1
|
Menegatti ACO. Targeting protein tyrosine phosphatases for the development of antivirulence agents: Yersinia spp. and Mycobacterium tuberculosis as prototypes. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140782. [PMID: 35470106 DOI: 10.1016/j.bbapap.2022.140782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Protein phosphorylation mediated by protein kinases and phosphatases has a central regulatory function in many cellular processes in eukaryotes and prokaryotes. As a result, several diseases caused by imbalance in phosphorylation levels are known, especially due to protein tyrosine phosphatases (PTPs) activity, an important family of signaling enzymes. Furthermore, over the last decades several studies have shown the main role of PTPs in pathogenic bacteria: they are associated with growth, cell division, cell wall biosynthesis, biofilm formation, metabolic processes, as well as virulence factor. In this way, PTPs have ascended as targets for antibacterial drug design, particularly in view of the antibiotic resistance in pathogenic bacteria, which demands novel therapeutics strategies. Targeting secreted PTPs is an antivirulence strategy to combat the emergence of antimicrobial resistance (AMR). This review focuses on the recent advances in understanding the role of PTPs and the approaches to target them, with an emphasis in Yersinia spp. and Mycobacterium tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Angela Camila Orbem Menegatti
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Paraíba, Brazil.
| |
Collapse
|
2
|
Sahoo SK, Rani B, Gaikwad NB, Ahmad MN, Kaul G, Shukla M, Nanduri S, Dasgupta A, Chopra S, Yaddanapudi VM. Synthesis and structure-activity relationship of new chalcone linked 5-phenyl-3-isoxazolecarboxylic acid methyl esters potentially active against drug resistant Mycobacterium tuberculosis. Eur J Med Chem 2021; 222:113580. [PMID: 34116324 DOI: 10.1016/j.ejmech.2021.113580] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 01/06/2023]
Abstract
In search of novel therapeutic agents active against emerging drug-resistant Mycobacterium tuberculosis and to counter the long treatment protocol of existing drugs, herein we present synthesis and biological evaluation of a new series of 5-phenyl-3-isoxazolecarboxylic acid methyl ester-chalcone hybrids. Among 35 synthesized compounds, 32 analogues displayed potent in-vitro activity against Mycobacterium tuberculosis H37Rv with MIC 0.12-16 μg/mL. Cell viability test against Vero cells indicated 29 compounds to be non-cytotoxic (CC50 > 20 μg/mL & SI > 10). Most potent compounds with MIC 0.12 μg/mL (7 b, 7j, 7 ab) exhibited selectivity index (SI) in excess of 320. Further studies on activity against drug-resistant Mycobacterium tuberculosis revealed 7j as the most potent compound with MIC 0.03-0.5 μg/mL. Time-kill kinetic study suggested compound 7j displaying concentration-dependent bactericidal killing activity with relatively comparable potency to that of current first-line anti-TB drugs. Taken together, 7j presents a novel hit with potential to be translated into a potent antimycobacterial.
Collapse
Affiliation(s)
- Santosh Kumar Sahoo
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Bandela Rani
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Nikhil Baliram Gaikwad
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Mohammad Naiyaz Ahmad
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Grace Kaul
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manjulika Shukla
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India
| | - Srinivas Nanduri
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Arunava Dasgupta
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Venkata Madhavi Yaddanapudi
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
3
|
Liu X, Xu R, Wang L, Liu Y, Chen Z, Qin W, Tian Y. Synthesis and Evaluation in vitro of Dihydrothiophenopyridine-Chalcone Derivatives as Anticancer Activity Agents. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|