1
|
Martinez-Mayorga K, Rosas-Jiménez JG, Gonzalez-Ponce K, López-López E, Neme A, Medina-Franco JL. The pursuit of accurate predictive models of the bioactivity of small molecules. Chem Sci 2024; 15:1938-1952. [PMID: 38332817 PMCID: PMC10848664 DOI: 10.1039/d3sc05534e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Property prediction is a key interest in chemistry. For several decades there has been a continued and incremental development of mathematical models to predict properties. As more data is generated and accumulated, there seems to be more areas of opportunity to develop models with increased accuracy. The same is true if one considers the large developments in machine and deep learning models. However, along with the same areas of opportunity and development, issues and challenges remain and, with more data, new challenges emerge such as the quality and quantity and reliability of the data, and model reproducibility. Herein, we discuss the status of the accuracy of predictive models and present the authors' perspective of the direction of the field, emphasizing on good practices. We focus on predictive models of bioactive properties of small molecules relevant for drug discovery, agrochemical, food chemistry, natural product research, and related fields.
Collapse
Affiliation(s)
- Karina Martinez-Mayorga
- Institute of Chemistry, Merida Unit, National Autonomous University of Mexico Merida-Tetiz Highway, Km. 4.5 Ucu Yucatan Mexico
- Institute for Applied Mathematics and Systems, Merida Research Unit, National Autonomous University of Mexico Sierra Papacal Merida Yucatan Mexico
| | - José G Rosas-Jiménez
- Department of Theoretical Biophysics, IMPRS on Cellular Biophysics Max-von-Laue Strasse 3 Frankfurt am Main 60438 Germany
| | - Karla Gonzalez-Ponce
- Institute of Chemistry, Merida Unit, National Autonomous University of Mexico Merida-Tetiz Highway, Km. 4.5 Ucu Yucatan Mexico
| | - Edgar López-López
- Department of Chemistry and Graduate Program in Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute Mexico City 07000 Mexico
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry National Autonomous University of Mexico Mexico City 04510 Mexico
| | - Antonio Neme
- Institute for Applied Mathematics and Systems, Merida Research Unit, National Autonomous University of Mexico Sierra Papacal Merida Yucatan Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry National Autonomous University of Mexico Mexico City 04510 Mexico
| |
Collapse
|
2
|
Napiórkowska M, Kumaravel P, Amboo Mahentheran M, Kiernozek-Kalińska E, Grosicka-Maciąg E. New Derivatives of 1-(3-Methyl-1-Benzofuran-2-yl)Ethan-1-one: Synthesis and Preliminary Studies of Biological Activity. Int J Mol Sci 2024; 25:1999. [PMID: 38396676 PMCID: PMC10888192 DOI: 10.3390/ijms25041999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
A set of nine derivatives, including five brominated compounds, was synthesized and the structures of these novel compounds were confirmed using 1H and 13C NMR as well as ESI MS spectra. These compounds were tested on four different cancer cell lines, chronic myelogenous leukemia (K562), prostate cancer (PC3), colon cancer (SW620), human kidney cancer (Caki 1), and on healthy human keratocytes (HaCaT). MTT results reveal that two newly developed derivatives (6 and 8) exhibit selective action towards K562 cells and no toxic effect in HaCat cells. The biological activity of these two most promising compounds was evaluated by trypan blue assay, reactive oxygen species generation, and IL-6 secretion. To investigate the proapoptotic activity of selected compounds, the two following types of tests were performed: Annexin V Apoptosis Detection Kit I and Caspase-Glo 3/7 assay. The studies of the mechanism showed that both compounds have pro-oxidative effects and increase reactive oxygen species in cancer cells, especially at 12 h incubation. Through the Caspase-Glo 3/7 assay, the proapoptotic properties of both compounds were confirmed. The Annexin V-FITC test revealed that compounds 6 and 8 induce apoptosis in K562 cells. Both compounds inhibit the release of proinflammatory interleukin 6 (IL-6) in K562 cells. Additionally, all compounds were screened for their antibacterial activities using standard and clinical strains. Within the studied group, compound 7 showed moderate activity towards Gram-positive strains in antimicrobial studies, with MIC values ranging from 16 to 64 µg/mL.
Collapse
Affiliation(s)
- Mariola Napiórkowska
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (P.K.); (M.A.M.)
| | - Pratheeba Kumaravel
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (P.K.); (M.A.M.)
| | - Mithulya Amboo Mahentheran
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (P.K.); (M.A.M.)
| | - Ewelina Kiernozek-Kalińska
- Department of Immunology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland
| | - Emilia Grosicka-Maciąg
- Department of Biochemistry and Laboratory Diagnostic, Collegium Medicum Cardinal Stefan Wyszyński University, Kazimierza Wóycickiego 1 Str., 01-938 Warsaw, Poland;
| |
Collapse
|
3
|
Moein Najafabadi S, Safaei Ghomi J. Synthesis of COF-SO 3H immobilized on manganese ferrite nanoparticles as an efficient nanocomposite in the preparation of spirooxindoles. Sci Rep 2023; 13:22731. [PMID: 38123668 PMCID: PMC10733289 DOI: 10.1038/s41598-023-49628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
The synthesis of sulfonamide-functionalized magnetic porous nanocomposites is highly significant in chemistry due to their exceptional properties and potential as catalysts. COFs are a new class of organic porous polymers and have significant advantages such as low density, high chemical and thermal stability, and mechanical strength. Therefore, we decided to synthesize COFs based on magnetic nanoparticles, by doing so, we can also prevent the agglomeration of MnFe2O4. MnFe2O4@COF-SO3H possesses a large specific surface area, supermagnetism, and is acidic, making it an optimal catalyst for organic reactions. This particular catalyst was effectively employed in the green and rapid synthesis of various spiro-pyrano chromenes, while several analytical techniques were utilized to analyze its structural integrity and functional groups. The role of a specific site of MnFe2O4@COF-SO3H was confirmed through different control experiments in a one-pot reaction mechanism. It was determined that MnFe2O4@COF-SO3H acts as a bifunctional acid-base catalyst in the one-pot preparation of spirooxindole derivatives. The formation of a spiro skeleton in the multicomponent reaction involved the construction of three new σ bonds (one C-O bond and two C-C bonds) within a single process. The efficiency of the MnFe2O4@COF-SO3H complex is investigated in the synthesis of spirooxindoles of malononitrile, and various isatins with 1,3-dicarbonyles. The nanocatalyst demonstrated excellent catalytic activity that gave the corresponding coupling products good to excellent yields. Furthermore, the heterogeneous magnetic nanocatalyst used in this study demonstrated recoverability after five cycles with minimal loss of activity.
Collapse
Affiliation(s)
- Samira Moein Najafabadi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| | - Javad Safaei Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran.
| |
Collapse
|
4
|
Wang J, Yu R, Nian C, Liao M, Han Z, Sun J, Huang H. Metal-Free C(sp 3)-H Bond Arylation of 3-Methylindole Derivatives via 3-Indole Imine Methides. Org Lett 2023; 25:8478-8483. [PMID: 37966338 DOI: 10.1021/acs.orglett.3c03406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Direct arylation of the benzylic C(sp3)-H bond is one of the most straightforward strategies for the construction of multi-aryl methanes, owing to the extraordinary step and atom economy. In this paper, we developed the first metal-free arylation of the C(sp3)-H bond in 3-methylindoles, thereby providing rapid access to a range of diaryl- and triarylmethanes with two indole rings. Mechanistically, 3-indole imine methide serves as the key intermediate. Water plays a crucial role in this process, likely serving as a proton shuttle to facilitate the key 1,3-proton transfer step in this reaction and, thus, enhance the reaction efficiency.
Collapse
Affiliation(s)
- Jie Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Run Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Cuicui Nian
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Maoyan Liao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
5
|
You M, Gao Z, Zhou L, Guo C, Guo Q. Investigation of the Vibrational Characteristics of 6-Isocyano-1-Methyl-1H-Indole: Utilizing the Isonitrile Group as an Infrared Probe. Molecules 2023; 28:6939. [PMID: 37836782 PMCID: PMC10574170 DOI: 10.3390/molecules28196939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Indole derivatives have garnered considerable attention in the realm of biochemistry due to their multifaceted properties. In this study, we undertake a systematic investigation of the vibrational characteristics of a model indole derivative, 6-isocyano-1-methyl-1H-indole (6ICMI), by employing a combination of FTIR, IR pump-probe spectroscopy, and theoretical calculations. Our findings demonstrate a strong dependence of the isonitrile stretching frequency of 6ICMI on the polarizability of protic solvents and the density of hydrogen-bond donor groups in the solvent when the isonitrile group is bonded to aromatic groups. Both experimental and theoretical analyses unveil a significant correlation between the isonitrile stretch vibration of 6ICMI and the solvent acceptor number of alcohols. Furthermore, the polarization-controlled infrared pump-probe conducted on 6ICMI in dimethyl sulfoxide provides additional support for the potential use of the isonitrile stretching mode of 6ICMI as an effective infrared probe for local environments.
Collapse
Affiliation(s)
- Min You
- School of Computer Science and Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China
| | - Zilin Gao
- School of Computer Science and Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China
| | - Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China;
| | - Changyuan Guo
- Key Laboratory of Intelligent Air-Ground Cooperative Control for Universities in Chongqing, College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Qiang Guo
- Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
6
|
Abbas AA, Dawood KM. Anticancer therapeutic potential of benzofuran scaffolds. RSC Adv 2023; 13:11096-11120. [PMID: 37056966 PMCID: PMC10086673 DOI: 10.1039/d3ra01383a] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Benzofuran moiety is the main component of many biologically active natural and synthetic heterocycles. These heterocycles have unique therapeutic potentials and are involved in various clinical drugs. The reported results confirmed the extraordinary inhibitory potency of such benzofurans against a panel of human cancer cell lines compared with a wide array of reference anticancer drugs. Several publications about the anticancer potencies of benzofuran-based heterocycles were encountered. The recent developments of anticancer activities of both natural and synthetic benzofuran scaffolds during 2019-2022 are thoroughly covered. Many of the described benzofurans are promising candidates for development as anticancer agents based on their outstanding inhibitory potency against a panel of human cancer cells compared with reference anticancer drugs. These findings encourage medicinal chemists to explore new areas to improve human health and reduce suffering.
Collapse
Affiliation(s)
- Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| |
Collapse
|
7
|
Sapkota RR, Tak RK, Aryal V, Niroula D, Secosky NC, Dhungana RK, Giri R. Cu-Catalyzed Cyclization/Coupling of Alkenyl Aldimines with Arylzinc Reagents: Access to Indole-3-diarylmethanes. Org Lett 2022; 24:6213-6218. [PMID: 35969494 DOI: 10.1021/acs.orglett.2c02531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a Cu(II)-catalyzed cyclization/coupling of alkenyl aldimines with arylzinc reagents to create indole-3-diarylmethane derivatives (Sapkota et al. ChemRxiv 2022, DOI: 10.26434/chemrxiv-2022-d6qn). The current reaction provides a unified modular route from readily available starting materials to indole-3-diarylmethanes in which all three arene cores can be decorated with differential functional substitutions on demand. Since the cyclization/coupling of alkenyl aldimines is unknown to date, the current method widens the scope with regard to both the substrate and product diversity for this class of reaction.
Collapse
Affiliation(s)
- Rishi R Sapkota
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raj Kumar Tak
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vivek Aryal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Doleshwar Niroula
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicholas C Secosky
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Roshan K Dhungana
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Yashwantrao G, Shetty P, Maleikal PJ, Badani P, Saha S. Dehydrative Substitution Reaction in Water for the Preparation of Unsymmetrically Substituted Triarylmethanes: Synthesis, Aggregation‐Enhanced Emission, and Mechanofluorochromism. Chempluschem 2022; 87:e202200150. [DOI: 10.1002/cplu.202200150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Gauravi Yashwantrao
- ICT Mumbai: Institute of Chemical Technology Speciality Chemicals Technology INDIA
| | - Prapti Shetty
- Institute of Chemical Technology Speciality Chemicals Technology INDIA
| | | | - Purav Badani
- University of Mumbai - Kalina Campus Chemistry INDIA
| | - Satyajit Saha
- Institute of Chemical Technology, Mumbai Department of Dyestuff Technology Nathelal parekh Marg400019India 400019 Matunga, 2010 INDIA
| |
Collapse
|
9
|
Eldehna WM, Salem R, Elsayed ZM, Al-Warhi T, Knany HR, Ayyad RR, Traiki TB, Abdulla MH, Ahmad R, Abdel-Aziz HA, El-Haggar R. Development of novel benzofuran-isatin conjugates as potential antiproliferative agents with apoptosis inducing mechanism in Colon cancer. J Enzyme Inhib Med Chem 2021; 36:1424-1435. [PMID: 34176414 PMCID: PMC8245078 DOI: 10.1080/14756366.2021.1944127] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
In the current work, a new set of carbohydrazide linked benzofuran-isatin conjugates (5a-e and 7a-i) was designed and synthesised. The anticancer activity for compounds (5b-d, 7a, 7b, 7d and 7g) was measured against NCI-55 human cancer cell lines. Compound 5d was the most efficient, and thus subjected to the five-dose screen where it showed excellent broad activity against almost all tested cancer subpanels. Furthermore, all conjugates (5a-e and 7a-i) showed a good anti-proliferative activity towards colorectal cancer SW-620 and HT-29 cell lines, with an excellent inhibitory effect for compounds 5a and 5d (IC50 = 8.7 and 9.4 µM (5a), and 6.5 and 9.8 µM for (5d), respectively). Both compounds displayed selective cytotoxicity with good safety profile. In addition, both compounds provoked apoptosis in a dose dependent manner in SW-620 cells. Also, they significantly inhibited the anti-apoptotic Bcl2 protein expression and increased the cleaved PARP level that resulted in SW-620 cells apoptosis.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hamada R. Knany
- Department of Pharmacognosy, College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rezk R. Ayyad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Thamer Bin Traiki
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, Egypt
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
10
|
Kulandai Raj AS, Narode AS, Liu RS. Gold(I)-Catalyzed Reactions between N-(o-Alkynylphenyl)imines and Vinyldiazo Ketones to Form 3-(Furan-2-ylmethyl)-1H-indoles via Postulated Azallyl Gold and Allylic Cation Intermediates. Org Lett 2021; 23:1378-1382. [DOI: 10.1021/acs.orglett.1c00038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Antony Sekar Kulandai Raj
- Frontier Research Center of Matter Science and Technology, Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Akshay Subhash Narode
- Frontier Research Center of Matter Science and Technology, Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Rai-Shung Liu
- Frontier Research Center of Matter Science and Technology, Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, Republic of China
| |
Collapse
|
11
|
Elyasi Z, Safaei Ghomi J, Najafi GR, Zand Monfared MR. The influence of the polymerization approach on the catalytic performance of novel porous poly (ionic liquid)s for green synthesis of pharmaceutical spiro-4-thiazolidinones. RSC Adv 2020; 10:44159-44170. [PMID: 35517141 PMCID: PMC9058518 DOI: 10.1039/d0ra08647a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Although poly (ionic liquids) (PILs) have attracted great research interest owing to their various applications, the performance of nanoporous PILs has been rarely developed in the catalysis field. To this end, a micro–mesoporous PIL with acid–base bifunctional active sites was designed and fabricated by two different polymerization protocols including hydrothermal and classical precipitation polymerization in this paper. Based on our observations, hydrothermal conditions (high temperature and pressure) enabled the proposed sonocatalyst to possess a great porous structure with a high specific surface area (SBET: 315 m2 g−1) and thermal stability (around 450 °C for 45% weight loss) through strengthening cross-linking. In a comparative study, the preferred nanoporous PIL was selected and utilized as the sonocatalyst in a multicomponent reaction of isatins, primary amines, and thioglycolic acid. In the following, a variety of new and known pharmaceutical spiro-4-thiazolidinone derivatives were synthesized at room temperature and obtained excellent yields (>90%) within short reaction times (4–12 min) owing to the substantial synergistic effect between ultrasound irradiation and magnetically separable catalyst. Sustainable synthesize of a new mesoporous poly (ionic liquid) as acid–base bifunctional catalyst for environmental being preparation of monospiro derivatives has been developed.![]()
Collapse
Affiliation(s)
- Zahra Elyasi
- Department of Chemistry, Qom Branch, Islamic Azad University Post Box: 37491-13191 Qom I. R. Iran +98 31 55552935 +98 31 55912385
| | - Javad Safaei Ghomi
- Department of Chemistry, Qom Branch, Islamic Azad University Post Box: 37491-13191 Qom I. R. Iran +98 31 55552935 +98 31 55912385.,Department of Organic Chemistry, Faculty of Chemistry, University of Kashan Iran
| | - Gholam Reza Najafi
- Department of Chemistry, Qom Branch, Islamic Azad University Post Box: 37491-13191 Qom I. R. Iran +98 31 55552935 +98 31 55912385
| | - Mohammad Reza Zand Monfared
- Department of Chemistry, Qom Branch, Islamic Azad University Post Box: 37491-13191 Qom I. R. Iran +98 31 55552935 +98 31 55912385
| |
Collapse
|