1
|
Zia A, Khalid S, Rasool N, Mohsin N, Imran M, Toma SI, Misarca C, Andreescu O. Pd-, Cu-, and Ni-Catalyzed Reactions: A Comprehensive Review of the Efficient Approaches towards the Synthesis of Antibacterial Molecules. Pharmaceuticals (Basel) 2024; 17:1370. [PMID: 39459010 PMCID: PMC11509998 DOI: 10.3390/ph17101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
A strong synthetic tool for many naturally occurring chemicals, polymers, and pharmaceutical substances is transition metal-catalyzed synthesis. A serious concern to human health is the emergence of bacterial resistance to a broad spectrum of antibacterial medications. The synthesis of chemical molecules that are potential antibacterial candidates is underway. The main contributions to medicine are found to be effective in transition metal catalysis and heterocyclic chemistry. This review underlines the use of heterocycles and certain effective transition metals (Pd, Cu, and Ni) as catalysts in chemical methods for the synthesis of antibacterial compounds. Pharmaceutical chemists might opt for clinical exploration of these techniques due to their potential.
Collapse
Affiliation(s)
- Almeera Zia
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nayab Mohsin
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sebastian Ionut Toma
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Oana Andreescu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| |
Collapse
|
2
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against ESKAPE pathogens. Eur J Med Chem 2022; 244:114888. [DOI: 10.1016/j.ejmech.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022]
|
3
|
Lengerli D, Ibis K, Nural Y, Banoglu E. The 1,2,3-triazole 'all-in-one' ring system in drug discovery: a good bioisostere, a good pharmacophore, a good linker, and a versatile synthetic tool. Expert Opin Drug Discov 2022; 17:1209-1236. [PMID: 36164263 DOI: 10.1080/17460441.2022.2129613] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The 1,2,3-triazole ring occupies an important space in medicinal chemistry due to its unique structural properties, synthetic versatility and pharmacological potential making it a critical scaffold. Since it is readily available through click chemistry for creating compound collections against various diseases, it has become an emerging area of interest for medicinal chemists. AREAS COVERED This review article addresses the unique properties of the1,2,3-triazole nucleus as an intriguing ring system in drug discovery while focusing on the most recent medicinal chemistry strategies exploited for the design and development of 1,2,3-triazole analogs as inhibitors of various biological targets. EXPERT OPINION Evidently, the 1,2,3-triazole ring with unique structural features has enormous potential in drug design against various diseases as a pharmacophore, a bioisoster or a structural platform. The most recent evidence indicates that it may be more emerging in drug molecules in near future along with an increasing understanding of its prominent roles in drug structures. The synthetic feasibility and versatility of triazole chemistry make it certainly ideal for creating compound libraries for more constructive structure-activity relationship studies. However, more comparative and target-specific studies are needed to gain a deeper understanding of the roles of the 1,2,3-triazole ring in molecular recognition.[Figure: see text].
Collapse
Affiliation(s)
- Deniz Lengerli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Kübra Ibis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Synthesis and biological evaluation of antibacterial activity of novel clarithromycin derivatives incorporating 1,2,3-triazole moieties at the 4''- and 11-OH positions. Bioorg Chem 2022; 127:106020. [PMID: 35841669 DOI: 10.1016/j.bioorg.2022.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Bacterial infection is still one of the diseases that threaten human health, and bacterial drug resistance is widespread worldwide. As a result, their eradication now largely relies on antibacterial drug discovery. Here, we reveal a novel approach to the development of 14-membered macrolide antibiotics by describing the design, synthesis, and evaluation of novel clarithromycin derivatives incorporating 1,2,3-triazole moieties at the 4''- and 11-OH positions. Using chemical synthesis, 35 clarithromycin derivatives were prepared, and their antibacterial properties were profiled. We found that compounds 8e-8h, 8l-8o, 8v, and 19d were as potent as azithromycin against Enterococcus faecalis ATCC29212. Furthermore, compounds 8c, 8d, 8n, and 8o showed slightly improved antibacterial activity (2-fold) against Acinetobacter baumannii ATCC19606 when compared with azithromycin and clarithromycin. In addition, compounds 8e, 8f, 8h, 8l, and 8v exhibited excellent antibacterial activity against Staphylococcus aureus ATCC43300, Staphylococcus aureus PR, and Streptococcus pneumoniae ER-2. These compounds were generally 64- to 128-fold more active than azithromycin, and 32- to 128-fold more active than clarithromycin. The results of molecular docking indicated that compound 8f may bind to the nucleotide residue A752 through hydrogen-bonding, hydrophobic, electrostatic, or π-π stacking interactions. The predicted ClogP data suggested that higher values of ClogP (>6.65) enhanced the antibacterial activity of compounds such as 8e, 8f, 8h, 8l, and 8v. The determination of the minimum bactericidal concentration showed that most of the tested compounds were bacteriostatic agents. From this study of bactericidal kinetics, we can conclude that compound 8f had a concentration- and time-dependent effect on the proliferation of Staphylococcus aureus ATCC43300. Finally, the results of the cytotoxicity assay showed that compound 8f exhibited no toxicity at the effective antibacterial concentration.
Collapse
|
5
|
Design, synthesis and antibacterial evaluation of novel 3-O-substituted 15-membered azalides possessing 1,2,3-triazole side chains. Bioorg Med Chem Lett 2021; 49:128330. [PMID: 34403726 DOI: 10.1016/j.bmcl.2021.128330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022]
Abstract
The acquired and intrinsic resistance of bacteria to macrolide antibiotics limits the clinical application of these agents, and thus it is particularly important to discover novel macrolide antibiotics that can be administered to counteract the prevalence of bacterial resistance. In this study, we introduced some active 1,2,3-triazole side chains into the azithromycin at position 3-O, thereby obtaining a number of 3-O-substituted 15-membered azalides. Determination of the minimum inhibitory concentration (MIC) of these target compounds revealed that the compound 9g possessed the strongest antibacterial activity (MIC = 8-16 μg/mL) against drug-resistant strains and was generally 16- to 32-fold more active than the azithromycin (MIC ≥ 256 μg/mL). Combined analysis of the results of antibacterial activity together with theoretically calculated lipid/water partition coefficients (ClogP) indicated the importance of the chemical nature of the alkyl groups attached to the 1,2,3-triazole side chain in conferring promising antibacterial activity. The findings of molecular docking analyses indicated that compound 9g may bind to the A752 base of 23S rRNA in bacterial ribosome via hydrophobic or electrostatic interactions, resulting in the excellent antibacterial activity of this compound. Furthermore, the data of minimum bactericidal concentration revealed that compounds 9e, 9f, 9g and 9h are excellent bacteriostatic agents. In addition, the study of bactericidal kinetics confirmed that compound 9g is a time- and concentration-dependent agent.
Collapse
|
6
|
Bai B, Bi F, Qin Y, Teng Y, Ma S. Design, synthesis and antibacterial evaluation of novel C-11, C-9 or C-2'-substituted 3-O-descladinosyl-3-ketoclarithromycin derivatives. Bioorg Med Chem Lett 2021; 43:128110. [PMID: 33991629 DOI: 10.1016/j.bmcl.2021.128110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
A novel series of 3-O-descladinosyl-3-keto-clarithromycin derivatives, including 11-O-carbamoyl-3-O-descladinosyl-3-keto-clarithromycin derivatives and 2',9(S)-diaryl-3-O-descladinosyl-3-keto-clarithromycin derivatives, were designed, synthesized and evaluated for their in vitro antibacterial activity. Among them, some derivatives were found to have activity against resistant bacteria strains. In particular, compound 9b showed not only the most significantly improved activity (16 µg/mL) against S. aureus ATCC43300 and S. aureus ATCC31007, which was >16-fold more active than that of CAM and AZM, but also the best activity against S. pneumoniae B1 and S. pyogenes R1, with MIC values of 32 and 32 µg/mL. In addition, compounds 9a, 9c, 9d and 9g exhibited the most effective activity against S. pneumoniae AB11 with MIC values of 32 or 64 µg/mL as well. Unfortunately, 2',9(S)-diaryl-3-O-descladinosyl-3-keto-clarithromycin derivatives failed to exhibit better antibacterial activity than references. It can be seen that the combined modification of the C-3 and C-11 positions of clarithromycin is beneficial to improve activity against resistant bacteria, while the single modification of the C-2'' position is very detrimental to antibacterial activity.
Collapse
Affiliation(s)
- Bingfang Bai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Fangchao Bi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yinhui Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yuetai Teng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| |
Collapse
|
7
|
Huang X, Liu HW, Long ZQ, Li ZX, Zhu JJ, Wang PY, Qi PY, Liu LW, Yang S. Rational Optimization of 1,2,3-Triazole-Tailored Carbazoles As Prospective Antibacterial Alternatives with Significant In Vivo Control Efficiency and Unique Mode of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4615-4627. [PMID: 33855856 DOI: 10.1021/acs.jafc.1c00707] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plant bacterial diseases can potentially damage agricultural products around the world, and few effective bactericides can manage these infections. Herein, to sequentially explore highly effective antibacterial alternatives, 1,2,3-triazole-tailored carbazoles were rationally fabricated. These compounds could suppress the growth of three main intractable pathogens including Xanthomonas oryzae pv oryzae (Xoo), X. axonopodis pv citri (Xac), and Pseudomonas syringae pv actinidiae (Psa) with lower EC50 values of 3.36 (3p), 2.87 (3p), and 4.57 μg/mL (3r), respectively. Pot experiments revealed that compound 3p could control the rice bacterial blight with protective and curative efficiencies of 53.23% and 50.78% at 200 μg/mL, respectively. Interestingly, the addition of 0.1% auxiliaries such as organic silicon and orange oil could significantly enhance the surface wettability of compound 3p toward rice leaves, resulting in improved control effectiveness of 65.50% and 61.38%, respectively. Meanwhile, compound 3r could clearly reduce the white pyogenic exudates triggered by Psa infection and afforded excellent control efficiencies of 79.42% (protective activity) and 78.74% (curative activity) at 200 μg/mL, which were quite better than those of commercial pesticide thiodiazole copper. Additionally, a plausible apoptosis mechanism for the antibacterial behavior of target compounds was proposed by flow cytometry, reactive oxygen species detection, and defensive enzyme (e.g., catalase and superoxide dismutase) activity assays. The current work can promote the development of 1,2,3-triazole-tailored carbazoles as prospective antibacterial alternatives bearing an intriguing mode of action.
Collapse
Affiliation(s)
- Xing Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Hong-Wu Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zhou-Qing Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zhen-Xing Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Jian-Jun Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Pu-Ying Qi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
8
|
Nural Y, Ozdemir S, Doluca O, Demir B, Yalcin MS, Atabey H, Kanat B, Erat S, Sari H, Seferoglu Z. Synthesis, biological properties, and acid dissociation constant of novel naphthoquinone–triazole hybrids. Bioorg Chem 2020; 105:104441. [DOI: 10.1016/j.bioorg.2020.104441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/17/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
|
9
|
1,2,3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem 2020; 206:112686. [PMID: 32795773 DOI: 10.1016/j.ejmech.2020.112686] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/10/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), as a classic reason for genuine skin and flimsy tissues diseases, is a worldwide general wellbeing risk and has already tormented humanity for a long history, creating a critical need for the development of new classes of antibacterials. 1,2,3-Triazole moiety, readily interact with diverse enzymes and receptors in organisms through weak bond interaction, is among the most common frameworks present in the bioactive molecules. 1,2,3-Triazole derivatives, especially 1,2,3-triazole-containing hybrids, possess broad-spectrum activity against a panel of clinically important bacteria including drug-resistant pathogens, so rational design of 1,2,3-triazole derivatives may open a door for the opportunities on the development of novel anti-MRSA agents. This review is an endeavour to highlight the current scenario of 1,2,3-triazole-containing hybrids with potential anti-MRSA activity, covering articles published between 2010 and 2020.
Collapse
|
10
|
Janas A, Pecyna P, Gajecka M, Bartl F, Przybylski P. Synthesis and Antibacterial Activity of New
N
‐Alkylammonium and Carbonate‐Triazole Derivatives within Desosamine of 14‐ and 15‐Membered Lactone Macrolides. ChemMedChem 2020; 15:1529-1551. [DOI: 10.1002/cmdc.202000273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Anna Janas
- Faculty of ChemistryAdam Mickiewicz University Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Paulina Pecyna
- Chair and Department of Genetics and Pharmaceutical MicrobiologyPoznań University of Medical Sciences (PUMS) Święcickiego 4 60-781 Poznań Poland
| | - Marzena Gajecka
- Chair and Department of Genetics and Pharmaceutical MicrobiologyPoznań University of Medical Sciences (PUMS) Święcickiego 4 60-781 Poznań Poland
- Institute of Human GeneticsPolish Academy of Sciences Strzeszynska 32 60-479 Poznań Poland
| | - Franz Bartl
- Lebenswissenschaftliche Fakultät, Institut für Biologie Biophysikalische ChemieHumboldt-Universität zu Berlin Invalidenstrasse 42 10099 Berlin Germany
| | - Piotr Przybylski
- Faculty of ChemistryAdam Mickiewicz University Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| |
Collapse
|