1
|
Yang Y, Guo X, Hu B, He P, Jiang X, Wang Z, Zhu H, Hu L, Yu M, Feng M. Generated SecPen_NY-ESO-1_ubiquitin-pulsed dendritic cell cancer vaccine elicits stronger and specific T cell immune responses. Acta Pharm Sin B 2021; 11:476-487. [PMID: 33643825 PMCID: PMC7893120 DOI: 10.1016/j.apsb.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Dendritic cell-based cancer vaccines (DC vaccines) have been proved efficient and safe in immunotherapy of various cancers, including melanoma, ovarian and prostate cancer. However, the clinical responses were not always satisfied. Here we proposed a novel strategy to prepare DC vaccines. In the present study, a fusion protein SNU containing a secretin-penetratin (SecPen) peptide, NY-ESO-1 and ubiquitin was designed and expressed. To establish the DC vaccine (DC-SNU), the mouse bone marrow-derived DCs (BMDCs) were isolated, pulsed with SNU and maturated with cytokine cocktail. Then peripheral blood mononuclear cells (PBMCs) from C57BL/6 mice inoculated intraperitoneally with DC-SNU were separated and cocultured with MC38/MC38NY-ESO-1 tumor cells or DC vaccines. The results show that SNU was successfully expressed. This strategy made NY-ESO-1 entering cytoplasm of BMDCs more efficiently and degraded mainly by proteasome. As we expected, mature BMDCs expressed higher CD40, CD80 and CD86 than immature BMDCs. Thus, the PBMCs released more IFN-γ and TNF-α when stimulated with DC-SNU in vitro again. What's more, the PBMCs induced stronger and specific cytotoxicity towards MC38NY-ESO-1 tumor cells. Given the above, it demonstrated that DC-SNU loaded with SecPen and ubiquitin-fused NY-ESO-1 could elicit stronger and specific T cell immune responses. This strategy can be used as a platform for DC vaccine preparation and applied to various cancers treatment.
Collapse
Affiliation(s)
- Yunkai Yang
- Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaohan Guo
- Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Bo Hu
- Shanghai Novoprotein Biotechnology Co., Ltd., Shanghai 201203, China
| | - Peng He
- Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaowu Jiang
- Medical School of Yichun University, Yichun 336000, China
| | - Zuohuan Wang
- Clinical Research Center, 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310009, China
| | - Huaxing Zhu
- Shanghai Novoprotein Biotechnology Co., Ltd., Shanghai 201203, China
| | - Lina Hu
- Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medicine Center, Shanghai 201399, China
- Corresponding authors. Tel.: +86 21 51980035 (Meiqing Feng); +86 21 68035322 (Minghua Yu); +86 21 68035322 (Lina Hu).
| | - Minghua Yu
- Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medicine Center, Shanghai 201399, China
- Corresponding authors. Tel.: +86 21 51980035 (Meiqing Feng); +86 21 68035322 (Minghua Yu); +86 21 68035322 (Lina Hu).
| | - Meiqing Feng
- Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Corresponding authors. Tel.: +86 21 51980035 (Meiqing Feng); +86 21 68035322 (Minghua Yu); +86 21 68035322 (Lina Hu).
| |
Collapse
|