1
|
From lead to clinic: A review of the structural design of P2X7R antagonists. Eur J Med Chem 2023; 251:115234. [PMID: 36893624 DOI: 10.1016/j.ejmech.2023.115234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023]
Abstract
P2X7R, which is a member of the purinergic P2 receptor family, is widely expressed in many immune cells, such as macrophages, lymphocytes, monocytes, and neutrophils. P2X7R is upregulated in response to proinflammatory stimulation, which is closely related to a variety of inflammatory diseases. The inhibition of P2X7 receptors has resulted in the elimination or reduction of symptoms in animal models of arthritis, depression, neuropathic pain, multiple sclerosis, and Alzheimer's disease. Therefore, the development of P2X7R antagonists is of great significance for the treatment of various inflammatory diseases. This review classifies the reported P2X7R antagonists according to their different cores, focuses on the structure-activity relationship (SAR) of the compounds, and analyzes some common substituents and strategies in the design of lead compounds, with the hope of providing valuable information for the development of new and efficient P2X7R antagonists.
Collapse
|
2
|
Matyśniak D, Chumak V, Nowak N, Kukla A, Lehka L, Oslislok M, Pomorski P. P2X7 receptor: the regulator of glioma tumor development and survival. Purinergic Signal 2021; 18:135-154. [PMID: 34964926 PMCID: PMC8850512 DOI: 10.1007/s11302-021-09834-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022] Open
Abstract
P2X7 is an ionotropic nucleotide receptor, forming the cation channel upon ATP stimulation. It can also function as a large membrane pore as well as transmit ATP-dependent signal without forming a channel at all. P2X7 activity in somatic cells is well-known, but remains poorly studied in glioma tumors. The current paper presents the comprehensive study of P2X7 activity in C6 and glioma cell line showing the wide range of effects the receptor has on glioma biology. We observed that P2X7 stimulation boosts glioma cell proliferation and increases cell viability. P2X7 activation promoted cell adhesion, mitochondria depolarization, and reactive oxygen species overproduction in C6 cells. P2X7 receptor also influenced glioma tumor growth in vivo via activation of pro-survival signaling pathways and ATP release. Treatment with Brilliant Blue G, a selective P2X7 antagonist, effectively inhibited glioma tumor development; decreased the expression of negative prognostic cancer markers pro-survival and epithelial-mesenchymal transition (EMT)-related proteins; and modulated the immune response toward glioma tumor in vivo. Finally, pathway-specific enrichment analysis of the microarray data from human patients also showed an upregulation of P2X7 receptor in gliomas from grades I to III. The presented results shed more light on the role of P2X7 receptor in the biology of this disease.
Collapse
Affiliation(s)
- Damian Matyśniak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Vira Chumak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
- Regenerative Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Artur Kukla
- Silesian University of Technology, Gliwice, Poland
| | - Lilya Lehka
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Magdalena Oslislok
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Pomorski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
| |
Collapse
|
3
|
Zhao Y, Chen X, He C, Gao G, Chen Z, Du J. Discovery of bilirubin as novel P2X7R antagonist with anti-tumor activity. Bioorg Med Chem Lett 2021; 51:128361. [PMID: 34543755 DOI: 10.1016/j.bmcl.2021.128361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/04/2023]
Abstract
As a unique ligand gated ion channel in the P2-receptor family, P2X7R is highly expressed in various tumors. The activated P2X7R facilitates tumor growth and metastasis. Hypoxia, inflammation and necrosis in the tumor microenvironment (TME) cause a large amount of adenosine triphosphate (ATP) accumulated in the TME. High concentration of ATP can abnormally activate P2X7R, which induces pore formation and further facilitates the Ca2+ ion influx and non-specific substance intake. Therefore, inhibition of P2X7R activation can be applied as a potential anti-tumor therapy strategy. However, there is currently no FDA approved drugs for this target for anti-tumor treatment. In this study, we identified bilirubin as novel P2X7R antagonist by using structure based virtual screening combined with cell based assays. Molecular docking studies indicated that bilirubin probably interacted with P2X7R by forming hydrogen-π interactions with residues V173, E174 and K311. The compound bilirubin inhibited the P2X7R gated EB intake by cancer cells. Meanwhile, bilirubin was capable to inhibit the cell proliferation and migration of P2X7R expressed HT29 cells. The phosphorylation of mTOR, STAT3 and GSK3β were significantly decreased when bilirubin was present. Finally, in vivo experiment exhibited the anti-tumor effect of bilirubin in the MC38 bearing mice model, but did not show tissue damage in different organs. In conclusion, bilirubin was identified as a novel P2X7R antagonist and it may have potential for anti-cancer treatment, although various functions of the molecule should be considered.
Collapse
Affiliation(s)
- Yunshuo Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaotong Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjie He
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guanfei Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Calzaferri F, Narros-Fernández P, de Pascual R, de Diego AMG, Nicke A, Egea J, García AG, de Los Ríos C. Synthesis and Pharmacological Evaluation of Novel Non-nucleotide Purine Derivatives as P2X7 Antagonists for the Treatment of Neuroinflammation. J Med Chem 2021; 64:2272-2290. [PMID: 33560845 DOI: 10.1021/acs.jmedchem.0c02145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ATP-gated P2X7 purinergic receptor (P2X7) is involved in the pathogenesis of many neurodegenerative diseases (NDDs). Several P2X7 antagonists have been developed, though none of them reached clinical trials for this indication. In this work, we designed and synthesized novel blood-brain barrier (BBB)-permeable derivatives as potential P2X7 antagonists. They comprise purine or xanthine cores linked to an aryl group through different short spacers. Compounds were tested in YO-PRO-1 uptake assays and intracellular calcium dynamics in a human P2X7-expressing HEK293 cell line, two-electrode voltage-clamp recordings in Xenopus laevis oocytes, and in interleukin 1β release assays in mouse peritoneal macrophages. BBB permeability was assessed by parallel artificial membrane permeability assays and P-glycoprotein ATPase activity. Dichloroarylpurinylethanones featured a certain P2X7 blockade, being compound 6 (2-(6-chloro-9H-purin-9-yl)-1-(2,4-dichlorophenyl)ethan-1-one), named ITH15004, the most potent, selective, and BBB-permeable antagonist. Compound 6 can be considered as a first non-nucleotide purine hit for future drug optimizations.
Collapse
Affiliation(s)
- Francesco Calzaferri
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Paloma Narros-Fernández
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| | - Ricardo de Pascual
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Antonio M G de Diego
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Javier Egea
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| | - Antonio G García
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| | - Cristóbal de Los Ríos
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| |
Collapse
|
5
|
T Pournara D, Durner A, Kritsi E, Papakostas A, Zoumpoulakis P, Nicke A, Koufaki M. Design, Synthesis, and in vitro Evaluation of P2X7 Antagonists. ChemMedChem 2020; 15:2530-2543. [PMID: 32964578 DOI: 10.1002/cmdc.202000303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/09/2020] [Indexed: 01/03/2023]
Abstract
The P2X7 receptor is a promising target for the treatment of various diseases due to its significant role in inflammation and immune cell signaling. This work describes the design, synthesis, and in vitro evaluation of a series of novel derivatives bearing diverse scaffolds as potent P2X7 antagonists. Our approach was based on structural modifications of reported (adamantan-1-yl)methylbenzamides able to inhibit the receptor activation. The adamantane moieties and the amide bond were replaced, and the replacements were evaluated by a ligand-based pharmacophore model. The antagonistic potency of the synthesized analogues was assessed by two-electrode voltage clamp experiments, using Xenopus laevis oocytes that express the human P2X7 receptor. SAR studies suggested that the replacement of the adamantane ring by an aryl-cyclohexyl moiety afforded the most potent antagonists against the activation of the P2X7 cation channel, with analogue 2-chloro-N-[1-(3-(nitrooxymethyl)phenyl)cyclohexyl)methyl]benzamide (56) exhibiting the best potency with an IC50 value of 0.39 μM.
Collapse
Affiliation(s)
- Dimitra T Pournara
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece) E-mail: mailto
| | - Anna Durner
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Nußbaumstr. 26, 80336, München, Germany
| | - Eftichia Kritsi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece) E-mail: mailto
| | - Alexios Papakostas
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece) E-mail: mailto
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece) E-mail: mailto
| | - Annette Nicke
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Nußbaumstr. 26, 80336, München, Germany
| | - Maria Koufaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece) E-mail: mailto
| |
Collapse
|
6
|
Gelin CF, Bhattacharya A, Letavic MA. P2X7 receptor antagonists for the treatment of systemic inflammatory disorders. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:63-99. [PMID: 32362329 DOI: 10.1016/bs.pmch.2019.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
P2X7 has continued to be a target of immense interest since it is implicated in several peripheral and central nervous system disorders that result from inflammation. This review primarily describes new P2X7 receptor antagonists that have been investigated and disclosed in patent applications or primary literature since 2015. While a crystal structure of the receptor to aid in the design of novel chemical structures remains elusive, many of the chemotypes that have been disclosed contain similarities, with an amide motif present in all series that have been explored to date. Several of the recent antagonists described are brain penetrant, and two compounds are currently in clinical trials for CNS indications. Additionally, brain penetrant PET ligands have been developed that aid in measuring target engagement and these ligands can potentially be used as biomarkers.
Collapse
Affiliation(s)
- Christine F Gelin
- Discovery Chemistry, Discovery Sciences, Janssen Research and Development, LLC, San Diego, CA, United States.
| | - Anindya Bhattacharya
- Neuroscience, Janssen Research and Development, LLC, San Diego, CA, United States
| | - Michael A Letavic
- Discovery Chemistry, Discovery Sciences, Janssen Research and Development, LLC, San Diego, CA, United States
| |
Collapse
|