1
|
Konwar B, De S, Das G, Ramesh A. Napthalimide-based nuclease inhibitor: A multifunctional therapeutic material to bolster MRSA uptake by macrophage-like cells and mitigate pathogen adhesion on orthopaedic implant. Int J Biol Macromol 2024; 277:134023. [PMID: 39032881 DOI: 10.1016/j.ijbiomac.2024.134023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The healthcare burden rendered by methicillin-resistant Staphylococcus aureus (MRSA) warrants the development of therapeutics that offer a distinct benefit in the clinics as compared to conventional antibiotics. The present study describes the potential of napthalimide-based synthetic ligands (C1-C3) as inhibitors of the staphylococcal nuclease known as micrococcal nuclease (MNase), a key virulence factor of the pathogen. Amongst the ligands, the most potent MNase inhibitor C1 rendered non-competitive inhibition, reduced MNase turnover number (Kcat) and catalytic efficiency (Kcat/Km) with an IC50 value of ~950 nM. CD spectroscopy suggested distortion of MNase conformation in presence of C1. Flow cytometry and confocal microscopy indicated that C1 restored the ability of activated THP-1 cells to engulf DNA-entrapped MRSA cells. Interestingly, C1 could inhibit MRSA adhesion onto collagen. For potential application, C1-loaded pluronic F-127 micellar nanocarrier (C1-PMC) was generated, wherein the anti-adhesion activity of the pluronic carrier (PMC) and C1 was harnessed in tandem to deter MRSA cell adhesion onto collagen. MRSA biofilm formation was hindered on C1-PMC-coated titanium (Ti) wire, while eluates from C1-PMC-coated Ti wires were non-toxic to HEK 293, MG-63 and THP-1 cells. The multifunctional C1 provides a blueprint for designing therapeutic materials that hold translational potential for mitigation of MRSA infections.
Collapse
Affiliation(s)
- Barlina Konwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sagnik De
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Lee T, Lee S, Kim MK, Ahn JH, Park JS, Seo HW, Park KH, Chong Y. 3- O-Substituted Quercetin: an Antibiotic-Potentiating Agent against Multidrug-Resistant Gram-Negative Enterobacteriaceae through Simultaneous Inhibition of Efflux Pump and Broad-Spectrum Carbapenemases. ACS Infect Dis 2024; 10:1624-1643. [PMID: 38652574 DOI: 10.1021/acsinfecdis.3c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The discovery of safe and efficient inhibitors against efflux pumps as well as metallo-β-lactamases (MBL) is one of the main challenges in the development of multidrug-resistant (MDR) reversal agents which can be utilized in the treatment of carbapenem-resistant Gram-negative bacteria. In this study, we have identified that introduction of an ethylene-linked sterically demanding group at the 3-OH position of the previously reported MDR reversal agent di-F-Q endows the resulting compounds with hereto unknown multitarget inhibitory activity against both efflux pumps and broad-spectrum β-lactamases including difficult-to-inhibit MBLs. A molecular docking study of the multitarget inhibitors against efflux pump, as well as various classes of β-lactamases, revealed that the 3-O-alkyl substituents occupy the novel binding sites in efflux pumps as well as carbapenemases. Not surprisingly, the multitarget inhibitors rescued the antibiotic activity of a carbapenem antibiotic, meropenem (MEM), in NDM-1 (New Delhi Metallo-β-lactamase-1)-producing carbapenem-resistant Enterobacteriaceae (CRE), and they reduced MICs of MEM more than four-fold (synergistic effect) in 8-9 out of 14 clinical strains. The antibiotic-potentiating activity of the multitarget inhibitors was also demonstrated in CRE-infected mouse model. Taken together, these results suggest that combining inhibitory activity against two critical targets in MDR Gram-negative bacteria, efflux pumps, and β-lactamases, in one molecule is possible, and the multitarget inhibitors may provide new avenues for the discovery of safe and efficient MDR reversal agents.
Collapse
Affiliation(s)
- Taegum Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Seongyeon Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Mi Kyoung Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Joong Hoon Ahn
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Ji Sun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Yuseong-gu, Daejeon 34141, Korea
| | - Hwi Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Yuseong-gu, Daejeon 34141, Korea
| | - Ki-Ho Park
- Department of Infectious Disease, Kyung Hee University School of Medicine, Seoul 02447, Korea
| | - Youhoon Chong
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
3
|
Duffey M, Jumde RP, da Costa RM, Ropponen HK, Blasco B, Piddock LJ. Extending the Potency and Lifespan of Antibiotics: Inhibitors of Gram-Negative Bacterial Efflux Pumps. ACS Infect Dis 2024; 10:1458-1482. [PMID: 38661541 PMCID: PMC11091901 DOI: 10.1021/acsinfecdis.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Efflux is a natural process found in all prokaryotic and eukaryotic cells that removes a diverse range of substrates from inside to outside. Many antibiotics are substrates of bacterial efflux pumps, and modifications to the structure or overexpression of efflux pumps are an important resistance mechanism utilized by many multidrug-resistant bacteria. Therefore, chemical inhibition of bacterial efflux to revitalize existing antibiotics has been considered a promising approach for antimicrobial chemotherapy over two decades, and various strategies have been employed. In this review, we provide an overview of bacterial multidrug resistance (MDR) efflux pumps, of which the resistance nodulation division (RND) efflux pumps are considered the most clinically relevant in Gram-negative bacteria, and describe over 50 efflux inhibitors that target such systems. Although numerous efflux inhibitors have been identified to date, none have progressed into clinical use because of formulation, toxicity, and pharmacokinetic issues or a narrow spectrum of inhibition. For these reasons, the development of efflux inhibitors has been considered a difficult and complex area of research, and few active preclinical studies on efflux inhibitors are in progress. However, recently developed tools, including but not limited to computational tools including molecular docking models, offer hope that further research on efflux inhibitors can be a platform for research and development of new bacterial efflux inhibitors.
Collapse
Affiliation(s)
- Maëlle Duffey
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Ravindra P. Jumde
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Renata M.A. da Costa
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Henni-Karoliina Ropponen
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Benjamin Blasco
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Laura J.V. Piddock
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| |
Collapse
|
4
|
Pisoni LA, Semple SJ, Liu S, Sykes MJ, Venter H. Combined Structure- and Ligand-Based Approach for the Identification of Inhibitors of AcrAB-TolC in Escherichia coli. ACS Infect Dis 2023; 9:2504-2522. [PMID: 37888944 DOI: 10.1021/acsinfecdis.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The inhibition of efflux pumps is a promising approach to combating multidrug-resistant bacteria. We have developed a combined structure- and ligand-based model, using OpenEye software, for the identification of inhibitors of AcrB, the inner membrane protein component of the AcrAB-TolC efflux pump in Escherichia coli. From a database of 1391 FDA-approved drugs, 23 compounds were selected to test for efflux inhibition in E. coli. Seven compounds, including ivacaftor (25), butenafine (19), naftifine (27), pimozide (30), thioridazine (35), trifluoperazine (37), and meloxicam (26), enhanced the activity of at least one antimicrobial substrate and inhibited the efflux pump-mediated removal of the substrate Nile Red from cells. Ivacaftor (25) inhibited efflux dose dependently, had no effect on an E. coli strain with genomic deletion of the gene encoding AcrB, and did not damage the bacterial outer membrane. In the presence of a sub-minimum inhibitory concentration (MIC) of the outer membrane permeabilizer colistin, ivacaftor at 1 μg/mL reduced the MICs of erythromycin and minocycline by 4- to 8-fold. The identification of seven potential AcrB inhibitors shows the merits of a combined structure- and ligand-based approach to virtual screening.
Collapse
Affiliation(s)
- Lily A Pisoni
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Susan J Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Sida Liu
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Matthew J Sykes
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
5
|
Guo T, Chen Y, Chen W, Semple SJ, Gu X, Polyak SW, Sun G, Venter H, Ma S. Design and synthesis of benzochromene derivatives as AcrB inhibitors for the reversal of bacterial multidrug resistance. Eur J Med Chem 2023; 249:115148. [PMID: 36709649 DOI: 10.1016/j.ejmech.2023.115148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
A series of novel benzo[h]chromene compounds were designed, synthesized and evaluated for their biological activity as AcrB inhibitors. The compounds were assessed for their ability to potentiate the effect of antibiotics. Compounds with antibiotic-potentiating effects were then evaluated for inhibition of Nile Red efflux, and for off-target effects including activity on the outer and inner bacterial membranes and toxicity. Six compounds were identified to reduce the MIC values of at least one of the tested antibiotics by at least 4-fold, and further reduced the MICs in the presence of a membrane permeabilizer. The identified compounds were also able to inhibit Nile Red efflux at concentrations between 50 μM and 200 μM. The compounds did not disrupt the bacterial outer membrane nor display toxicity in a nematode model (Caenorhabditis elegans). The 4-methoxyphenoxy)propoxy derivative compound G6 possessed the most potent antibacterial potentiation with erythromycin by 8-fold even without the presence of a membrane permeabilizer. Furthermore, H6, G6, G10 and G11 completely abolished the Nile Red efflux at a concentration of 50 μM. The 3,4-dihydro-2H-benzo[h]chromen-5-yl)(morpholino)methanone core appears to be a promising chemical skeleton to be further studied in the discovery of more putative AcrB inhibitors.
Collapse
Affiliation(s)
- Ting Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yang Chen
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Weijin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Susan J Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Xiaotong Gu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Steven W Polyak
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Guanglin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.
| |
Collapse
|
6
|
Update on the Discovery of Efflux Pump Inhibitors against Critical Priority Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12010180. [PMID: 36671381 PMCID: PMC9854755 DOI: 10.3390/antibiotics12010180] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial resistance (AMR) has become a major problem in public health leading to an estimated 4.95 million deaths in 2019. The selective pressure caused by the massive and repeated use of antibiotics has led to bacterial strains that are partially or even entirely resistant to known antibiotics. AMR is caused by several mechanisms, among which the (over)expression of multidrug efflux pumps plays a central role. Multidrug efflux pumps are transmembrane transporters, naturally expressed by Gram-negative bacteria, able to extrude and confer resistance to several classes of antibiotics. Targeting them would be an effective way to revive various options for treatment. Many efflux pump inhibitors (EPIs) have been described in the literature; however, none of them have entered clinical trials to date. This review presents eight families of EPIs active against Escherichia coli or Pseudomonas aeruginosa. Structure-activity relationships, chemical synthesis, in vitro and in vivo activities, and pharmacological properties are reported. Their binding sites and their mechanisms of action are also analyzed comparatively.
Collapse
|
7
|
Monteiro KLC, Silva ON, Dos Santos Nascimento IJ, Mendonça Júnior FJB, Aquino PGV, da Silva-Júnior EF, de Aquino TM. Medicinal Chemistry of Inhibitors Targeting Resistant Bacteria. Curr Top Med Chem 2022; 22:1983-2028. [PMID: 35319372 DOI: 10.2174/1568026622666220321124452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
The discovery of antibiotics was a revolutionary feat that provided countless health benefits. The identification of penicillin by Alexander Fleming initiated the era of antibiotics, represented by constant discoveries that enabled effective treatments for the different classes of diseases caused by bacteria. However, the indiscriminate use of these drugs allowed the emergence of resistance mechanisms of these microorganisms against the available drugs. In addition, the constant discoveries in the 20th century generated a shortage of new molecules, worrying health agencies and professionals about the appearance of multidrug-resistant strains against available drugs. In this context, the advances of recent years in molecular biology and microbiology have allowed new perspectives in drug design and development, using the findings related to the mechanisms of bacterial resistance to generate new drugs that are not affected by such mechanisms and supply new molecules to be used to treat resistant bacterial infections. Besides, a promising strategy against bacterial resistance is the combination of drugs through adjuvants, providing new expectations in designing new antibiotics and new antimicrobial therapies. Thus, this manuscript will address the main mechanisms of bacterial resistance under the understanding of medicinal chemistry, showing the main active compounds against efflux mechanisms, and also the application of the use of drug delivery systems, and finally, the main potential natural products as adjuvants or with promising activity against resistant strains.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Osmar Nascimento Silva
- Faculty of Pharmacy, University Center of Anápolis, Unievangélica, 75083-515, Anápolis, Goiás, Brazil
| | - Igor José Dos Santos Nascimento
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | | | | | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| |
Collapse
|
8
|
Tambat R, Mahey N, Chandal N, Verma DK, Jangra M, Thakur KG, Nandanwar H. A Microbe-Derived Efflux Pump Inhibitor of the Resistance-Nodulation-Cell Division Protein Restores Antibiotic Susceptibility in Escherichia coli and Pseudomonas aeruginosa. ACS Infect Dis 2022; 8:255-270. [PMID: 35045260 DOI: 10.1021/acsinfecdis.1c00281] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of efflux pump inhibitors (EPIs) as potentiators along with the traditional antibiotics assists in the warfare against antibiotic-resistant superbugs. Efflux pumps of the resistance-nodulation-cell division (RND) family play crucial roles in multidrug resistance in Escherichia coli and Pseudomonas aeruginosa. Despite several efforts, clinically useful inhibitors are not available at present. This study describes ethyl 4-bromopyrrole-2-carboxylate (RP1) isolation, an inhibitor of RND transporters from the library of 4000 microbial exudates. RP1 acts synergistically with antibiotics by reducing their minimum inhibitory concentration in strains overexpressing archetype RND transporters (AcrAB-TolC and MexAB-OprM). It also improves the accumulation of Hoechst 33342 and inhibits its efflux (a hallmark of EPI functionality). The antibiotic-RP1 combinations prolong the postantibiotic effects and reduce the mutation prevention concentration of antibiotics. Additionally, from Biolayer Interferometry spectra, it appears that RP1 is bound to AcrB. RP1 displays low mammalian cytotoxicity, no Ca2+ channel inhibitory effects, and reduces the intracellular invasion of E. coli and P. aeruginosa in macrophages. Furthermore, the RP1-levofloxacin combination is nontoxic, well-tolerated, and notably effective in a murine lung infection model. In sum, RP1 is a potent EPI and worthy of further consideration as a potentiator to improve the effectiveness of existing antibiotics.
Collapse
Affiliation(s)
- Rushikesh Tambat
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Nisha Mahey
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
- AcSIR−Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Nishtha Chandal
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
- AcSIR−Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Dipesh Kumar Verma
- Structural Biology Laboratory, CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Manoj Jangra
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Hemraj Nandanwar
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR−Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
- AcSIR−Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
9
|
Chen X, Zhong C, Lu Y, Yao M, Guan Z, Chen C, Zhu H, Luo Z, Zhang Y. Practical access to fluorescent 2,3-naphthalimide derivatives via didehydro-Diels-Alder reaction. Chem Commun (Camb) 2021; 57:5155-5158. [PMID: 33900353 DOI: 10.1039/d1cc01437d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical and efficient approach for the synthesis of fluorescent 2,3-naphthalimide derivatives has been developed from readily available starting materials via an intramolecular didehydro-Diels-Alder reaction, which proceeded well under room temperature, exhibiting a wide substrate scope and good functional group tolerance. The practicability of this methodology has been verified by one-step synthesis of the environmentally sensitive fluorophore 6-DMN on a gram scale with a shorter time, fewer steps and less waste disposal, and without the utilization of toxic transition metals. The present experimental and computational studies support the crucial role of the propiolimide moiety in the transformation.
Collapse
Affiliation(s)
- Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cheng Zhong
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuling Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Meng Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhenhua Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
10
|
Design and synthesis of novel 4-substituted quinazoline-2-carboxamide derivatives targeting AcrB to reverse the bacterial multidrug resistance. Bioorg Chem 2020; 105:104394. [DOI: 10.1016/j.bioorg.2020.104394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/28/2020] [Accepted: 10/17/2020] [Indexed: 12/30/2022]
|
11
|
Serçinoğlu O, Senturk D, Altinisik Kaya FE, Avci FG, Frlan R, Tomašič T, Ozbek P, Orelle C, Jault JM, Sariyar Akbulut B. Identification of novel inhibitors of the ABC transporter BmrA. Bioorg Chem 2020; 105:104452. [PMID: 33212311 DOI: 10.1016/j.bioorg.2020.104452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 01/02/2023]
Abstract
The resistance of microbes to commonly used antibiotics has become a worldwide health problem. A major underlying mechanism of microbial antibiotic resistance is the export of drugs from bacterial cells. Drug efflux is mediated through the action of multidrug resistance efflux pumps located in the bacterial cell membranes. The critical role of bacterial efflux pumps in antibiotic resistance has directed research efforts to the identification of novel efflux pump inhibitors that can be used alongside antibiotics in clinical settings. Here, we aimed to find potential inhibitors of the archetypical ATP-binding cassette (ABC) efflux pump BmrA of Bacillus subtilis via virtual screening of the Mu.Ta.Lig. Chemotheca small molecule library. Molecular docking calculations targeting the nucleotide-binding domain of BmrA were performed using AutoDock Vina. Following a further drug-likeness filtering step based on Lipinski's Rule of Five, top 25 scorers were identified. These ligands were then clustered into separate groups based on their contact patterns with the BmrA nucleotide-binding domain. Six ligands with distinct contact patterns were used for further in vitro inhibition assays based on intracellular ethidium bromide accumulation. Using this methodology, we identified two novel inhibitors of BmrA from the Chemotheca small molecule library.
Collapse
Affiliation(s)
- Onur Serçinoğlu
- Department of Bioengineering, Recep Tayyip Erdogan University, Fener 53100, Rize, Turkey
| | - Duygu Senturk
- Department of Bioengineering, Marmara University, Kadikoy 34722, Istanbul, Turkey
| | | | - Fatma Gizem Avci
- Department of Bioengineering, Uskudar University, Uskudar 34662, Istanbul, Turkey
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Pemra Ozbek
- Department of Bioengineering, Marmara University, Kadikoy 34722, Istanbul, Turkey
| | - Cédric Orelle
- University of Lyon, CNRS, UMR5086 "Molecular Microbiology and Structural Biochemistry", 7 passage du Vercors, 69367 Lyon Cedex 7, France
| | - Jean-Michel Jault
- University of Lyon, CNRS, UMR5086 "Molecular Microbiology and Structural Biochemistry", 7 passage du Vercors, 69367 Lyon Cedex 7, France
| | | |
Collapse
|