1
|
Ishikawa F, Konno S, Kakeya H, Tanabe G. Development of a chemical scaffold for inhibiting nonribosomal peptide synthetases in live bacterial cells. Beilstein J Org Chem 2024; 20:445-451. [PMID: 38440174 PMCID: PMC10910458 DOI: 10.3762/bjoc.20.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
The adenylation (A) domain is essential for non-ribosomal peptide synthetases (NRPSs), which synthesize various peptide-based natural products, including virulence factors, such as siderophores and genotoxins. Hence, the inhibition of A-domains could attenuate the virulence of pathogens. 5'-O-N-(Aminoacyl or arylacyl)sulfamoyladenosine (AA-AMS) is a bisubstrate small-molecule inhibitor of the A-domains of NRPSs. However, the bacterial cell permeability of AA-AMS is typically a problem owing to its high hydrophilicity. In this study, we investigated the influence of a modification of 2'-OH in the AMS scaffold with different functional groups on binding to target enzymes and bacterial cell penetration. The inhibitor 7 with a cyanomethyl group at 2'-OH showed desirable inhibitory activity against both recombinant and intracellular gramicidin S synthetase A (GrsA) in the gramicidin S-producer Aneurinibacillus migulanus ATCC 9999, providing an alternative scaffold to develop novel A-domain inhibitors.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Sho Konno
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
2
|
Sword TT, Barker JW, Spradley M, Chen Y, Petzold CJ, Bailey CB. Expression of blue pigment synthetase a from Streptomyces lavenduale reveals insights on the effects of refactoring biosynthetic megasynthases for heterologous expression in Escherichia coli. Protein Expr Purif 2023; 210:106317. [PMID: 37286066 PMCID: PMC10330848 DOI: 10.1016/j.pep.2023.106317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
High GC bacteria from the genus Streptomyces harbor expansive secondary metabolism. The expression of biosynthetic proteins and the characterization and identification of biological "parts" for synthetic biology purposes from such pathways are of interest. However, the high GC content of proteins from actinomycetes in addition to the large size and multi-domain architecture of many biosynthetic proteins (such as non-ribosomal peptide synthetases; NRPSs, and polyketide synthases; PKSs often called "megasynthases") often presents issues with full-length translation and folding. Here we evaluate a non-ribosomal peptide synthetase (NRPS) from Streptomyces lavenduale, a multidomain "megasynthase" gene that comes from a high GC (72.5%) genome. While a preliminary step in revealing differences, to our knowledge this presents the first head-to-head comparison of codon-optimized sequences versus a native sequence of proteins of streptomycete origin heterologously expressed in E. coli. We found that any disruption in co-translational folding from codon mismatch that reduces the titer of indigoidine is explainable via the formation of more inclusion bodies as opposed to compromising folding or posttranslational modification in the soluble fraction. This result supports that one could apply any refactoring strategies that improve soluble expression in E. coli without concern that the protein that reaches the soluble fraction is differentially folded.
Collapse
Affiliation(s)
- Tien T Sword
- Department of Chemistry University of Tennessee-Knoxville, Knoxville, TN, USA
| | - J William Barker
- Department of Chemistry University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Madeline Spradley
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Yan Chen
- Biological and Systems Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Joint BioEnergy Institute, Emeryville, CA, USA
| | - Christopher J Petzold
- Biological and Systems Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Joint BioEnergy Institute, Emeryville, CA, USA
| | - Constance B Bailey
- Department of Chemistry University of Tennessee-Knoxville, Knoxville, TN, USA.
| |
Collapse
|
3
|
Zhang Z, Li P, Wang M, Zhang Y, Wu B, Tao Y, Pan G, Chen Y. ( S)-3-aminopiperidine-2,6-dione is a biosynthetic intermediate of microbial blue pigment indigoidine. MLIFE 2022; 1:146-155. [PMID: 38817675 PMCID: PMC10989907 DOI: 10.1002/mlf2.12023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 06/01/2024]
Abstract
The biosynthetic investigations of microbial natural products continuously provide powerful biocatalysts for the preparation of valuable chemicals. Practical methods for preparing (S)-3-aminopiperidine-2,6-dione (2), the pharmacophore of thalidomide (1) and its analog drugs, are highly desired. To develop a biocatalyst for producing (S)-2, we dissected the domain functions of IdgS, which is responsible for the biosynthesis of indigoidine (3), a microbial blue pigment that consists of two 2-like moieties. Our data supported that the L-glutamine tethered to the indigoidine assembly line is first offloaded and cyclized by the thioesterase domain to form (S)-2, which is then dehydrogenated by the oxidation (Ox) domain and finally dimerized to yield 3. Based on this, we developed an IdgS-derived enzyme biocatalyst, IdgS-Ox* R539A, for preparing enantiomerically pure (S)-2. As a proof of concept, one-pot chemoenzymatic synthesis of 1 was achieved by combining the biocatalytic and chemical approaches.
Collapse
Affiliation(s)
- Zhilong Zhang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High‐Efficiency, School of Pharmaceutical Science and TechnologyTianjin UniversityTianjinChina
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong Tao
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Fortinez CM, Bloudoff K, Harrigan C, Sharon I, Strauss M, Schmeing TM. Structures and function of a tailoring oxidase in complex with a nonribosomal peptide synthetase module. Nat Commun 2022; 13:548. [PMID: 35087027 PMCID: PMC8795117 DOI: 10.1038/s41467-022-28221-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are large modular enzymes that synthesize secondary metabolites and natural product therapeutics. Most NRPS biosynthetic pathways include an NRPS and additional proteins that introduce chemical modifications before, during or after assembly-line synthesis. The bacillamide biosynthetic pathway is a common, three-protein system, with a decarboxylase that prepares an NRPS substrate, an NRPS, and an oxidase. Here, the pathway is reconstituted in vitro. The oxidase is shown to perform dehydrogenation of the thiazoline in the peptide intermediate while it is covalently attached to the NRPS, as the penultimate step in bacillamide D synthesis. Structural analysis of the oxidase reveals a dimeric, two-lobed architecture with a remnant RiPP recognition element and a dramatic wrapping loop. The oxidase forms a stable complex with the NRPS and dimerizes it. We visualized co-complexes of the oxidase bound to the elongation module of the NRPS using X-ray crystallography and cryo-EM. The three active sites (for adenylation, condensation/cyclization, and oxidation) form an elegant arc to facilitate substrate delivery. The structures enabled a proof-of-principle bioengineering experiment in which the BmdC oxidase domain is embedded into the NRPS.
Collapse
Affiliation(s)
- Camille Marie Fortinez
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Kristjan Bloudoff
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Connor Harrigan
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Itai Sharon
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Mike Strauss
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada.
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada.
| |
Collapse
|
5
|
Currie MF, Persaud DM, Rana NK, Platt AJ, Beld J, Jaremko KL. Synthesis of an acyl-acyl carrier protein synthetase inhibitor to study fatty acid recycling. Sci Rep 2020; 10:17776. [PMID: 33082446 PMCID: PMC7575536 DOI: 10.1038/s41598-020-74731-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/06/2020] [Indexed: 11/18/2022] Open
Abstract
Fatty acids are essential to most organisms and are made endogenously by the fatty acid synthase (FAS). FAS is an attractive target for antibiotics and many inhibitors are in clinical development. However, some gram-negative bacteria harbor an enzyme known as the acyl-acyl carrier protein synthetase (AasS), which allows them to scavenge fatty acids from the environment and shuttle them into FAS and ultimately lipids. The ability of AasS to recycle fatty acids may help pathogenic gram-negative bacteria circumvent FAS inhibition. We therefore set out to design and synthesize an inhibitor of AasS and test its effectiveness on an AasS enzyme from Vibrio harveyi, the most well studied AasS to date, and from Vibrio cholerae, a pathogenic model. The inhibitor C10-AMS [5′-O-(N-decanylsulfamoyl)adenosine], which mimics the tightly bound acyl-AMP reaction intermediate, was able to effectively inhibit AasS catalytic activity in vitro. Additionally, C10-AMS stopped the ability of Vibrio cholerae to recycle fatty acids from media and survive when its endogenous FAS was inhibited with cerulenin. C10-AMS can be used to study fatty acid recycling in other bacteria as more AasS enzymes continue to be annotated and provides a platform for potential antibiotic development.
Collapse
Affiliation(s)
- Madeline F Currie
- Department of Chemistry, Hofstra University, Hempstead, NY, 11549, USA
| | - Dylan M Persaud
- Department of Chemistry, Hofstra University, Hempstead, NY, 11549, USA
| | - Niralee K Rana
- Department of Chemistry, Hofstra University, Hempstead, NY, 11549, USA
| | - Amanda J Platt
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| | - Kara L Jaremko
- Department of Chemistry, Hofstra University, Hempstead, NY, 11549, USA.
| |
Collapse
|