Li CY, Li HT, Shao YT, Guo XY, Li W, Yin TP. Regulation of secondary metabolites in the endophytic fungus
Penicillium sp. KMU18029 by the chemical epigenetic modifier 5-azacitidine.
Nat Prod Res 2024;
38:581-588. [PMID:
36855227 DOI:
10.1080/14786419.2023.2183199]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
The chemical epigenetic modifier 5-azacitidine (5-Aza C), a DNA methyltransferase inhibitor, was used to manipulate the endophytic fungus Penicillium sp. KMU18029. From its rice fermentation extract, a new polyketone compound (3S,4R)-3,4,8-trihydroxy-6-methyl-3,4-dihydronaphthalen-1(2H)-one (1), along with 13 known compounds, 3,4,8-trihydroxy-6-(hydroxymethyl)-3,4-dihydronaphthalen-1(2H)-one (2), decaturin B (3), 15-hydroxydecaturin A (4), oxalicine A (5), pileotin A (6), pyrandecarurin A (7), decaturenol A (8), decaturenoid (9), penisarins A (10), oxaline (11), (4E,8E)-N-D-2'-hydroxyocta-decanoyl-1-O-β-D-glycopy-ranosyl-9-methyl-4,8-sphingadienine (12), ergosterol (13) and stigma-5-en-3-O-β-glucoside (14), were separated. Among the known compounds, 2, 7, 12 and 14 were not found in our previous research on this strain. The structure of the new compound was identified by spectroscopic techniques such as HR-ESIMS, 1D NMR, 2D NMR and CD. Furthermore, all the isolated compounds were tested for their antimicrobial activities, and only compounds 1, 2 and 11 showed weak activities against S. aureus, with MICs of 128 μg/mL.
Collapse