1
|
Morgan H, Nicholls RA, Warren AJ, Ward SE, Evans G, Long F, Murshudov GN, Duman R, Bax BD. How Do Gepotidacin and Zoliflodacin Stabilize DNA Cleavage Complexes with Bacterial Type IIA Topoisomerases? 1. Experimental Definition of Metal Binding Sites. Int J Mol Sci 2024; 25:11688. [PMID: 39519241 PMCID: PMC11546367 DOI: 10.3390/ijms252111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
One of the challenges for experimental structural biology in the 21st century is to see chemical reactions happen. Staphylococcus aureus (S. aureus) DNA gyrase is a type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology. Drugs, such as gepotidacin, zoliflodacin and the quinolone moxifloxacin, can stabilize these normally transient DNA strand breaks and kill bacteria. Crystal structures of uncleaved DNA with a gepotidacin precursor (2.1 Å GSK2999423) or with doubly cleaved DNA and zoliflodacin (or with its progenitor QPT-1) have been solved in the same P61 space-group (a = b ≈ 93 Å, c ≈ 412 Å). This suggests that it may be possible to observe the two DNA cleavage steps (and two DNA-religation steps) in this P61 space-group. Here, a 2.58 Å anomalous manganese dataset in this crystal form is solved, and four previous crystal structures (1.98 Å, 2.1 Å, 2.5 Å and 2.65 Å) in this crystal form are re-refined to clarify crystal contacts. The structures clearly suggest a single moving metal mechanism-presented in an accompanying (second) paper. A previously published 2.98 Å structure of a yeast topoisomerase II, which has static disorder around a crystallographic twofold axis, was published as containing two metals at one active site. Re-refined coordinates of this 2.98 Å yeast structure are consistent with other type IIA topoisomerase structures in only having one metal ion at each of the two different active sites.
Collapse
Affiliation(s)
- Harry Morgan
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, UK; (H.M.)
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Robert A. Nicholls
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK;
| | - Anna J. Warren
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, UK; (H.M.)
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Fei Long
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Ramona Duman
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Benjamin D. Bax
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, UK; (H.M.)
| |
Collapse
|
2
|
Nikol’skiy VV, Minyaev ME, Bastrakov MA, Starosotnikov AM. Mild and efficient synthesis and base-promoted rearrangement of novel isoxazolo[4,5- b]pyridines. Beilstein J Org Chem 2024; 20:1069-1075. [PMID: 38774274 PMCID: PMC11106669 DOI: 10.3762/bjoc.20.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
An efficient method for the synthesis of isoxazolo[4,5-b]pyridines has been developed on the basis of readily available 2-chloro-3-nitropyridines via the intramolecular nucleophilic substitution of the nitro group as a key step. The previously unknown base-promoted Boulton-Katritzky rearrangement of isoxazolo[4,5-b]pyridine-3-carbaldehyde arylhydrazones into 3-hydroxy-2-(2-aryl[1,2,3]triazol-4-yl)pyridines was observed.
Collapse
Affiliation(s)
- Vladislav V Nikol’skiy
- N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky prosp. 47, 119991 Moscow, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky prosp. 47, 119991 Moscow, Russia
| | - Maxim A Bastrakov
- N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky prosp. 47, 119991 Moscow, Russia
| | - Alexey M Starosotnikov
- N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky prosp. 47, 119991 Moscow, Russia
| |
Collapse
|
3
|
Collins J, Osheroff N. Gyrase and Topoisomerase IV: Recycling Old Targets for New Antibacterials to Combat Fluoroquinolone Resistance. ACS Infect Dis 2024; 10:1097-1115. [PMID: 38564341 PMCID: PMC11019561 DOI: 10.1021/acsinfecdis.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
4
|
Piplani P, Kumar A, Kulshreshtha A, Vohra T, Piplani V. Recent Development of DNA Gyrase Inhibitors: An Update. Mini Rev Med Chem 2024; 24:1001-1030. [PMID: 37909434 DOI: 10.2174/0113895575264264230921080718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 11/03/2023]
Abstract
Antibiotic or antimicrobial resistance is an urgent global public health threat that occurs when bacterial or fungal infections do not respond to the drug regimen designed to treat these infections. As a result, these microbes are not evaded and continue to grow. Antibiotic resistance against natural and already-known antibiotics like Ciprofloxacin and Novobiocin can be overcome by developing an agent that can act in different ways. The success of agents like Zodiflodacin and Zenoxacin in clinical trials against DNA gyrase inhibitors that act on different sites of DNA gyrase has resulted in further exploration of this target. However, due to the emergence of bacterial resistance against these targets, there is a great need to design agents that can overcome this resistance and act with greater efficacy. This review provides information on the synthetic and natural DNA gyrase inhibitors that have been developed recently and their promising potential for combating antimicrobial resistance. The review also presents information on molecules that are in clinical trials and their current status. It also analysed the SAR studies and mechanisms of action of enlisted agents.
Collapse
Affiliation(s)
- Poonam Piplani
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Ajay Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Akanksha Kulshreshtha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Tamanna Vohra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Vritti Piplani
- Bhojia Dental College and Hospital, Baddi, 173205, India
| |
Collapse
|
5
|
Grossman S, Fishwick CWG, McPhillie MJ. Developments in Non-Intercalating Bacterial Topoisomerase Inhibitors: Allosteric and ATPase Inhibitors of DNA Gyrase and Topoisomerase IV. Pharmaceuticals (Basel) 2023; 16:261. [PMID: 37259406 PMCID: PMC9964621 DOI: 10.3390/ph16020261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 10/15/2023] Open
Abstract
Increases in antibiotic usage and antimicrobial resistance occurrence have caused a dramatic reduction in the effectiveness of many frontline antimicrobial treatments. Topoisomerase inhibitors including fluoroquinolones are broad-spectrum antibiotics used to treat a range of infections, which stabilise a topoisomerase-DNA cleavage complex via intercalation of the bound DNA. However, these are subject to bacterial resistance, predominantly in the form of single-nucleotide polymorphisms in the active site. Significant research has been undertaken searching for novel bioactive molecules capable of inhibiting bacterial topoisomerases at sites distal to the fluoroquinolone binding site. Notably, researchers have undertaken searches for anti-infective agents that can inhibit topoisomerases through alternate mechanisms. This review summarises work looking at the inhibition of topoisomerases predominantly through non-intercalating agents, including those acting at a novel allosteric site, ATPase domain inhibitors, and those offering unique binding modes and mechanisms of action.
Collapse
Affiliation(s)
- Scott Grossman
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
6
|
A 2.8 Å Structure of Zoliflodacin in a DNA Cleavage Complex with Staphylococcus aureus DNA Gyrase. Int J Mol Sci 2023; 24:ijms24021634. [PMID: 36675148 PMCID: PMC9865888 DOI: 10.3390/ijms24021634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/17/2023] Open
Abstract
Since 2000, some thirteen quinolones and fluoroquinolones have been developed and have come to market. The quinolones, one of the most successful classes of antibacterial drugs, stabilize DNA cleavage complexes with DNA gyrase and topoisomerase IV (topo IV), the two bacterial type IIA topoisomerases. The dual targeting of gyrase and topo IV helps decrease the likelihood of resistance developing. Here, we report on a 2.8 Å X-ray crystal structure, which shows that zoliflodacin, a spiropyrimidinetrione antibiotic, binds in the same DNA cleavage site(s) as quinolones, sterically blocking DNA religation. The structure shows that zoliflodacin interacts with highly conserved residues on GyrB (and does not use the quinolone water-metal ion bridge to GyrA), suggesting it may be more difficult for bacteria to develop target mediated resistance. We show that zoliflodacin has an MIC of 4 µg/mL against Acinetobacter baumannii (A. baumannii), an improvement of four-fold over its progenitor QPT-1. The current phase III clinical trial of zoliflodacin for gonorrhea is due to be read out in 2023. Zoliflodacin, together with the unrelated novel bacterial topoisomerase inhibitor gepotidacin, is likely to become the first entirely novel chemical entities approved against Gram-negative bacteria in the 21st century. Zoliflodacin may also become the progenitor of a new safer class of antibacterial drugs against other problematic Gram-negative bacteria.
Collapse
|
7
|
Belay Y, Muller A, Ndinteh DT, Kolawole OA, Adeyinka AS, Fonkui TY. Synthesis, antibacterial activities, cytotoxicity, and molecular docking studies of Salicyledene derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Kiefer AF, Bousis S, Hamed MM, Diamanti E, Haupenthal J, Hirsch AKH. Structure-Guided Optimization of Small-Molecule Folate Uptake Inhibitors Targeting the Energy-Coupling Factor Transporters. J Med Chem 2022; 65:8869-8880. [PMID: 35709475 PMCID: PMC9289886 DOI: 10.1021/acs.jmedchem.1c02114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Here, we report on
a potent class of substituted ureidothiophenes
targeting energy-coupling factor (ECF) transporters, an unexplored
target that is not addressed by any antibiotic in the market. Since
the ECF module is crucial for the vitamin transport mechanism, the
prevention of substrate uptake should ultimately lead to cell death.
By utilizing a combination of virtual and functional whole-cell screening
of our in-house library, the membrane-bound protein mediated uptake
of folate could be effectively inhibited. Structure-based optimization
of our hit yielded low-micromolar inhibitors, whereby the most active
compounds showed in addition potent antimicrobial activities against
a panel of clinically relevant Gram-positive pathogens without significant
cytotoxic effects.
Collapse
Affiliation(s)
- Alexander F Kiefer
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Spyridon Bousis
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Mostafa M Hamed
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Eleonora Diamanti
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany.,Helmholtz International Lab for Anti-Infectives, Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.,Helmholtz International Lab for Anti-Infectives, Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
9
|
Lotlikar OA, Dandekar SN, Ramana MMV, Rathod SV. One-Pot Multicomponent Synthesis, Molecular Docking, and In Vitro Antibacterial Activities of 1-{(Aryl)[(5-methyl-1,3-thiazol-2-yl)amino]methyl}naphthalen-2-ol. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428021120198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Raja Sekhara Reddy B, Pratap Reddy Gajulapalli V, Madhu Rekha E, Siva Krishna V, Sriram D, Sudakar Babu K, Kim E. Design, synthesis, and in vitro biological evaluation of dehydroaripiprazole derivatives as antituberculosis agents and molecular docking study. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Orritt KM, Feng L, Newell JF, Sutton JN, Grossman S, Germe T, Abbott LR, Jackson HL, Bury BKL, Maxwell A, McPhillie MJ, Fishwick CWG. De novo design of type II topoisomerase inhibitors as potential antimicrobial agents targeting a novel binding region. RSC Med Chem 2022; 13:831-839. [PMID: 35919336 PMCID: PMC9298182 DOI: 10.1039/d2md00049k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
By 2050, it is predicted that antimicrobial resistance will be responsible for 10 million global deaths annually, more deaths than cancer, costing the world economy $100 trillion. Clearly, strategies to address this problem are essential as bacterial evolution is rendering our current antibiotics ineffective. The discovery of an allosteric binding site on the established antibacterial target DNA gyrase offers a new medicinal chemistry strategy. As this site is distinct from the fluoroquinolone binding site, resistance is not yet documented. Using in silico molecular design methods, we have designed and synthesised a novel series of biphenyl-based inhibitors inspired by a published thiophene-based allosteric inhibitor. This series was evaluated in vitro against Escherichia coli DNA gyrase and E. coli topoisomerase IV with the most potent compounds exhibiting IC50 values towards the low micromolar range for DNA gyrase and only ∼2-fold less active against topoisomerase IV. The structure–activity relationships reported herein suggest insights to further exploit this allosteric site, offering a pathway to overcome developing fluoroquinolone resistance. A computational design, make and test strategy was used to identify antibacterial inhibitors of bacterial DNA gyrase and topoisomerase IV, proposed to bind at a novel allosteric site.![]()
Collapse
Affiliation(s)
- Kyle M. Orritt
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Lipeng Feng
- Dept. Biochemistry & Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Jack N. Sutton
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Scott Grossman
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Thomas Germe
- Dept. Biochemistry & Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Lauren R. Abbott
- Dept. Biochemistry & Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | - Anthony Maxwell
- Dept. Biochemistry & Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | |
Collapse
|
12
|
Exploitation of a novel allosteric binding region in DNA gyrase and its implications for antibacterial drug discovery. Future Med Chem 2021; 13:2125-2127. [PMID: 34605249 DOI: 10.4155/fmc-2021-0266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
13
|
Dandekar SN, Lotlikar OA, Ramana MMV, Rathod SV. Synthesis, Molecular Docking, and In Vitro Antibacterial Activities of Some Novel Aminobenzylnaphthol Derivatives via One-Pot Three-Component Reaction. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021040075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Lotlikar OA, Dandekar SN, Ramana MMV, Rathod SV. Synthesis, Molecular Docking, In Vitro Anti-Bacterial, and Anti-Cancer Activities of Some Novel Oxo-Spiro Chromene Schiff’s Bases. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Wassel MMS, Ammar YA, Elhag Ali GAM, Belal A, Mehany ABM, Ragab A. Development of adamantane scaffold containing 1,3,4-thiadiazole derivatives: Design, synthesis, anti-proliferative activity and molecular docking study targeting EGFR. Bioorg Chem 2021; 110:104794. [PMID: 33735711 DOI: 10.1016/j.bioorg.2021.104794] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
A new series of 1,3,4-thiadiazolo-adamantane derivatives were synthesized through molecular hybridization approach, then used as starting material to synthesize chloro and cyano acetamide-thiadiazole derivatives 2, 3. The newly designed compounds 1-3 were treated with different reagents to design 5-adamantyl thiadiazole derivatives 4-17 and evaluate their in vitro anti-proliferative activity against three cancer cell lines (MCF-7, HepG-2 and A549). Doxorubicin was used as a positive control. The most promising compounds 5, 6, 10a, 10b, 14b, 14c, and 17 showed up-regulation for BAX and down-regulation of Bcl-2, these findings proved their role as hopeful apoptotic inducers. In addition, the inhibitory activity against both wild EGFRWT and mutant EGFRL858R-TK for these derivatives revealed that compounds 5, 14c, and 17 have IC50 value ranging from 85 nM to 71.5 nM against wild EGFRWT and 37.85-41.19 nM against the mutant type, Lapatinib was used as a reference standard with IC50 values of 31.8 nM and 39.53 nM, respectively. The most potent derivatives were subjected to further evaluation against double mutant EGFR L858R/T790M and showed good IC50 values between (0.27-0.78 nM) compared to Lapatinib (0.18 nM) and Erlotinib (0.21 nM). Among them, thiazolo-thiadiazole adamantane derivative 17 exhibited the strongest inhibitory activity to the EGFR. Molecular docking studies were performed inside the active site of EGFR (1M17), and binding energy scores ranged between (-19.19 to -22.07 Kcal/mol) compared to Erlotinib (-19.10 Kcal/mol). Furthermore, oral bioavailability beside some pharmacokinetics properties of these derivatives were also investigated in this research work.
Collapse
Affiliation(s)
- Mohammed M S Wassel
- Department of Foot and Mouth Disease, Veterinary Serum and Vaccine Research Institute (VSVRI), Abbasia, Cairo, Egypt
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt.
| | - Gameel A M Elhag Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt.
| |
Collapse
|
16
|
Kasare SL, Gund PN, Sathe BP, Patil PS, Rehman NNMA, Dixit PP, Choudhari PB, Haval KP. Synthesis, antimicrobial screening, and docking study of new 2‐(2‐ethylpyridin‐4‐yl)‐
4‐methyl‐
N
‐phenylthiazole‐5‐carboxamide derivatives. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sanghratna L. Kasare
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad Maharashtra India
| | - Pornima N. Gund
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad Maharashtra India
| | - Bhaurao P. Sathe
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad Maharashtra India
| | - Pravin S. Patil
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad Maharashtra India
| | - Naziya N. M. A. Rehman
- Department of Microbiology Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad Maharashtra India
| | - Prashant P. Dixit
- Department of Microbiology Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad Maharashtra India
| | - Prafulla B. Choudhari
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth College of Pharmacy Kolhapur Maharashtra India
| | - Kishan P. Haval
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad Maharashtra India
| |
Collapse
|
17
|
Badar AD, Sulakhe SM, Muluk MB, Rehman NNMA, Dixit PP, Choudhari PB, Rekha EM, Sriram D, Haval KP. Synthesis of isoniazid‐1,2,3‐triazole conjugates: Antitubercular, antimicrobial evaluation and molecular docking study. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Adinath D. Badar
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad India
| | - Shubham M. Sulakhe
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad India
| | - Mahesh B. Muluk
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad India
| | - Naziya N. M. A. Rehman
- Department of Microbiology Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad India
| | - Prashant P. Dixit
- Department of Microbiology Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad India
| | - Prafulla B. Choudhari
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth College of Pharmacy Kolhapur India
| | - Estharla Madhu Rekha
- Department of Pharmacy Birla Institute of Technology and Science‐Pilani Hyderabad India
| | - Dharmarajan Sriram
- Department of Pharmacy Birla Institute of Technology and Science‐Pilani Hyderabad India
| | - Kishan P. Haval
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad India
| |
Collapse
|
18
|
Recent advances in DNA gyrase-targeted antimicrobial agents. Eur J Med Chem 2020; 199:112326. [DOI: 10.1016/j.ejmech.2020.112326] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
|
19
|
DNA Topoisomerase Inhibitors: Trapping a DNA-Cleaving Machine in Motion. J Mol Biol 2019; 431:3427-3449. [PMID: 31301408 PMCID: PMC6723622 DOI: 10.1016/j.jmb.2019.07.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022]
Abstract
Type II topoisomerases regulate DNA topology by making a double-stranded break in one DNA duplex, transporting another DNA segment through this break and then resealing it. Bacterial type IIA topoisomerase inhibitors, such as fluoroquinolones and novel bacterial topoisomerase inhibitors, can trap DNA cleavage complexes with double- or single-stranded cleaved DNA. To study the mode of action of such compounds, 21 crystal structures of a “gyraseCORE” fusion truncate of Staphyloccocus aureus DNA gyrase complexed with DNA and diverse inhibitors have been published, as well as 4 structures lacking inhibitors. These structures have the DNA in various cleavage states and appear to track trajectories along the catalytic paths of the DNA cleavage/religation steps. The various conformations sampled by these multiple “gyraseCORE” structures show rigid body movements of the catalytic GyrA WHD and GyrB TOPRIM domains across the dimer interface. Conformational changes common to all compound-bound structures suggest common mechanisms for DNA cleavage-stabilizing compounds. The structures suggest that S. aureus gyrase uses a single moving-metal ion for cleavage and that the central four base pairs need to be stretched between the two catalytic sites, in order for a scissile phosphate to attract a metal ion to the A-site to catalyze cleavage, after which it is “stored” in another coordination configuration (B-site) in the vicinity. We present a simplified model for the catalytic cycle in which capture of the transported DNA segment causes conformational changes in the ATPase domain that push the DNA gate open, resulting in stretching and cleaving the gate-DNA in two steps. Type II DNA topoisomerases, such as DNA gyrase, control the topological state of DNA in all cells. As these enzymes bind, cleave and re-ligate DNA, multiple binding pockets for small compounds appear. We discuss how crystal structures of gyrase, DNA and different compounds may be trapping different stages in the catalytic cycle of the enzyme. We propose a model for DNA strand cleavage involving a moving metal ion.
Collapse
|