1
|
Wen J, Hua Q, Ding S, Sun A, Xia Y. Recent Advances in Fluorescent Probes for Zinc Ions Based on Various Response Mechanisms. Crit Rev Anal Chem 2023:1-32. [PMID: 37486769 DOI: 10.1080/10408347.2023.2238078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Zinc is a vital metal element with extensive applications in various fields such as industry, metallurgy, agriculture, food, and healthcare. For living organisms, zinc ions are indispensable, and their deficiency can lead to physiological and metabolic abnormalities that cause multiple diseases. Hence, there is a significant need for selective recognition and effective detection of free zinc ions. As a probe method with high sensitivity, high selectivity, real-time monitoring, safety, harmlessness and ease of operation, fluorescent probes have been widely used in metal ion identification studies, and many convenient, low-cost and easy-to-operate fluorescent probes for Zn2+ detection have been developed. This article reviews the latest research advances in fluorescent chemosensors for Zn2+ detection from 2019 to 2023. In particular, sensors working through photo-induced electron transfer (PET), excited state intramolecular proton transfer (ESIPT), intramolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), chelation-enhanced fluorescence (CHEF), and aggregation-induced emission (AIE) mechanisms are described. We discuss the use of various recognition mechanisms in detecting zinc ions through specific cases, some of which have been validated through theoretical calculations.
Collapse
Affiliation(s)
- Jinrong Wen
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Qianying Hua
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Sha Ding
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Aokui Sun
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Yong Xia
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| |
Collapse
|
2
|
Nie W, Yang J, Wu J, Hu L. Synthesis and photophysical properties of vice-like 1,8-naphthalimide fluorescent sensor for sensitive detection of Mn2+ and Zn2+. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Kotowicz S, Korzec M, Malarz K, Krystkowska A, Mrozek-Wilczkiewicz A, Golba S, Siwy M, Maćkowski S, Schab-Balcerzak E. Luminescence and Electrochemical Activity of New Unsymmetrical 3-Imino-1,8-naphthalimide Derivatives. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5504. [PMID: 34639899 PMCID: PMC8509721 DOI: 10.3390/ma14195504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
A new series of 1,8-naphtalimides containing an imine bond at the 3-position of the naphthalene ring was synthesized using 1H, 13C NMR, FTIR, and elementary analysis. The impact of the substituent in the imine linkage on the selected properties and bioimaging of the synthesized compounds was studied. They showed a melting temperature in the range of 120-164 °C and underwent thermal decomposition above 280 °C. Based on cyclic and differential pulse voltammetry, the electrochemical behavior of 1,8-naphtalimide derivatives was evaluated. The electrochemical reduction and oxidation processes were observed. The compounds were characterized by a low energy band gap (below 2.60 eV). Their photoluminescence activities were investigated in solution considering the solvent effect, in the aggregated and thin film, and a mixture of poly(N-vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) (50:50 wt.%). They demonstrated low emissions due to photoinduced electron transport (PET) occurring in the solution and aggregation, which caused photoluminescence quenching. Some of them exhibited light emission as thin films. They emitted light in the range of 495 to 535 nm, with photoluminescence quantum yield at 4%. Despite the significant overlapping of its absorption range with emission of the PVK:PBD, incomplete Förster energy transfer from the matrix to the luminophore was found. Moreover, its luminescence ability induced by external voltage was tested in the diode with guest-host configuration. The possibility of compound hydrolysis due to the presence of the imine bond was also discussed, which could be of importance in biological studies that evaluate 3-imino-1,8-naphatalimides as imaging tools and fluorescent materials for diagnostic applications and molecular bioimaging.
Collapse
Affiliation(s)
- Sonia Kotowicz
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland;
| | - Mateusz Korzec
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland;
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pulku Piechoty Str., 41-500 Chorzow, Poland; (K.M.); (A.K.); (A.M.-W.)
| | - Aleksandra Krystkowska
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pulku Piechoty Str., 41-500 Chorzow, Poland; (K.M.); (A.K.); (A.M.-W.)
| | - Anna Mrozek-Wilczkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pulku Piechoty Str., 41-500 Chorzow, Poland; (K.M.); (A.K.); (A.M.-W.)
| | - Sylwia Golba
- Institute of Materials Science, University of Silesia, 1A 75 Pulku Piechoty Str., 41-500 Chorzow, Poland;
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland;
| | - Sebastian Maćkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun, Poland;
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland;
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland;
| |
Collapse
|
4
|
Adam AMA, Altalhi TA, El-Megharbel SM, Saad HA, Refat MS, Grabchev I, Althobaiti R. Detection of environmental pollutants heavy metal ions based on the complexation with fluorescent dyes: Reaction of 2-(2ʹ-hydroxyphenyl)-5-amino-benzotriazole with the Sn2+, Hg2+, and Pb2+ ions. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Using a Modified Polyamidoamine Fluorescent Dendrimer for Capturing Environment Polluting Metal Ions Zn2+, Cd2+, and Hg2+: Synthesis and Characterizations. CRYSTALS 2021. [DOI: 10.3390/cryst11020092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the most pressing global concerns is how to provide a clean environment for future generations given the exacerbation of urban, agricultural, industrial, and economic activities due to the escalating size of the global population. A polyamidoamine (PAMAM) dendrimer peripherally modified with 4-N,N′-dimethylethylenediamine-1,8-naphthalmide as a chromophore was synthesized and utilized to capture hazardous heavy metal ions. This modified fluorescent dendrimer (FCD) was complexed with Group 12 metal ions (Zn2+, Cd2+, and Hg2+) at a 2:1 (metal: FCD) ratio. Electronic absorption, fluorescence emission, Infra-red (IR), and nuclear magnetic resonance (1H NMR) spectroscopies, conductivity, CHN elemental, thermogravimetry, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses were used to characterize the resulting metal complexes. These assays revealed that the synthesized complexes were yellow-colored, thermally stable, nanoscale-sized, and composed of [M2FCD]·4Cl2. Considerable spectral shifts were observed in the emission and absorption spectra of the FCD molecule after binding the Zn2+ ions, which can be used to differentiate the Zn2+ complex from the other two complexes. This work provides basic data to facilitate the detection, quantification, and removal of environmentally hazardous heavy metal ions through complexation with a fluorescent dendrimer.
Collapse
|
6
|
Yang HH, Liu PP, Hu JP, Fang H, Lin Q, Hong Y, Zhang YM, Qu WJ, Wei TB. A fluorescent supramolecular gel and its application in the ultrasensitive detection of CN - by anion-π interactions. SOFT MATTER 2020; 16:9876-9881. [PMID: 33006593 DOI: 10.1039/d0sm01392g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supramolecular gels have been widely reported on account of their unique superiority and application prospects. In this work, we constructed a novel supramolecular gel (HD-G) by using hydroxy-naphthaldehyde decorated with naphthalimide in DMSO solution, which exhibited excellent selectivity and ultrasensitive sensing properties toward CN- (the lowest detection limit is 1.82 × 10-10 M). The sensing mechanism of this supramolecular gel takes advantage of π-π stacking interactions and anion-π interactions, which is different from the other familiar methods.
Collapse
Affiliation(s)
- Hao-Hang Yang
- Key Laboratory of Polymer Materials of Gansu Province, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Korzec M, Malarz K, Mrozek-Wilczkiewicz A, Rzycka-Korzec R, Schab-Balcerzak E, Polański J. Live cell imaging by 3-imino-(2-phenol)-1,8-naphthalimides: The effect of ex vivo hydrolysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118442. [PMID: 32408229 DOI: 10.1016/j.saa.2020.118442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
A series of 3-amino-N-substituted-1,8-naphthalimides and their salicylic Schiff base derivatives were synthesized. The structure of the obtained compounds was confirmed using 1H and 13C NMR, FT-IR spectroscopy and elemental analysis and COSY and HMQC for the representative molecules. The photophysical (UV-Vis, PL) and biological properties of all of the prepared compounds were studied. It was found that the amine with the n-hexyl group in EtOH had the highest PL quantum yield (Ф = 85%) compared to the others. Moreover, the chelating properties of the azomethines with the n-hexyl group (1a, 1b, 1c) were tested against various cations (Al3+, Ba2+, Co2+, Cu2+, Cr3+, Fe2+, Fe3+, Mn2+, Ni2+, Pb2+, Sr2+ and Zn2+) in an acetonitrile, acetone and PBS/AC mixture. Compounds that contained the electron withdrawing groups (-Br, -I) had the ability to chelate most of the studied cations, while the unsubstituted derivative chelated only the trivalent cations such as Al3+, Cr3+ and Fe3+ in acetonitrile. The effect of the environment on the keto-enol tautomeric equilibrium was also demonstrated, especially in the case of the derivative with a bromine atom. The biological studies showed that the tested molecules had no cytotoxicity. Additionally, the ability to image intracellular organelles such as the mitochondria and endoplasmic reticulum was revealed. The crucial role of the hydrolysis of imines for cellular imaging was presented.
Collapse
Affiliation(s)
- Mateusz Korzec
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland.
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Roksana Rzycka-Korzec
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland
| | - Jarosław Polański
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
8
|
Liu D, Zhang T, Zhang M, Shi J, Yin L, Shang Z, Zhu H, Yang G, He H. Water-soluble fluorescent sensor for Zn 2+ with high selectivity and sensitivity imaging in living cells. Bioorg Med Chem Lett 2020; 30:127073. [PMID: 32139326 DOI: 10.1016/j.bmcl.2020.127073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 01/20/2023]
Abstract
A new water-soluble 4-amino-1, 8-naphthalimide based fluorescent sensor, with iminoacetic acid and iminoethoxyacetic acid as receptor contained two different arms, was developed. Under physiological pH conditions, it demonstrates good water solubility, high selectivity and sensitivity for sensing Zn2+ with about 20-fold enhancement in aqueous solution, with a characteristic emission band of 4-amino-1, 8-naphthalimide with a green color centered at 550 nm. It was applied successfully to detect Zn2+ in living cells.
Collapse
Affiliation(s)
- Daying Liu
- College of Basic Science, Chemistry Experiment Teaching Center, Tianjin Agricultural University, Tianjin, China; Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, China.
| | - Tingting Zhang
- College of Basic Science, Chemistry Experiment Teaching Center, Tianjin Agricultural University, Tianjin, China
| | - Mingyang Zhang
- College of Basic Science, Chemistry Experiment Teaching Center, Tianjin Agricultural University, Tianjin, China
| | - Jun Shi
- College of Basic Science, Chemistry Experiment Teaching Center, Tianjin Agricultural University, Tianjin, China
| | - Lihui Yin
- College of Basic Science, Chemistry Experiment Teaching Center, Tianjin Agricultural University, Tianjin, China
| | - Zhiqiang Shang
- College of Basic Science, Chemistry Experiment Teaching Center, Tianjin Agricultural University, Tianjin, China
| | - Hualing Zhu
- College of Basic Science, Chemistry Experiment Teaching Center, Tianjin Agricultural University, Tianjin, China.
| | - Guangming Yang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, China
| | - Huarui He
- Heowns Biochem Technologies LLC, Tianjin, China.
| |
Collapse
|