1
|
Batista-Silva JP, Gomes D, Sousa SF, Sousa Â, Passarinha LA. Advances in structure-based drug design targeting membrane protein markers in prostate cancer. Drug Discov Today 2024; 29:104130. [PMID: 39103143 DOI: 10.1016/j.drudis.2024.104130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Prostate cancer (PCa) is one of the leading cancers in men and the lack of suitable biomarkers or their modulators results in poor prognosis. Membrane proteins (MPs) have a crucial role in the development and progression of PCa and can be attractive therapeutic targets. However, experimental limitations in targeting MPs hinder effective biomarker and inhibitor discovery. To overcome this barrier, computational methods can yield structural insights and screen large libraries of compounds, accelerating lead identification and optimization. In this review, we examine current breakthroughs in computer-aided drug design (CADD), with emphasis on structure-based approaches targeting the most relevant membrane-bound PCa biomarkers.
Collapse
Affiliation(s)
- João P Batista-Silva
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Diana Gomes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Sérgio F Sousa
- LAQV/REQUIMTE, BioSIM - Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
| | - Luís A Passarinha
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal.
| |
Collapse
|
2
|
Peng S, Li H, Cui W, Xiong T, Hu J, Qi H, Lin S, Wu D, Ji M, Xu H. Design, synthesis and biological evaluation of a novel PSMA-PI3K small molecule drug conjugate. RSC Med Chem 2024:d4md00246f. [PMID: 39246749 PMCID: PMC11378010 DOI: 10.1039/d4md00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
Small molecule drug conjugates are an emerging targeted therapy for cancer treatment. Building upon the overexpressed prostate-specific membrane antigen (PSMA) in prostate cancer, we herein report the design and synthesis of a novel PSMA-PI3K small molecule drug conjugate 1. Conjugate 1 demonstrates potent inhibition against PI3K with an IC50 value of 0.40 nM and simultaneously targets PSMA, giving rise to selective growth inhibition activity for PSMA-positive cancer cells. Conjugate 1 also potently inhibits the phosphorylation of PI3K main downstream effectors and arrests the cell cycle in the G0/G1 phase in PSMA-positive 22Rv1 prostate cancer cells. Further in vivo evaluation shows that conjugate 1 has favorable efficacy and tolerability in a 22Rv1 xenograft model, demonstrating its potential application in targeted cancer therapy.
Collapse
Affiliation(s)
- Shouguo Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Haixia Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences Beijing 100053 China
| | - Weilu Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences Beijing 100053 China
| | - Tianning Xiong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Jiaqi Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Haixiang Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| |
Collapse
|
3
|
Sergeeva O, Akhmetova E, Dukova S, Beloglazkina E, Uspenskaya A, Machulkin A, Stetsenko D, Zatsepin T. Structure-activity relationship study of mesyl and busyl phosphoramidate antisense oligonucleotides for unaided and PSMA-mediated uptake into prostate cancer cells. Front Chem 2024; 12:1342178. [PMID: 38501046 PMCID: PMC10944894 DOI: 10.3389/fchem.2024.1342178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Phosphorothioate (PS) group is a key component of a majority of FDA approved oligonucleotide drugs that increase stability to nucleases whilst maintaining interactions with many proteins, including RNase H in the case of antisense oligonucleotides (ASOs). At the same time, uniform PS modification increases nonspecific protein binding that can trigger toxicity and pro-inflammatory effects, so discovery and characterization of alternative phosphate mimics for RNA therapeutics is an actual task. Here we evaluated the effects of the introduction of several N-alkane sulfonyl phosphoramidate groups such as mesyl (methanesulfonyl) or busyl (1-butanesulfonyl) phosphoramidates into gapmer ASOs on the efficiency and pattern of RNase H cleavage, cellular uptake in vitro, and intracellular localization. Using Malat1 lncRNA as a target, we have identified patterns of mesyl or busyl modifications in the ASOs for optimal knockdown in vitro. Combination of the PSMA ligand-mediated delivery with optimized mesyl and busyl ASOs resulted in the efficient target depletion in the prostate cancer cells. Our study demonstrated that other N-alkanesulfonyl phosphoramidate groups apart from a known mesyl phosphoramidate can serve as an essential component of mixed backbone gapmer ASOs to reduce drawbacks of uniformly PS-modified gapmers, and deserve further investigation in RNA therapeutics.
Collapse
Affiliation(s)
- O. Sergeeva
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - E. Akhmetova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - S. Dukova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - E. Beloglazkina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - A. Uspenskaya
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - A. Machulkin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Department for Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Moscow, Russia
| | - D. Stetsenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T. Zatsepin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Hasnowo LA, Larkina MS, Plotnikov E, Bodenko V, Yuldasheva F, Stasyuk E, Petrov SA, Zyk NY, Machulkin AE, Vorozhtsov NI, Beloglazkina EK, Nenajdenko VG, Tolmachev V, Orlova A, Majouga AG, Yusubov MS. Synthesis, 123I-Radiolabeling Optimization, and Initial Preclinical Evaluation of Novel Urea-Based PSMA Inhibitors with a Tributylstannyl Prosthetic Group in Their Structures. Int J Mol Sci 2023; 24:12206. [PMID: 37569582 PMCID: PMC10418939 DOI: 10.3390/ijms241512206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) has been identified as a target for the development of theranostic agents. In our current work, we describe the design and synthesis of novel N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-(S)-L-lysine (DCL) urea-based PSMA inhibitors with a chlorine-substituted aromatic fragment at the lysine ε-nitrogen atom, a dipeptide including two phenylalanine residues in the L-configuration as the peptide fragment of the linker, and 3- or 4-(tributylstannyl)benzoic acid as a prosthetic group in their structures for radiolabeling. The standard compounds [127I]PSMA-m-IB and [127I]PSMA-p-IB for comparative and characterization studies were first synthesized using two alternative synthetic approaches. An important advantage of the alternative synthetic approach, in which the prosthetic group (NHS-activated esters of compounds) is first conjugated with the polypeptide sequence followed by replacement of the Sn(Bu)3 group with radioiodine, is that the radionuclide is introduced in the final step of synthesis, thereby minimizing operating time with iodine-123 during the radiolabeling process. The obtained DCL urea-based PSMA inhibitors were radiolabeled with iodine-123. The radiolabeling optimization results showed that the radiochemical yield of [123I]PSMA-p-IB was higher than that of [123I]PSMA-m-IB, which were 74.9 ± 1.0% and 49.4 ± 1.2%, respectively. The radiochemical purity of [123I]PSMA-p-IB after purification was greater than 99.50%. The initial preclinical evaluation of [123I]PSMA-p-IB demonstrated a considerable affinity and specific binding to PC-3 PIP (PSMA-expressing cells) in vitro. The in vivo biodistribution of this new radioligand [123I]PSMA-p-IB showed less accumulation than [177Lu]Lu-PSMA-617 in several normal organs (liver, kidney, and bone). These results warrant further preclinical development, including toxicology evaluation and experiments in tumor-bearing mice.
Collapse
Affiliation(s)
- Lutfi A. Hasnowo
- School of Nuclear Science and Engineering, Tomsk Polytechnic University, Tomsk 634050, Russia or (L.A.H.); (E.S.)
- Polytechnic Institute of Nuclear Technology, National Research and Innovation Agency, Yogyakarta 55281, Indonesia
| | - Maria S. Larkina
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; (M.S.L.); (E.P.); (V.B.); (F.Y.); (M.S.Y.)
- Department of Pharmaceutical Analysis, Siberian State Medical University, Tomsk 634050, Russia
| | - Evgenii Plotnikov
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; (M.S.L.); (E.P.); (V.B.); (F.Y.); (M.S.Y.)
- Mental Health Reseach Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia
| | - Vitalina Bodenko
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; (M.S.L.); (E.P.); (V.B.); (F.Y.); (M.S.Y.)
- Department of Pharmaceutical Analysis, Siberian State Medical University, Tomsk 634050, Russia
| | - Feruza Yuldasheva
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; (M.S.L.); (E.P.); (V.B.); (F.Y.); (M.S.Y.)
| | - Elena Stasyuk
- School of Nuclear Science and Engineering, Tomsk Polytechnic University, Tomsk 634050, Russia or (L.A.H.); (E.S.)
| | - Stanislav A. Petrov
- Department of Chemistry, M.V. Lomonosov Moscow State University Leninskie Gory, 1–3, Moscow 119991, Russia; (S.A.P.); (N.Y.Z.); (A.E.M.); (N.I.V.); (V.G.N.)
| | - Nikolai Y. Zyk
- Department of Chemistry, M.V. Lomonosov Moscow State University Leninskie Gory, 1–3, Moscow 119991, Russia; (S.A.P.); (N.Y.Z.); (A.E.M.); (N.I.V.); (V.G.N.)
| | - Aleksei E. Machulkin
- Department of Chemistry, M.V. Lomonosov Moscow State University Leninskie Gory, 1–3, Moscow 119991, Russia; (S.A.P.); (N.Y.Z.); (A.E.M.); (N.I.V.); (V.G.N.)
| | - Nikolai I. Vorozhtsov
- Department of Chemistry, M.V. Lomonosov Moscow State University Leninskie Gory, 1–3, Moscow 119991, Russia; (S.A.P.); (N.Y.Z.); (A.E.M.); (N.I.V.); (V.G.N.)
| | - Elena K. Beloglazkina
- Department of Chemistry, M.V. Lomonosov Moscow State University Leninskie Gory, 1–3, Moscow 119991, Russia; (S.A.P.); (N.Y.Z.); (A.E.M.); (N.I.V.); (V.G.N.)
| | - Valentine G. Nenajdenko
- Department of Chemistry, M.V. Lomonosov Moscow State University Leninskie Gory, 1–3, Moscow 119991, Russia; (S.A.P.); (N.Y.Z.); (A.E.M.); (N.I.V.); (V.G.N.)
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden;
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 75183 Uppsala, Sweden;
| | - Alexander G. Majouga
- Faculty of Chemistry, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia;
| | - Mekhman S. Yusubov
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; (M.S.L.); (E.P.); (V.B.); (F.Y.); (M.S.Y.)
| |
Collapse
|
5
|
Murce E, Spaan E, Beekman S, van den Brink L, Handula M, Stuurman D, de Ridder C, Dalm SU, Seimbille Y. Synthesis and Evaluation of ePSMA-DM1: A New Theranostic Small-Molecule Drug Conjugate (T-SMDC) for Prostate Cancer. Pharmaceuticals (Basel) 2023; 16:1072. [PMID: 37630990 PMCID: PMC10458530 DOI: 10.3390/ph16081072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Small-molecule drug conjugates (SMDCs) are compounds in which a therapeutic payload is conjugated to a targeting vector, for specific delivery to the tumor site. This promising approach can be translated to the treatment of prostate cancer by selecting a targeting vector which binds to the prostate-specific membrane antigen (PSMA). Moreover, the addition of a bifunctional chelator to the molecule allows for the use of both diagnostic and therapeutic radionuclides. In this way, the distribution of the SMDC in the body can be monitored, and combination therapy regimes can be implemented. We combined a glutamate-urea-lysine vector to the cytotoxic agent DM1 and a DOTA chelator via an optimized linker to obtain the theranostic SMDC (T-SMDC) ePSMA-DM1. ePSMA-DM1 retained a high binding affinity to PSMA and demonstrated PSMA-specific uptake in cells. Glutathione stability assays showed that the half-life of the T-SMDC in a reducing environment was 2 h, and full drug release was obtained after 6 h. Moreover, 100 nM of ePSMA-DM1 reduced the cell viability of the human PSMA-positive LS174T cells by >85% after 72 h of incubation, which was comparable to a 10-fold higher dose of free DM1. [111In]In-ePSMA-DM1 and [177Lu]Lu-ePSMA-DM1 were both obtained in high radiochemical yields and purities (>95%), with >90% stability in PBS and >80% stability in mouse serum for up to 24 h post incubation at 37 °C. SPECT/CT imaging studies allowed for a faint tumor visualization of [111In]In-ePSMA-DM1 at 1 h p.i., and the ex vivo biodistribution showed tumor uptake (2.39 ± 0.29% ID/g) at 1 h p.i., with the compound retained in the tumor for up to 24 h. Therefore, ePSMA-DM1 is a promising T-SMDC candidate for prostate cancer, and the data obtained so far warrant further investigations, such as therapeutic experiments, after further optimization.
Collapse
Affiliation(s)
- Erika Murce
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (E.M.); (E.S.); (S.B.); (L.v.d.B.); (M.H.); (D.S.); (C.d.R.); (S.U.D.)
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Evelien Spaan
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (E.M.); (E.S.); (S.B.); (L.v.d.B.); (M.H.); (D.S.); (C.d.R.); (S.U.D.)
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Savanne Beekman
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (E.M.); (E.S.); (S.B.); (L.v.d.B.); (M.H.); (D.S.); (C.d.R.); (S.U.D.)
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Lilian van den Brink
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (E.M.); (E.S.); (S.B.); (L.v.d.B.); (M.H.); (D.S.); (C.d.R.); (S.U.D.)
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Maryana Handula
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (E.M.); (E.S.); (S.B.); (L.v.d.B.); (M.H.); (D.S.); (C.d.R.); (S.U.D.)
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Debra Stuurman
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (E.M.); (E.S.); (S.B.); (L.v.d.B.); (M.H.); (D.S.); (C.d.R.); (S.U.D.)
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Corrina de Ridder
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (E.M.); (E.S.); (S.B.); (L.v.d.B.); (M.H.); (D.S.); (C.d.R.); (S.U.D.)
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Simone U. Dalm
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (E.M.); (E.S.); (S.B.); (L.v.d.B.); (M.H.); (D.S.); (C.d.R.); (S.U.D.)
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (E.M.); (E.S.); (S.B.); (L.v.d.B.); (M.H.); (D.S.); (C.d.R.); (S.U.D.)
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- TRIUMF, Life Sciences Division, Vancouver, BC V6T 2A3, Canada
| |
Collapse
|
6
|
Optimization of the dipeptide motifs in the PSMA ligands linker structure: synthesis and in vitro evaluation. Med Chem Res 2022. [DOI: 10.1007/s00044-022-03002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Liu J, Zhang N, Wu J, Dong P, Lv H, Wang Q, Wang S, Yang H, Wang S, Li X, Hu J, Wang A, Li DJ, Shi Y. A Novel Dextran-Based Dual Drug Conjugate Targeted Tumors with High Biodistribution Ratio of Tumors to Normal Tissues. Int J Nanomedicine 2022; 17:4895-4910. [PMID: 36262192 PMCID: PMC9576339 DOI: 10.2147/ijn.s379758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Most chemotherapeutic agents possess poor water solubility and show more significant accumulations in normal tissues than in tumor tissues, resulting in serious side effects. To this end, a novel dextran-based dual drug delivery system with high biodistribution ratio of tumors to normal tissues was developed. METHODS A bi-functionalized dextran was developed, and several negatively charged dextran-based dual conjugates containing two different types of drugs, docetaxel and docosahexaenoic acid (DTX and DHA, respectively) were synthesized. The structures of these conjugates were characterized using nuclear magnetic resonance and liquid chromatography/mass spectrometry (1H-NMR and LC/MS, respectively) analysis. Cell growth inhibition, apoptosis, cell cycle distribution, and cellular uptake were measured in vitro. Drug biodistribution and pharmacokinetics were investigated in mice bearing 4T1 tumors using LC/MS analysis. Drug biodistribution was also explored by in vivo imaging. The effects of these conjugates on tumor growth were evaluated in three mice models. RESULTS The dextran-docosahexaenoic acid (DHA)- docetaxel (DTX) conjugates caused a significant enhancement of DTX water solubility and improvement in pharmacokinetic characteristics. The optimized dextran-DHA-DTX conjugate A treatment produced a 2.1- to 15.5-fold increase in intra-tumoral DTX amounts for up to 96 h compared to parent DTX treatment. Meanwhile, the concentrations of DTX released from conjugate A in normal tissues were much lower than those of the parent DTX. This study demonstrated that DHA could lead to an improvement in the efficacy of the conjugates and that the conjugate with the shortest linker displayed more activity than conjugates with longer linkers. Moreover, conjugate A completely eradicated all MCF-7 xenograft tumors without causing any obvious side effects and totally outperformed both the conventional DTX formulation and Abraxane in mice. CONCLUSION These dextran-based dual drug conjugates may represent an innovative tumor targeting drug delivery system that can selectively deliver anticancer agents to tumors.
Collapse
Affiliation(s)
- Jiaojiao Liu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Qingdao, Shandong, 266237, People’s Republic of China
| | - Naining Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Qingdao, Shandong, 266237, People’s Republic of China
| | - Jiaan Wu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Qingdao, Shandong, 266237, People’s Republic of China
| | - Peng Dong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Qingdao, Shandong, 266237, People’s Republic of China
| | - Hongshuai Lv
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Qingdao, Shandong, 266237, People’s Republic of China
| | - Qi Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Qingdao, Shandong, 266237, People’s Republic of China
| | - Shenxu Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Qingdao, Shandong, 266237, People’s Republic of China
| | - Haotong Yang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Qingdao, Shandong, 266237, People’s Republic of China
| | - Si Wang
- Santolecan Pharmaceuticals LLC, Jupiter, Florida, 33458, USA
| | - Xiaohai Li
- Santolecan Pharmaceuticals LLC, Jupiter, Florida, 33458, USA
| | - Jinghua Hu
- Santolecan Pharmaceuticals LLC, Jupiter, Florida, 33458, USA
| | - Anny Wang
- Santolecan Pharmaceuticals LLC, Jupiter, Florida, 33458, USA
| | - Daisy J Li
- Santolecan Pharmaceuticals LLC, Jupiter, Florida, 33458, USA
| | - Yikang Shi
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Qingdao, Shandong, 266237, People’s Republic of China,Correspondence: Yikang Shi, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, People’s Republic of China, Tel/Fax +86-532-5863-1418, Email
| |
Collapse
|
8
|
Zyk NY, Ber AP, Nimenko EA, Shafikov RR, Evteev SA, Petrov SA, Uspenskaya AA, Dashkova NS, Ivanenkov YA, Skvortsov DA, Beloglazkina EK, Majouga AG, Machulkin AE. Synthesis and initial in vitro evaluation of PSMA-targeting ligands with a modified aromatic moiety at the lysine ε-nitrogen atom. Bioorg Med Chem Lett 2022; 71:128840. [PMID: 35661685 DOI: 10.1016/j.bmcl.2022.128840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
We report an improved series of ligands targeting prostate specific membrane antigen (PSMA). The new compounds were designed by the introduction of changes in the structure of the aromatic fragment at ε-nitrogen atom of lysine that resulted in improved biological parameters. Some of them demonstrated high selectivity and nanomolar IC50 values. We synthesized and tested two conjugates with a fluorescent label Sulfo-Cy5 as an example of the use of the obtained PSMA inhibitors as a basis for the creation of diagnostic preparations.
Collapse
Affiliation(s)
- Nikolai Y Zyk
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.
| | - Anton P Ber
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Ekaterina A Nimenko
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Radik R Shafikov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow 117997, Russian Federation
| | - Sergei A Evteev
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow, 127055, Russia
| | - Stanislav A Petrov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Anastasia A Uspenskaya
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Natalia S Dashkova
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Yan A Ivanenkov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation; The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow, 127055, Russia
| | - Dmitry A Skvortsov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Elena K Beloglazkina
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Alexander G Majouga
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation; Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russian Federation
| | - Aleksei E Machulkin
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation; RUDN University, Miklukho-Maklaya Str. 6, Moscow 117198, Russian Federation
| |
Collapse
|
9
|
J591 functionalized paclitaxel-loaded PLGA nanoparticles successfully inhibited PSMA overexpressing LNCaP cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Wang S, Liu J, Lv H, Huang X, Dong P, Wang Q, Yang H, Wang S, Li X, Hu J, Wang D, Cao S, Xie L, Shi Y. Complete regression of xenografted breast tumors by dextran-based dual drug conjugates containing paclitaxel and docosahexaenoic acid. Eur J Med Chem 2022; 240:114567. [DOI: 10.1016/j.ejmech.2022.114567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/04/2022]
|
11
|
Collyer SE, Stack GD, Walsh JJ. Selective delivery of clinically approved tubulin binding agents through covalent conjugation to an active targeting moiety. Curr Med Chem 2022; 29:5179-5211. [DOI: 10.2174/0929867329666220401105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
The efficacy and tolerability of tubulin binding agents are hampered by their low specificity for cancer cells, like most clinically used anticancer agents. To improve specificity, tubulin binding agents have been covalently conjugated to agents which target cancer cells to give actively targeted drug conjugates. These conjugates are designed to increase uptake of the drug by cancer cells, while having limited uptake by normal cells thereby improving efficacy and tolerability.
Approaches used include attachment to small molecules, polysaccharides, peptides, proteins and antibodies that exploit the overexpression of receptors for these substances. Antibody targeted strategies have been the most successful to date with six such examples having gained clinical approval. Many other conjugate types, especially those targeting the folate receptor, have shown promising efficacy and toxicity profiles in pre-clinical models and in early-stage clinical studies. Presented herein is a discussion of the success or otherwise of the recent strategies used to form these actively targeted conjugates.
Collapse
Affiliation(s)
- Samuel E. Collyer
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Gary D. Stack
- Department of Nursing and Healthcare, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland
| | - John J. Walsh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Metamorphosis of prostate specific membrane antigen (PSMA) inhibitors. Biophys Rev 2022; 14:303-315. [PMID: 35340601 PMCID: PMC8921357 DOI: 10.1007/s12551-021-00919-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/18/2021] [Indexed: 01/16/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA), also called glutamate carboxypeptidase II (GCP(II)), is a Zn-dependent metalloprotease that is known as a well prostate cancer indication and a potential targeting towards anti-cancer medicines and drug delivery. Because of its centrality in the diagnostics and treatment of prostate cancer, several types of inhibitors are designed with particular scaffolds. In this study, important groups of related inhibitors as well as reported experimental and computational studies are being reviewed, in which we examined three functional groups on each group of structures. The importance of computational biochemistry and the necessity of extensive research in this area on PSMA and its effective ligands are recommended.
Collapse
|
13
|
Dong P, Liu J, Lv H, Wu J, Zhang N, Wang S, Li X, Hu J, Wang A, Li DJ, Wang D, Cao S, Xie L, Shi YK. The enhanced antitumor activity of the polymeric conjugate covalently coupled with docetaxel and docosahexaenoic acid. Biomater Sci 2022; 10:3454-3465. [DOI: 10.1039/d2bm00337f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Docetaxel (DTX) has been widely used for treatment of many types of cancer. However, DTX is poor water soluble and commercial DTX is formulated in nonionic surfactant polysorbate 80 and...
Collapse
|
14
|
Raveendran A, Poilil Surendran S, Ser J, Alam K, Cho H, Jeong YY. Heptamethine Cyanine Dye MHI-148-Mediated Drug Delivery System to Enhance the Anticancer Efficiency of Paclitaxel. Int J Nanomedicine 2021; 16:7169-7180. [PMID: 34707356 PMCID: PMC8545142 DOI: 10.2147/ijn.s325322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Paclitaxel (PTX) is a conventional chemotherapeutic drug that effectively treats various cancers. The cellular uptake and therapeutic potential of PTX are limited by its slow penetration and low solubility in water. The development of cancer chemotherapy methods is currently facing considerable challenges with respect to the delivery of the drugs, particularly in targeting the tumor site without exerting detrimental effects on the healthy surrounding cells. One possibility for improving the therapeutic potential is through the development of tumor-targeted delivery methods. Methods We successfully synthesized paclitaxel-MHI-148 conjugates (PTX-MHI) by coupling PTX with the tumor-targeting heptamethine cyanine dye MHI-148. Synthesis and purification were characterized using the absorbance spectrum and the results of time-of-flight mass spectrometry. Cellular uptake and cytotoxicity studies were conducted in vitro and in vivo. Results PTX-MHI accumulates in tumor cells but not in normal cells, as observed by in vitro near-infrared fluorescent (NIRF) imaging along with in vivo NIRF imaging and organ biodistribution studies. We observed that MHI-148-conjugated PTX shows greater efficiency in cancer cells than PTX alone, even in the absence of light treatment. PTX-MHI could also be used for specific drug delivery to intracellular compartments, such as the mitochondria and lysosomes of cancer cells, to improve the outcomes of tumor-targeting therapy. Conclusion The results indicated that PTX-MHI-mediated cancer therapy exerts an excellent inhibitory effect on colon carcinoma (HT-29) cell growth with low toxicity in normal fibroblasts (NIH3T3).
Collapse
Affiliation(s)
- Athira Raveendran
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Suchithra Poilil Surendran
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Jinhui Ser
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Khurshed Alam
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hoonsung Cho
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, 58128, Republic of Korea
| |
Collapse
|
15
|
Machulkin AE, Uspenskaya AA, Zyk NY, Nimenko EA, Ber AP, Petrov SA, Shafikov RR, Skvortsov DA, Smirnova GB, Borisova YA, Pokrovsky VS, Kolmogorov VS, Vaneev AN, Ivanenkov YA, Khudyakov AD, Kovalev SV, Erofeev AS, Gorelkin PV, Beloglazkina EK, Zyk NV, Khazanova ES, Majouga AG. PSMA-targeted small-molecule docetaxel conjugate: Synthesis and preclinical evaluation. Eur J Med Chem 2021; 227:113936. [PMID: 34717125 DOI: 10.1016/j.ejmech.2021.113936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Prostate cancer is one of the most commonly diagnosed men's cancers and remains one of the leading causes of cancer death. The development of approaches to the treatment of this oncological disease is an ongoing process. In this work, we have carried out the selection of ligands for the creation of conjugates based on the drug docetaxel and synthesized a series of three docetaxel conjugates. In vitro cytotoxicity of these molecules was evaluated using the MTT assay. Based on the assay results, we selected the conjugate which showed cytotoxic potential close to unmodified docetaxel. At the same time, the molar solubility of the resulting compound increased up to 20 times in comparison with the drug itself. In vivo evaluation on 22Rv1 (PSMA+) xenograft model demonstrated a good potency of the synthesized conjugate to inhibit tumor growth: the inhibition turned out to be more than 80% at a dose of 30 mg/kg. Pharmacokinetic parameters of conjugate distribution were analyzed. Also, it was found that PSMA-targeted docetaxel conjugate is less toxic than docetaxel itself, the decrease of molar acute toxicity in comparison with free docetaxel was up to 20%. Obtained conjugate PSMA-DOC is a good candidate for further expanded preclinical trials because of high antitumor activity, fewer side toxic effects and better solubility.
Collapse
Affiliation(s)
- Aleksei E Machulkin
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation.
| | - Anastasia A Uspenskaya
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Nikolay Y Zyk
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Ekaterina A Nimenko
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Anton P Ber
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Stanislav A Petrov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Radik R Shafikov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow, 117997, Russian Federation
| | - Dmitry A Skvortsov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Faculty of Biology and Biotechnologies, Higher School of Economics, Myasnitskaya 13, Moscow, 101000, Russia
| | - Galina B Smirnova
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia
| | - Yulia A Borisova
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia
| | - Vadim S Pokrovsky
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia; RUDN University, Miklukho-Maklaya Str.6, Moscow, 117198, Russian Federation
| | - Vasilii S Kolmogorov
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Alexander N Vaneev
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Yan A Ivanenkov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region, 141700, Russian Federation; National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation; The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow, 127055, Russia; Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Sciences (IBG RAS), Oktyabrya Prospekt 71, Ufa, 450054, Russian Federation
| | - Alexander D Khudyakov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Sergei V Kovalev
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Alexander S Erofeev
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Petr V Gorelkin
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Elena K Beloglazkina
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Nikolay V Zyk
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Elena S Khazanova
- LLC Izvarino-Pharma, V. Vnukovskoe, Vnukovskoe Sh., 5th Km., Building 1, Moscow, 108817, Russian Federation
| | - Alexander G Majouga
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation; Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow, 125047, Russian Federation
| |
Collapse
|
16
|
Petrov SA, Machulkin AE, Petrov RA, Tavtorkin AN, Bondarenko GN, Legkov SA, Nifant'ev IE, Dolzhikova VD, Zyk NV, Majouga AG, Beloglazkina EK. Synthesis and organogelating behaviour of urea- and Fmoc-containing diphenylalanine based hexaamide. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Machulkin AE, Shafikov RR, Uspenskaya AA, Petrov SA, Ber AP, Skvortsov DA, Nimenko EA, Zyk NU, Smirnova GB, Pokrovsky VS, Abakumov MA, Saltykova IV, Akhmirov RT, Garanina AS, Polshakov VI, Saveliev OY, Ivanenkov YA, Aladinskaya AV, Finko AV, Yamansarov EU, Krasnovskaya OO, Erofeev AS, Gorelkin PV, Dontsova OA, Beloglazkina EK, Zyk NV, Khazanova ES, Majouga AG. Synthesis and Biological Evaluation of PSMA Ligands with Aromatic Residues and Fluorescent Conjugates Based on Them. J Med Chem 2021; 64:4532-4552. [PMID: 33822606 DOI: 10.1021/acs.jmedchem.0c01935] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is a suitable target for specific delivery of antitumor drugs and diagnostic agents due to its overexpression in prostate cancer cells. In the current work, we describe the design, synthesis, and biological evaluation of novel low-molecular PSMA ligands and conjugates with fluorescent dyes FAM-5, SulfoCy5, and SulfoCy7. In vitro evaluation of synthesized PSMA ligands on the activity of PSMA shows that the addition of aromatic amino acids into a linker structure leads to a significant increase in inhibition. The conjugates of the most potent ligand with FAM-5 as well as SulfoCy5 demonstrated high affinities to PSMA-expressing tumor cells in vitro. In vivo biodistribution in 22Rv1 xenografts in Balb/c nude mice of PSMA-SulfoCy5 and PSMA-SulfoCy7 conjugates with a novel PSMA ligand demonstrated good visualization of PSMA-expressing tumors. Also, the conjugate PSMA-SulfoCy7 demonstrated the absence of any explicit toxicity up to 87.9 mg/kg.
Collapse
Affiliation(s)
- Aleksei E Machulkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Radik R Shafikov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow 117997, Russian Federation
| | - Anastasia A Uspenskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Stanislav A Petrov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Anton P Ber
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Dmitry A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Faculty of Biology and Biotechnologies, Higher School of Economics, Myasnitskaya 13, Moscow 101000, Russia
| | - Ekaterina A Nimenko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Nikolay U Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Galina B Smirnova
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye sh., Moscow 115478 , Russia
| | - Vadim S Pokrovsky
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye sh., Moscow 115478 , Russia.,RUDN University, Miklukho-Maklaya str. 6, Moscow 117198, Russian Federation
| | - Maxim A Abakumov
- National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Irina V Saltykova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Rauf T Akhmirov
- Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
| | - Anastasiia S Garanina
- National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Oleg Y Saveliev
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Yan A Ivanenkov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation.,The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow 127055, Russia.,Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Sciences (IBG RAS), Oktyabrya Prospekt 71, Ufa 450054, Russian Federation
| | - Anastasiya V Aladinskaya
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russian Federation
| | - Alexander V Finko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Emil U Yamansarov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Olga O Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Petr V Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Olga A Dontsova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow 117997, Russian Federation
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Elena S Khazanova
- Izvarino Pharma LLC, v. Vnukovskoe, Vnukovskoe sh., 5th km., Building 1, Moscow 108817, Russian Federation
| | - Alexander G Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation.,Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
| |
Collapse
|
18
|
Boinapally S, Ahn HH, Cheng B, Brummet M, Nam H, Gabrielson KL, Banerjee SR, Minn I, Pomper MG. A prostate-specific membrane antigen (PSMA)-targeted prodrug with a favorable in vivo toxicity profile. Sci Rep 2021; 11:7114. [PMID: 33782486 PMCID: PMC8007718 DOI: 10.1038/s41598-021-86551-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a promising target for the treatment of advanced prostate cancer (PC) and various solid tumors. Although PSMA-targeted radiopharmaceutical therapy (RPT) has enabled significant imaging and prostate-specific antigen (PSA) responses, accumulating clinical data are beginning to reveal certain limitations, including a subgroup of non-responders, relapse, radiation-induced toxicity, and the need for specialized facilities for its administration. To date non-radioactive attempts to leverage PSMA to treat PC with antibodies, nanomedicines or cell-based therapies have met with modest success. We developed a non-radioactive prodrug, SBPD-1, composed of a small-molecule PSMA-targeting moiety, a cancer-selective cleavable linker, and the microtubule inhibitor monomethyl auristatin E (MMAE). SBPD-1 demonstrated high binding affinity to PSMA (Ki = 8.84 nM) and selective cytotoxicity to PSMA-expressing PC cell lines (IC50 = 3.90 nM). SBPD-1 demonstrated a significant survival benefit in two murine models of human PC relative to controls. The highest dose tested did not induce toxicity in immunocompetent mice. The high specific targeting ability of SBPD-1 to PSMA-expressing tumors and its favorable toxicity profile warrant its further development.
Collapse
Affiliation(s)
- Srikanth Boinapally
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Hye-Hyun Ahn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Bei Cheng
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Mary Brummet
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Hwanhee Nam
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Sangeeta R Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
19
|
Genetically-engineered anti-PSMA exosome mimetics targeting advanced prostate cancer in vitro and in vivo. J Control Release 2021; 330:101-110. [DOI: 10.1016/j.jconrel.2020.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
|
20
|
Petrov SA, Machulkin AE, Uspenskaya AA, Zyk NY, Nimenko EA, Garanina AS, Petrov RA, Polshakov VI, Grishin YK, Roznyatovsky VA, Zyk NV, Majouga AG, Beloglazkina EK. Polypeptide-Based Molecular Platform and Its Docetaxel/Sulfo-Cy5-Containing Conjugate for Targeted Delivery to Prostate Specific Membrane Antigen. Molecules 2020; 25:molecules25245784. [PMID: 33302417 PMCID: PMC7762530 DOI: 10.3390/molecules25245784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 01/29/2023] Open
Abstract
A strategy for stereoselective synthesis of molecular platform for targeted delivery of bimodal therapeutic or theranostic agents to the prostate-specific membrane antigen (PSMA) receptor was developed. The proposed platform contains a urea-based, PSMA-targeting Glu-Urea-Lys (EuK) fragment as a vector moiety and tripeptide linker with terminal amide and azide groups for subsequent addition of two different therapeutic and diagnostic agents. The optimal method for this molecular platform synthesis includes (a) solid-phase assembly of the polypeptide linker, (b) coupling of this linker with the vector fragment, (c) attachment of 3-aminopropylazide, and (d) amide and carboxylic groups deprotection. A bimodal theranostic conjugate of the proposed platform with a cytostatic drug (docetaxel) and a fluorescent label (Sulfo-Cy5) was synthesized to demonstrate its possible sequential conjugation with different functional molecules.
Collapse
Affiliation(s)
- Stanislav A. Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Aleksei E. Machulkin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Leninskiy pr., 4, 119049 Moscow, Russia
| | - Anastasia A. Uspenskaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Nikolay Y. Zyk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Ekaterina A. Nimenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Anastasia S. Garanina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Leninskiy pr., 4, 119049 Moscow, Russia
| | - Rostislav A. Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Vladimir I. Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27-1, 119991 Moscow, Russia;
| | - Yuri K. Grishin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Vitaly A. Roznyatovsky
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Nikolay V. Zyk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
| | - Alexander G. Majouga
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Leninskiy pr., 4, 119049 Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125947 Moscow, Russia
| | - Elena K. Beloglazkina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia; (S.A.P.); (A.E.M.); (A.A.U.); (N.Y.Z.); (E.A.N.); (A.S.G.); (R.A.P.); (Y.K.G.); (V.A.R.); (N.V.Z.); (A.G.M.)
- Correspondence:
| |
Collapse
|
21
|
Uspenskaya AA, Machulkin AE, Nimenko EA, Shafikov RR, Petrov SA, Skvortsov DA, Beloglazkina EK, Majouga AG. Influence of the dipeptide linker configuration on the activity of PSMA ligands. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Böhmer VI, Szymanski W, van den Berg K, Mulder C, Kobauri P, Helbert H, van der Born D, Reeβing F, Huizing A, Klopstra M, Samplonius DF, Antunes IF, Sijbesma JWA, Luurtsema G, Helfrich W, Visser TJ, Feringa BL, Elsinga PH. Modular Medical Imaging Agents Based on Azide-Alkyne Huisgen Cycloadditions: Synthesis and Pre-Clinical Evaluation of 18 F-Labeled PSMA-Tracers for Prostate Cancer Imaging. Chemistry 2020; 26:10871-10881. [PMID: 32315486 PMCID: PMC7496508 DOI: 10.1002/chem.202001795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 01/24/2023]
Abstract
Since the seminal contribution of Rolf Huisgen to develop the [3+2] cycloaddition of 1,3-dipolar compounds, its azide-alkyne variant has established itself as the key step in numerous organic syntheses and bioorthogonal processes in materials science and chemical biology. In the present study, the copper(I)-catalyzed azide-alkyne cycloaddition was applied for the development of a modular molecular platform for medical imaging of the prostate-specific membrane antigen (PSMA), using positron emission tomography. This process is shown from molecular design, through synthesis automation and in vitro studies, all the way to pre-clinical in vivo evaluation of fluorine-18- labeled PSMA-targeting 'F-PSMA-MIC' radiotracers (t1/2 =109.7 min). Pre-clinical data indicate that the modular PSMA-scaffold has similar binding affinity and imaging properties to the clinically used [68 Ga]PSMA-11. Furthermore, we demonstrated that targeting the arene-binding in PSMA, facilitated through the [3+2]cycloaddition, can improve binding affinity, which was rationalized by molecular modeling. The here presented PSMA-binding scaffold potentially facilitates easy coupling to other medical imaging moieties, enabling future developments of new modular imaging agents.
Collapse
Affiliation(s)
- Verena I. Böhmer
- Department of Nuclear Medicine and Molecular ImagingDepartment of RadiologyDepartment of Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19713 GZGroningenThe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AFGroningenThe Netherlands
| | - Wiktor Szymanski
- Department of Nuclear Medicine and Molecular ImagingDepartment of RadiologyDepartment of Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19713 GZGroningenThe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AFGroningenThe Netherlands
| | - Keimpe‐Oeds van den Berg
- Department of Nuclear Medicine and Molecular ImagingDepartment of RadiologyDepartment of Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19713 GZGroningenThe Netherlands
| | - Chantal Mulder
- Department of Nuclear Medicine and Molecular ImagingDepartment of RadiologyDepartment of Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19713 GZGroningenThe Netherlands
| | - Piermichele Kobauri
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AFGroningenThe Netherlands
| | - Hugo Helbert
- Department of Nuclear Medicine and Molecular ImagingDepartment of RadiologyDepartment of Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19713 GZGroningenThe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AFGroningenThe Netherlands
| | | | - Friederike Reeβing
- Department of Nuclear Medicine and Molecular ImagingDepartment of RadiologyDepartment of Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19713 GZGroningenThe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AFGroningenThe Netherlands
| | - Anja Huizing
- Department of Nuclear Medicine and Molecular ImagingDepartment of RadiologyDepartment of Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19713 GZGroningenThe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AFGroningenThe Netherlands
| | | | - Douwe F. Samplonius
- Department of Nuclear Medicine and Molecular ImagingDepartment of RadiologyDepartment of Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19713 GZGroningenThe Netherlands
| | - Ines F. Antunes
- Department of Nuclear Medicine and Molecular ImagingDepartment of RadiologyDepartment of Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19713 GZGroningenThe Netherlands
| | - Jürgen W. A. Sijbesma
- Department of Nuclear Medicine and Molecular ImagingDepartment of RadiologyDepartment of Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19713 GZGroningenThe Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular ImagingDepartment of RadiologyDepartment of Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19713 GZGroningenThe Netherlands
| | - Wijnand Helfrich
- Department of Nuclear Medicine and Molecular ImagingDepartment of RadiologyDepartment of Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19713 GZGroningenThe Netherlands
| | | | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AFGroningenThe Netherlands
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular ImagingDepartment of RadiologyDepartment of Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenHanzeplein 19713 GZGroningenThe Netherlands
| |
Collapse
|