1
|
Weng TP, Wang SW, Lo ST, Su SL, Hsieh MI, Tsai PJ, Tsai PF, Wu CJ, Lee NY, Ko WC, Chen PL. Comparative evaluation of sensititre YeastOne and VITEK2 antifungal susceptibility tests with CLSI broth microdilution method of clinical Cryptococcus isolates in Taiwan. Microbiol Spectr 2024:e0211724. [PMID: 39699241 DOI: 10.1128/spectrum.02117-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Commercial antifungal susceptibility tests were available for clinical yeast isolates. However, the updated Sensititre YeastOne (SYO) version YO10C excluded Cryptococcus species for susceptibility testing. Uncorrelation of antifungal susceptibility patterns by SYO and therapeutic outcomes had been recently reported. We compared the performance of current commercial susceptibility tests with the standard CLSI broth microdilution (BMD) method for clinical Cryptococcus isolates. Forty-seven clinical Cryptococcus isolates were included from 1 January 2012 to 30 June 2023, among which 44 isolates were Cryptococcus neoformans while 3 were Cryptococcus gattii. The performance of SYO version YO10C and VITEK2 YS09 was compared with the CLSI BMD method and correlated with MLST analysis and ERG11 mutation detection. Non-wild-type (non-WT) strains to amphotericin B (AMB) were observed in 11 isolates with the CLSI BMD method and 8 with SYO among 44 C. neoformans isolates, but only 1 isolate was classified as non-WT by both methods. Additionally, all C. neoformans isolates were susceptible to AMB with their MIC ≤1 µg/mL according to the clinical breakpoint defined by EUCAST. Non-WT to FLC were observed in 5 C. neoformans isolates with SYO, but they were classified as WT by CLSI BMD and VITEK2. The essential agreements between SYO and CLSI BMD were >90% to most antifungal agents except ITC in C. neoformans isolates (64%) and AMB in C. gattii group (67%). Between SYO and CLSI BMD, the major error (ME) rates were 11% (n = 5) to FLC, 5% (n = 2) to ITC, and 2% (n = 1) to 5FC in C. neoformans isolates, and the very major error to 5FC was found in one C. gattii isolate. ERG11 mutation with identical I199V was detected in 89% (n = 39) C. neoformans isolates, and 97% (n = 38) of them belonged to sequence type (ST) 5. The ERG11 mutation or cryptococcal ST was not associated with a decrease of antifungal susceptibilities. ME of FLC by SYO version YO10C compared to the CLSI BMD method reached up to 11% of C. neoformans isolates. The results of FLC MIC by SYO should be interpreted cautiously and correlated with therapeutic response, and further verification with the CLSI BMD method or VITEK2 is required. IMPORTANCE The study pointed out the major errors of fluconazole susceptibility results in clinical Cryptococcus neoformans isolates between the commercial Sensititre YeastOne Susceptibility Plate version YO10C and the standard CLSI broth microdilution method. The results should be interpreted carefully with clinical correlation, and a different method of antifungal susceptibility testing should be considered if a discrepancy of susceptibility results is suspected.
Collapse
Affiliation(s)
- Tzu-Ping Weng
- Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shin-Wei Wang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Ting Lo
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Li Su
- Diagnostic Microbiology and Antimicrobial Resistance Laboratory, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-I Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Fang Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Jung Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Nan-Yao Lee
- Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Jaggi TK, Agarwal R, Tiew PY, Shah A, Lydon EC, Hage CA, Waterer GW, Langelier CR, Delhaes L, Chotirmall SH. Fungal lung disease. Eur Respir J 2024; 64:2400803. [PMID: 39362667 PMCID: PMC11602666 DOI: 10.1183/13993003.00803-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
Fungal lung disease encompasses a wide spectrum of organisms and associated clinical conditions, presenting a significant global health challenge. The type and severity of disease are determined by underlying host immunity and infecting fungal strain. The most common group of diseases are associated with the filamentous fungus Aspergillus species and include allergic bronchopulmonary aspergillosis, sensitisation, aspergilloma and chronic and invasive pulmonary aspergillosis. Fungal lung disease remains epidemiologically heterogenous and is influenced by geography, environment and host comorbidities. Diagnostic modalities continue to evolve and now include novel molecular assays and biomarkers; however, persisting challenges include achieving rapid and accurate diagnosis, particularly in resource-limited settings, and in differentiating fungal infection from other pulmonary conditions. Treatment strategies for fungal lung diseases rely mainly on antifungal agents but the emergence of drug-resistant strains poses a substantial global threat and adds complexity to existing therapeutic challenges. Emerging antifungal agents and increasing insight into the lung mycobiome may offer fresh and personalised approaches to diagnosis and treatment. Innovative methodologies are required to mitigate drug resistance and the adverse effects of treatment. This state-of-the-art review describes the current landscape of fungal lung disease, highlighting key clinical insights, current challenges and emerging approaches for its diagnosis and treatment.
Collapse
Affiliation(s)
- Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Anand Shah
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
- MRC Centre of Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Emily C Lydon
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chadi A Hage
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh,Pittsburgh, PA, USA
- Lung Transplant, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Grant W Waterer
- University of Western Australia, Royal Perth Hospital, Perth, Australia
| | - Charles R Langelier
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Laurence Delhaes
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux: Laboratoire de Parasitologie-Mycologie, CNR des Aspergilloses Chroniques, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
3
|
Almajid A, Bazroon A, Al-Awami HM, Albarbari H, Alqahtani I, Almutairi R, Alsuwayj A, Alahmadi F, Aljawad J, Alnimer R, Asiri N, Alajlani S, Alshelali R, Aljishi Y. Fosmanogepix: The Novel Anti-Fungal Agent's Comprehensive Review of in Vitro, in Vivo, and Current Insights From Advancing Clinical Trials. Cureus 2024; 16:e59210. [PMID: 38807795 PMCID: PMC11131969 DOI: 10.7759/cureus.59210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 05/30/2024] Open
Abstract
Fosmanogepix, a prodrug of Manogepix (MGX), is a groundbreaking antifungal agent with broad-spectrum activity against yeasts, including Cryptococcus and Candida, as well as molds. It exhibits effectiveness against drug-resistant strains, such as Candida strains resistant to echinocandins and Aspergillus strains resistant to azoles. Furthermore, fosmanogepix shows activity against pathogens that typically resist other classes of drugs, such as Scedosporium, Lomentospora prolificans, and Fusarium, although its efficacy against Mucorales varies. In animal models, fosmanogepix has demonstrated notable effectiveness against disseminated infections caused by various Candida species, Coccidioides immitis, and Fusarium solani. It has also shown efficacy in pulmonary infection models involving Aspergillus fumigatus, Aspergillus flavus, Scedosporium prolificans, Scedosporium apiospermum, and Rhizopus arrhizus. Clinical trials have revealed excellent oral bioavailability (>90%), enabling a seamless transition between intravenous and oral formulations without compromising blood concentrations. Fosmanogepix exhibits favorable profiles in terms of drug interactions, tolerability, and extensive distribution in various tissues, making it an appealing choice for treating invasive fungal infections. This comprehensive review aims to examine the outcomes of published data on fosmanogepix, encompassing in vitro, in vivo, and clinical investigations.
Collapse
Affiliation(s)
- Ali Almajid
- Internal Medicine, King Fahad Specialist Hospital, Dammam, SAU
| | - Ali Bazroon
- Internal Medicine, King Fahad Specialist Hospital, Dammam, SAU
| | | | | | | | - Rehab Almutairi
- College of Medicine, University of Szeged Albert Szent-Györgyi Medical School, Szeged, HUN
| | - Abbas Alsuwayj
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | | | - Jinan Aljawad
- College of Medicine, University of Szeged Albert Szent-Györgyi Medical School, Szeged, HUN
| | - Razan Alnimer
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | - Nawal Asiri
- College of Medicine, King Khalid University, Abha, SAU
| | - Shouq Alajlani
- College of Medicine, Umm Al Qura University, Makkah, SAU
| | - Reem Alshelali
- Internal Medicine, King Abdullah Medical Complex, Jeddah, SAU
| | - Yamama Aljishi
- Internal Medicine, King Fahad Specialist Hospital, Dammam, SAU
| |
Collapse
|
4
|
Puumala E, Fallah S, Robbins N, Cowen LE. Advancements and challenges in antifungal therapeutic development. Clin Microbiol Rev 2024; 37:e0014223. [PMID: 38294218 PMCID: PMC10938895 DOI: 10.1128/cmr.00142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Friedman DZP, Schwartz IS. Emerging Diagnostics and Therapeutics for Invasive Fungal Infections. Infect Dis Clin North Am 2023; 37:593-616. [PMID: 37532392 DOI: 10.1016/j.idc.2023.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Recently, there have been significant advances in the diagnosis and management of invasive fungal infections. Compared with traditional fungal diagnostics, molecular assays promise improved sensitivity and specificity, the ability to test a range of samples (including noninvasive samples, ie, blood), the detection of genetic mutations associated with antifungal resistance, and the potential for a faster turnaround time. Antifungals in late-stage clinical development include agents with novel mechanisms of action (olorofim and fosmanogepix) and new members of existing classes with distinct advantages over existing antifungals in toxicity, drug-drug interactions, and dosing convenience (oteseconazole, opelconazole, rezafungin, ibrexafungerp, encochleated amphotericin B).
Collapse
Affiliation(s)
- Daniel Z P Friedman
- Section of Infectious Diseases and Global Health, The University of Chicago, 5841 South Maryland Avenue, MC5065, Chicago, IL 60637, USA
| | - Ilan S Schwartz
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, 315 Trent Drive, Durham, NC 27705, USA.
| |
Collapse
|
6
|
Liu N, Tu J, Huang Y, Yang W, Wang Q, Li Z, Sheng C. Target- and prodrug-based design for fungal diseases and cancer-associated fungal infections. Adv Drug Deliv Rev 2023; 197:114819. [PMID: 37024014 DOI: 10.1016/j.addr.2023.114819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
Invasive fungal infections (IFIs) are emerging as a serious threat to public health and are associated with high incidence and mortality. IFIs also represent a frequent complication in patients with cancer who are undergoing chemotherapy. However, effective and safe antifungal agents remain limited, and the development of severe drug resistance further undermines the efficacy of antifungal therapy. Therefore, there is an urgent need for novel antifungal agents to treat life-threatening fungal diseases, especially those with new mode of action, favorable pharmacokinetic profiles, and anti-resistance activity. In this review, we summarize new antifungal targets and target-based inhibitor design, with a focus on their antifungal activity, selectivity, and mechanism. We also illustrate the prodrug design strategy used to improve the physicochemical and pharmacokinetic profiles of antifungal agents. Dual-targeting antifungal agents offer a new strategy for the treatment of resistant infections and cancer-associated fungal infections.
Collapse
|
7
|
Calcineurin Inhibitors Synergize with Manogepix to Kill Diverse Human Fungal Pathogens. J Fungi (Basel) 2022; 8:jof8101102. [PMID: 36294667 PMCID: PMC9605145 DOI: 10.3390/jof8101102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Invasive fungal infections have mortality rates of 30–90%, depending on patient co-morbidities and the causative pathogen. The frequent emergence of drug resistance reduces the efficacy of currently approved treatment options, highlighting an urgent need for antifungals with new modes of action. Addressing this need, fosmanogepix (N-phosphonooxymethylene prodrug of manogepix; MGX) is the first in a new class of gepix drugs, and acts as a broad-spectrum, orally bioavailable inhibitor of the essential fungal glycosylphosphatidylinositol (GPI) acyltransferase Gwt1. MGX inhibits the growth of diverse fungal pathogens and causes accumulation of immature GPI-anchored proteins in the fungal endoplasmic reticulum. Relevant to the ongoing clinical development of fosmanogepix, we report a synergistic, fungicidal interaction between MGX and inhibitors of the protein phosphatase calcineurin against important human fungal pathogens. To investigate this synergy further, we evaluated a library of 124 conditional expression mutants covering 95% of the genes encoding proteins involved in GPI-anchor biosynthesis or proteins predicted to be GPI-anchored. Strong negative chemical-genetic interactions between the calcineurin inhibitor FK506 and eleven GPI-anchor biosynthesis genes were identified, indicating that calcineurin signalling is required for fungal tolerance to not only MGX, but to inhibition of the GPI-anchor biosynthesis pathway more broadly. Depletion of these GPI-anchor biosynthesis genes, like MGX treatment, also exposed fungal cell wall (1→3)-β-D-glucans. Taken together, these findings suggest the increased risk of invasive fungal infections associated with use of calcineurin inhibitors as immunosuppressants may be mitigated by their synergistic fungicidal interaction with (fos)manogepix and its ability to enhance exposure of immunostimulatory glucans.
Collapse
|
8
|
Liu L, Hong X, Hu X. Direct electrochemical reduction of ethyl isonicotinate to 4-pyridinemethanol in an undivided flow reactor. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
McCarty TP, Pappas PG. Antifungal Pipeline. Front Cell Infect Microbiol 2021; 11:732223. [PMID: 34552887 PMCID: PMC8450443 DOI: 10.3389/fcimb.2021.732223] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
In many ways, fungal diseases are forgotten or neglected. Given the significantly lower frequency compared to similar bacterial etiologies across the spectrum of infectious syndromes, it makes sense that anti-bacterial agents have seen the bulk of development in recent decades. The vast majority of new antifungal medications approved for use in the past 10 years have been new versions in the same class as existing agents. Clinical mycology is crying out for new mechanisms of action in the setting of rising resistance and emergence of new organisms. Fortunately, this trend appears to be reversing. There are numerous agents in advanced stages of development offering novel dosing regimens and mechanisms of action to combat these threats. Herein we review seven antifungal agents that we hope to see come to market in the coming years to aid physicians in the treatment of mucocutaneous and invasive fungal infections.
Collapse
Affiliation(s)
- Todd Patrick McCarty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Medicine, Birmingham Veterans Affairs (VA) Medical Center, Birmingham, AL, United States
| | - Peter G Pappas
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Abstract
Anti-fungal therapies remain sub-optimal, and resistant pathogens are increasing. New therapies are desperately needed, especially options that are less toxic than most of the currently available selection. In this review, I will discuss anti-fungal therapies that are in at least phase I human trials. These include VT-1161 and VT-1598, modified azoles with a tetrazole metal-binding group; the echinocandin rezafugin; the novel β-1,3-d-glucan synthase inhibitor ibrexafungerp; fosmanogepix, a novel anti-fungal targeting Gwt1; the arylamidine T-2307; the dihydroorotate inhibitor olorofim; and the cyclic hexapeptide ASP2397. The available data including spectrum of activity, toxicity and stage of clinical development will be discussed for each of these so clinicians are aware of promising anti-fungal agents with a strong likelihood of clinical availability in the next 5–7 years.
Collapse
Affiliation(s)
- Grant Waterer
- University of Western Australia, Royal Perth Hospital, Level 3 Executive Corridor, Wellington St, Perth, 6000, Australia.
| |
Collapse
|
11
|
Abstract
Introduction: Invasive fungal infection carries a high morbidity, mortality and economic cost. In recent times, a rising incidence of fungal infection and antifungal resistance is occurring which has prompted the development of novel antifungal agents.Areas covered:In this perspective, the authors describe the current status of registered antifungals and their limitations in the treatment of invasive fungal infection. They also go on to describe the new antifungal agents that are in the clinical stage of development and how they might be best utilized in patient care in the future.Expert opinion: The antifungal drug development pipeline has responded to a growing need for new agents to effectively treat fungal disease without concomitant toxicity or issues with drug tolerance. Olorofim (F901318), ibrexafungerp (SCY-078), fosmanogepix (APX001), rezafungin (CD101), oteseconazole (VT-1161), encochleated amphotericin B (MAT2203), nikkomycin Z (NikZ) and ATI-2307 are all in the clinical stage of development and offer great promise in offering clinicians better agents to treat these difficult infections.
Collapse
Affiliation(s)
- Adam G Stewart
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
| | - David L Paterson
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
| |
Collapse
|
12
|
Behrens-Baumann WJ. New Antimycotics in the Pipeline - For Ophthalmology Too? Klin Monbl Augenheilkd 2021; 238:1108-1112. [PMID: 34198353 DOI: 10.1055/a-1478-4248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Seven new antimycotics are presented that are at different points of development or approval. These substances are mainly first-in-class drugs. They are primarily developed for systemic administration. However, with the support of a pharmacist, the intravenous formulation may be used as eyedrops. In this short review, the activities of the substances against various fungal infections are described. After unsuccessful conventional therapy of fungal eye infections, one of these new substances might be suitable to cure the mycosis.
Collapse
|
13
|
Teymuri M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Inhibitory effects and mechanism of antifungal action of the natural cyclic depsipeptide, aureobasidin A against Cryptococcus neoformans. Bioorg Med Chem Lett 2021; 41:128013. [PMID: 33811994 DOI: 10.1016/j.bmcl.2021.128013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023]
Abstract
Cryptococcosis is an opportunistic fungal infection caused mainly by Cryptococcus neoformans. The aim of the present study was to evaluate the inhibitory effect of aureobasidin A on C. neoformans with special focus on its mode of action. The effect of aureobasidin A on cell membrane ergosterol content, cell wall permeability, membrane pumps activities, the total oxidant status (TOS) and melanin production was evaluated. Cytotoxicity and cell hemolysis, and laccase (LacI) and β1,2-xylosyltransferase (Cxt1p) gene expression were also evaluated. Aureobasidin A reduced melanin production and increased extracellular potassium leakage at 0.5 × MIC concentration. This peptide has no effect on fungal cell wall integrity. Cell membrane ergosterol content was decreased by 29.1% and 41.8% at 0.5 × MIC and 1 × MIC concentrations (2 and 4 µL/mL) in aureobasidin A treated samples, respectively. TOS level was significantly increased without activation of antioxidant enzymes. Lac1 gene was over-expressed (11.7-fold), while Cxt1p gene was down regulated (0.2-fold) following treatment with aureobasidin A. Overall, our results indicated that aureobasidin A inhibits C. neoformans growth by targeting different sites in fungal cells and it may be considered as a promising compound to use as an antifungal in treatment of clinical cryptococcosis.
Collapse
Affiliation(s)
- Mostafa Teymuri
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran
| | - Masoomeh Shams-Ghahfarokhi
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran.
| | | |
Collapse
|
14
|
Liu W, Yuan L, Wang S. Recent Progress in the Discovery of Antifungal Agents Targeting the Cell Wall. J Med Chem 2020; 63:12429-12459. [PMID: 32692166 DOI: 10.1021/acs.jmedchem.0c00748] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to the limit of available treatments and the emergence of drug resistance in the clinic, invasive fungal infections are an intractable problem with high morbidity and mortality. The cell wall, as a fungi-specific structure, is an appealing target for the discovery and development of novel and low-toxic antifungal agents. In an attempt to accelerate the discovery of novel cell wall targeted drugs, this Perspective will provide a comprehensive review of the progress made to date on the development of fungal cell wall inhibitors. Specifically, this review will focus on the targets, discovery process, chemical structures, antifungal activities, and structure-activity relationships. Although two types of cell wall antifungal agents are clinically available or in clinical trials, it is still a long way for the other cell wall targeted inhibitors to be translated into clinical applications. Future efforts should be focused on the identification of inhibitors against novel conserved cell wall targets.
Collapse
Affiliation(s)
- Wei Liu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Middle Road, Xi'an 710021, People's Republic of China
| | - Lin Yuan
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Middle Road, Xi'an 710021, People's Republic of China
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, People's Republic of China
| |
Collapse
|