1
|
Paul A, Nahar S, Nahata P, Sarkar A, Maji A, Samanta A, Karmakar S, Maity TK. Synthetic GPR40/FFAR1 agonists: An exhaustive survey on the most recent chemical classes and their structure-activity relationships. Eur J Med Chem 2024; 264:115990. [PMID: 38039791 DOI: 10.1016/j.ejmech.2023.115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Free fatty acid receptor 1 (FFAR1 or GPR40) is a potential target for treating type 2 diabetes mellitus (T2DM) and related disorders that have been extensively researched for many years. GPR40/FFAR1 is a promising anti-diabetic target because it can activate insulin, promoting glucose metabolism. It controls T2DM by regulating glucose levels in the body through two separate mechanisms: glucose-stimulated insulin secretion and incretin production. In the last few years, various synthetic GPR40/FFAR1 agonists have been discovered that fall under several chemical classes, viz. phenylpropionic acid, phenoxyacetic acid, and dihydrobenzofuran acetic acid. However, only a few synthetic agonists have entered clinical trials due to various shortcomings like poor efficacy, low lipophilicity and toxicity issues. As a result, pharmaceutical firms and research institutions are interested in developing synthetic GPR40/FFAR1 agonists with superior effectiveness, lipophilicity, and safety profiles. This review encompasses the most recent research on synthetic GPR40/FFAR1 agonists, including their chemical classes, design strategies and structure-activity relationships. Additionally, we have emphasised the structural characteristics of the most potent GPR40/FFAR1 agonists from each chemical class of synthetic derivatives and analysed their chemico-biological interactions. This work will hopefully pave the way for developing more potent and selective synthetic GPR40/FFAR1 agonists for treating T2DM and related disorders.
Collapse
Affiliation(s)
- Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Sourin Nahar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Pankaj Nahata
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Ajeya Samanta
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| |
Collapse
|
2
|
Chen C, Guo SM, Sun Y, Li H, Hu N, Yao K, Ni H, Xia Z, Xu B, Xie X, Long YQ. Discovery of orally effective and safe GPR40 agonists by incorporating a chiral, rigid and polar sulfoxide into β-position to the carboxylic acid. Eur J Med Chem 2023; 251:115267. [PMID: 36933395 DOI: 10.1016/j.ejmech.2023.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
GPR40 is primarily expressed in pancreatic islet β-cells, and its activation by endogenous ligands of medium to long-chain free fatty acids or synthetic agonists is clinically proved to improve glycemic control by stimulating glucose-dependent insulin secretion. However, most of the reported agonists are highly lipophilic, which might cause lipotoxicity and the off-target effects in CNS. Particularly, the withdrawal of TAK-875 from clinical trials phase III due to liver toxicity concern threw doubt over the long-term safety of targeting GPR40. Improving the efficacy and the selectivity, thus enlarging the therapeutic window would provide an alternative to develop safe GPR40-targeted therapeutics. Herein, by employing an innovative "three-in-one" pharmacophore drug design strategy, the optimal structural features for GPR40 agonist was integrated into one functional group of sulfoxide, which was incorporated into the β-position of the propanoic acid core pharmacophore. As a result, the conformational constraint, polarity as well as chirality endowed by the sulfoxide significantly enhanced the efficacy, selectivity and ADMET properties of the novel (S)- 2-(phenylsulfinyl)acetic acid-based GPR40 agonists. The lead compounds (S)-4a and (S)-4s exhibited robust plasma glucose-lowering effects and insulinotropic action during an oral glucose tolerance test in C57/BL6 mice, excellent pharmacokinetic profile and little hepatobiliary transporter inhibition, marginal cell toxicities against human primary hepatocyte at 100 μM.
Collapse
Affiliation(s)
- Cheng Chen
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China; Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Meng Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuanjun Sun
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - He Li
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Nan Hu
- Department of Pharmacy, the Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Kun Yao
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Huxin Ni
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Zhikan Xia
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Bin Xu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Ya-Qiu Long
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, China; Department of Pharmacy, the Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
3
|
Jurica EA, Wu X, Williams KN, Haque LE, Rampulla RA, Mathur A, Zhou M, Cao G, Cai H, Wang T, Liu H, Xu C, Kunselman LK, Antrilli TM, Hicks MB, Sun Q, Dierks EA, Apedo A, Moore DB, Foster KA, Cvijic ME, Panemangalore R, Khandelwal P, Wilkes JJ, Zinker BA, Robertson DG, Janovitz EB, Galella M, Li YX, Li J, Ramar T, Jalagam PR, Jayaram R, Whaley JM, Barrish JC, Robl JA, Ewing WR, Ellsworth BA. Optimization of Physicochemical Properties of Pyrrolidine GPR40 AgoPAMs Results in a Differentiated Profile with Improved Pharmacokinetics and Reduced Off-Target Activities. Bioorg Med Chem 2023; 85:117273. [PMID: 37030194 DOI: 10.1016/j.bmc.2023.117273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
GPR40 AgoPAMs are highly effective antidiabetic agents that have a dual mechanism of action, stimulating both glucose-dependent insulin and GLP-1 secretion. The early lipophilic, aromatic pyrrolidine and dihydropyrazole GPR40 AgoPAMs from our laboratory were highly efficacious in lowering plasma glucose levels in rodents but possessed off-target activities and triggered rebound hyperglycemia in rats at high doses. A focus on increasing molecular complexity through saturation and chirality in combination with reducing polarity for the pyrrolidine AgoPAM chemotype resulted in the discovery of compound 46, which shows significantly reduced off-target activities as well as improved aqueous solubility, rapid absorption, and linear PK. In vivo, compound 46 significantly lowers plasma glucose levels in rats during an oral glucose challenge yet does not demonstrate the reactive hyperglycemia effect at high doses that was observed with earlier GPR40 AgoPAMs.
Collapse
Affiliation(s)
- Elizabeth A Jurica
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States.
| | - Ximao Wu
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Kristin N Williams
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Lauren E Haque
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Richard A Rampulla
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Arvind Mathur
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Min Zhou
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Gary Cao
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Hong Cai
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Tao Wang
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Heng Liu
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Carrie Xu
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Lori K Kunselman
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Thomas M Antrilli
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Michael B Hicks
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Qin Sun
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Elizabeth A Dierks
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Atsu Apedo
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Douglas B Moore
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Kimberly A Foster
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Mary Ellen Cvijic
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Reshma Panemangalore
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Purnima Khandelwal
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Jason J Wilkes
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Bradley A Zinker
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Donald G Robertson
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Evan B Janovitz
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Michael Galella
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Yi-Xin Li
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Julia Li
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Thangeswaran Ramar
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Prasada Rao Jalagam
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Ramya Jayaram
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Jean M Whaley
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Joel C Barrish
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Jeffrey A Robl
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - William R Ewing
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Bruce A Ellsworth
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| |
Collapse
|
5
|
Governa P, Caroleo MC, Carullo G, Aiello F, Cione E, Manetti F. FFAR1/GPR40: One target, different binding sites, many agonists, no drugs, but a continuous and unprofitable tug-of-war between ligand lipophilicity, activity, and toxicity. Bioorg Med Chem Lett 2021; 41:127969. [PMID: 33771587 DOI: 10.1016/j.bmcl.2021.127969] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022]
Abstract
The progress made so far in the elucidation of the structure of free fatty acid receptor 1 (FFAR1) and its secondary and ternary complexes with partial and full allosteric ligands led to the discovery of various putative binding regions on the FFAR1 surface. Attempts to develop FFAR1 agonists culminated with the identification of TAK-875 (1), whose phase 3 clinical trials were terminated due to potential liver toxicity. In the search of safer agonists, numerous classes of new compounds were designed, synthesized, and tested. Chemical decoration of the scaffolds was rationalized to reach a good balance between lipophilicity, activity, and toxicity. Today, targeting FFAR1 with positive modulators represents an attractive pharmacological tool for the treatment of type 2 diabetes mellitus (T2DM), mainly because of the lack of hypoglycaemic side effects associated with several antidiabetic drugs currently available. Moreover, considering the involvement of FFAR1 in many physio-pathological processes, its agonists are also emerging as possible therapeutic tools for alleviating organ inflammation and fibrosis, as well as for the treatment of CNS disorders, such as Alzheimer's disease and dementia.
Collapse
Affiliation(s)
- Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy-Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy-Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy.
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy.
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy-Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy.
| |
Collapse
|