effector biomolecule types, on the premise of summarizing the structure and function of each protease. Subsequently, the incomplete matching and recognition between enzyme and substrate, structural design complexity, volume production, and toxicological issues related to the nanocomposites are highlighted to clarify the direction of efforts in nanotheranostics. This will facilitate the promotion of nanotechnology in the management of malignant tumors.
Collapse
|
11
|
Petrov SA, Machulkin AE, Petrov RA, Tavtorkin AN, Bondarenko GN, Legkov SA, Nifant'ev IE, Dolzhikova VD, Zyk NV, Majouga AG, Beloglazkina EK. Synthesis and organogelating behaviour of urea- and Fmoc-containing diphenylalanine based hexaamide. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Ha H, Kwon H, Lim T, Jang J, Park SK, Byun Y. Inhibitors of prostate-specific membrane antigen in the diagnosis and therapy of metastatic prostate cancer - a review of patent literature. Expert Opin Ther Pat 2021; 31:525-547. [PMID: 33459068 DOI: 10.1080/13543776.2021.1878145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II, is a potential target protein for imaging and treatment of patients with prostate cancer because of its overexpression during metastasis. Various PSMA-targeted imaging and therapeutic probes have been designed and synthesized based on the Lys-urea-Glu motif. Structural modifications have been made exclusively in the linker region, while maintaining the Lys-urea-Glu structure that interacts with S1 and S1' pockets. AREA COVERED This review includes WIPO-listed patents (from January 2017 to June 2020) reporting PSMA-targeted probes based on the Lys-urea-Glu or Glu-urea-Glu structure. EXPERT OPINION : PSMA-targeted imaging agents labeled with radionuclides such as fluorine-18, copper-64, gallium-68, and technetium-99m have been successfully translated into clinical phase for the early diagnosis of metastatic prostate cancer. Recently, PSMA-targeted therapeutic agents labeled with iodine-131, lutetium-177, astatine-211, and lead-212 have also been developed with notable progress. Most PSMA-targeted agents are based on the Lys-urea-Glu or Glu-urea-Glu structure, demonstrate strong PSMA-binding affinity in nanomolar range, and achieve diverse structural modifications in the non-pharmacophore pocket. By exploiting the S1 accessory pocket or the tunnel region of the PSMA active site, the in vivo efficacy and pharmacokinetic profiles of the PMSA-targeted agents can be effectively modulated.
Collapse
Affiliation(s)
- Hyunsoo Ha
- Department of Pharmacy, College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, South Korea
| | - Hongmok Kwon
- Department of Pharmacy, College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, South Korea
| | - Taehyeong Lim
- Department of Pharmacy, College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, South Korea
| | - Jaebong Jang
- Department of Pharmacy, College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, South Korea
| | - Song-Kyu Park
- Department of Pharmacy, College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, South Korea
| | - Youngjoo Byun
- Department of Pharmacy, College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, South Korea
| |
Collapse
|
13
|
Machulkin AE, Shafikov RR, Uspenskaya AA, Petrov SA, Ber AP, Skvortsov DA, Nimenko EA, Zyk NU, Smirnova GB, Pokrovsky VS, Abakumov MA, Saltykova IV, Akhmirov RT, Garanina AS, Polshakov VI, Saveliev OY, Ivanenkov YA, Aladinskaya AV, Finko AV, Yamansarov EU, Krasnovskaya OO, Erofeev AS, Gorelkin PV, Dontsova OA, Beloglazkina EK, Zyk NV, Khazanova ES, Majouga AG. Synthesis and Biological Evaluation of PSMA Ligands with Aromatic Residues and Fluorescent Conjugates Based on Them. J Med Chem 2021; 64:4532-4552. [PMID: 33822606 DOI: 10.1021/acs.jmedchem.0c01935] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is a suitable target for specific delivery of antitumor drugs and diagnostic agents due to its overexpression in prostate cancer cells. In the current work, we describe the design, synthesis, and biological evaluation of novel low-molecular PSMA ligands and conjugates with fluorescent dyes FAM-5, SulfoCy5, and SulfoCy7. In vitro evaluation of synthesized PSMA ligands on the activity of PSMA shows that the addition of aromatic amino acids into a linker structure leads to a significant increase in inhibition. The conjugates of the most potent ligand with FAM-5 as well as SulfoCy5 demonstrated high affinities to PSMA-expressing tumor cells in vitro. In vivo biodistribution in 22Rv1 xenografts in Balb/c nude mice of PSMA-SulfoCy5 and PSMA-SulfoCy7 conjugates with a novel PSMA ligand demonstrated good visualization of PSMA-expressing tumors. Also, the conjugate PSMA-SulfoCy7 demonstrated the absence of any explicit toxicity up to 87.9 mg/kg.
Collapse
Affiliation(s)
- Aleksei E Machulkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Radik R Shafikov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow 117997, Russian Federation
| | - Anastasia A Uspenskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Stanislav A Petrov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Anton P Ber
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Dmitry A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Faculty of Biology and Biotechnologies, Higher School of Economics, Myasnitskaya 13, Moscow 101000, Russia
| | - Ekaterina A Nimenko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Nikolay U Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Galina B Smirnova
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye sh., Moscow 115478 , Russia
| | - Vadim S Pokrovsky
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye sh., Moscow 115478 , Russia.,RUDN University, Miklukho-Maklaya str. 6, Moscow 117198, Russian Federation
| | - Maxim A Abakumov
- National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Irina V Saltykova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Rauf T Akhmirov
- Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
| | - Anastasiia S Garanina
- National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Oleg Y Saveliev
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Yan A Ivanenkov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation.,The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow 127055, Russia.,Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Sciences (IBG RAS), Oktyabrya Prospekt 71, Ufa 450054, Russian Federation
| | - Anastasiya V Aladinskaya
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russian Federation
| | - Alexander V Finko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Emil U Yamansarov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Olga O Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Petr V Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Olga A Dontsova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow 117997, Russian Federation
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Elena S Khazanova
- Izvarino Pharma LLC, v. Vnukovskoe, Vnukovskoe sh., 5th km., Building 1, Moscow 108817, Russian Federation
| | - Alexander G Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation.,Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
| |
Collapse
|
14
|
Petrov SA, Machulkin AE, Uspenskaya AA, Zyk NY, Nimenko EA, Garanina AS, Petrov RA, Polshakov VI, Grishin YK, Roznyatovsky VA, Zyk NV, Majouga AG, Beloglazkina EK. Polypeptide-Based Molecular Platform and Its Docetaxel/Sulfo-Cy5-Containing Conjugate for Targeted Delivery to Prostate Specific Membrane Antigen. Molecules 2020; 25:molecules25245784. [PMID: 33302417 PMCID: PMC7762530 DOI: 10.3390/molecules25245784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 01/29/2023] Open
Abstract
A strategy for stereoselective synthesis of molecular platform for targeted delivery of bimodal therapeutic or theranostic agents to the prostate-specific membrane antigen (PSMA) receptor was developed. The proposed platform contains a urea-based, PSMA-targeting Glu-Urea-Lys (EuK) fragment as a vector moiety and tripeptide linker with terminal amide and azide groups for subsequent addition of two different therapeutic and diagnostic agents. The optimal method for this molecular platform synthesis includes (a) solid-phase assembly of the polypeptide linker, (b) coupling of this linker with the vector fragment, (c) attachment of 3-aminopropylazide, and (d) amide and carboxylic groups deprotection. A bimodal theranostic conjugate of the proposed platform with a cytostatic drug (docetaxel) and a fluorescent label (Sulfo-Cy5) was synthesized to demonstrate its possible sequential conjugation with different functional molecules.
Collapse
Affiliation(s)
- Stanislav A. Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Aleksei E. Machulkin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Leninskiy pr., 4, 119049 Moscow, Russia
| | - Anastasia A. Uspenskaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Nikolay Y. Zyk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Ekaterina A. Nimenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Anastasia S. Garanina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Leninskiy pr., 4, 119049 Moscow, Russia
| | - Rostislav A. Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Vladimir I. Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27-1, 119991 Moscow, Russia;
| | - Yuri K. Grishin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Vitaly A. Roznyatovsky
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Nikolay V. Zyk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Alexander G. Majouga
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Leninskiy pr., 4, 119049 Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125947 Moscow, Russia
| | - Elena K. Beloglazkina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
- Correspondence:
| |
Collapse
|
15
|
Uspenskaya AA, Machulkin AE, Nimenko EA, Shafikov RR, Petrov SA, Skvortsov DA, Beloglazkina EK, Majouga AG. Influence of the dipeptide linker configuration on the activity of PSMA ligands. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Lin X, Li Y, Luo W, Xiao L, Zhang Z, Zhao J, Liu C, Li Y. Leucine-activated nanohybrid biofilm for skin regeneration via improving cell affinity and neovascularization capacity. J Mater Chem B 2020; 8:7966-7976. [PMID: 32756660 DOI: 10.1039/d0tb00958j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The accumulation of skin diseases has increased the need for biomimicking materials with high bioactivity and biosafety for wound healing, where how to improve the cell affinity of the skin regenerative materials as well as their neovascularization capacity is a key factor for rapid regeneration of the injured skin tissue. In the current study, we developed an advanced type of biodegradable nanofibrous biofilm which can attract skin-related cells and accelerate blood vessel formation for skin regeneration. Firstly, bioactive nanohybrids (LEU@LP) were fabricated via in situ doping of the nutrient amino acid leucine (beneficial for fibroblast proliferation and protein synthesis) into LAPONITE® nanodisks (enriched in Mg and Si favorable for vascularization). LEU@LP nanoparticles were then hybridized with a biodegradable polylactide (PLA) nanofibrous mesh via an airbrushing technique, followed by a subsequent ammonia plasma surface treatment to improve PLA's hydrophilicity to increase cell affinity. The resulting hybrid biofilms with skin-biomimicking nanofibrous structural networks can promote cell adhesion, spreading, migration and proliferation of fibroblasts, leading to the ideal skin wound healing (with blood vessel formation and hair follicle regeneration), probably attributed to their better hydrophilicity to promote cell affinity and the capacity of sustainable release of leucine (beneficial for fibroblasts proliferation) and the composition provision (Mg and Si which are beneficial for neovascularization).
Collapse
Affiliation(s)
- Xiajie Lin
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Synthesis and biological evaluation of PSMA-targeting paclitaxel conjugates. Bioorg Med Chem Lett 2019; 29:2229-2235. [DOI: 10.1016/j.bmcl.2019.06.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
|
18
|
Giniyatullina GV, Kazakova OB, Baikova IP, Yamansarov EY, Osterman IA, Komarova ES, Skvortsov DA, Saltikova IV, Majouga AG, Ivanenkov YA. Synthesis and Сytotoxicity of A-Azepanobetulinic Acid N-Methyl-Piperazinylamide. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19860670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The synthesis of A-azepanobetulinic acid N-methylpiperazinylamide was performed through a series of transformations (oximation, Beckmann rearrangement, reduction) of previously synthesized betulonic acid N-methylpiperazinylamide. In vitro cytotoxic activity was detected for the obtained compound against a number of cancer cell lines, and its potential was revealed as an antibacterial agent.
Collapse
Affiliation(s)
- Gulnara V. Giniyatullina
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Russian Federation
| | - Oxana B. Kazakova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Russian Federation
| | - Irina P. Baikova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Russian Federation
| | | | - Ilya A. Osterman
- Chemistry Department, Lomonosov Moscow State University, Russian Federation
- Skolkovo Institute of Science and Technology, Russian Federation
- National Research University Higher School of Economics, Moscow, Russian Federation
| | - Ekaterina S. Komarova
- Chemistry Department, Lomonosov Moscow State University, Russian Federation
- Skolkovo Institute of Science and Technology, Russian Federation
| | | | - Irina V. Saltikova
- Chemistry Department, Lomonosov Moscow State University, Russian Federation
| | - Alexander G. Majouga
- Chemistry Department, Lomonosov Moscow State University, Russian Federation
- National University of Science and Technology MISiS, Moscow, Russian Federation
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russian Federation
| | - Yan A. Ivanenkov
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russian Federation
| |
Collapse
|