1
|
Zhi J, Li F, Jiang X, Bai R. Thyroid receptor β: A promising target for developing novel anti-androgenetic alopecia drugs. Drug Discov Today 2024; 29:104013. [PMID: 38705510 DOI: 10.1016/j.drudis.2024.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Androgenetic alopecia (AGA) significantly impacts the self-confidence and mental well-being of people. Recent research has revealed that thyroid receptor β (TRβ) agonists can activate hair follicles and effectively stimulate hair growth. This review aims to comprehensively elucidate the specific mechanism of action of TRβ in treating AGA from various perspectives, highlighting its potential as a drug target for combating AGA. Moreover, this review provides a thorough summary of the research advances in TRβ agonist candidates with anti-AGA efficacy and outlines the structure-activity relationships (SARs) of TRβ agonists. We hope that this review will provide practical information for the development of effective anti-alopecia drugs.
Collapse
Affiliation(s)
- Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
2
|
Hu L, Gu Y, Liang J, Ning M, Yang J, Zhang Y, Qu H, Yang Y, Leng Y, Zhou B. Discovery of Highly Potent and Selective Thyroid Hormone Receptor β Agonists for the Treatment of Nonalcoholic Steatohepatitis. J Med Chem 2023; 66:3284-3300. [PMID: 36799411 DOI: 10.1021/acs.jmedchem.2c01669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a progressive stage of nonalcoholic fatty liver disease (NAFLD) and is characterized by steatosis, inflammation, hepatocyte ballooning, and fibrosis. While there are currently no approved therapies for NASH, the thyroid hormone receptor β (THR-β), primarily expressed in the liver, is emerging as an effective molecular target for the treatment of NASH. However, the adverse cardiac and bone effects mediated by thyroid hormone receptor α (THR-α) need to be minimized. Herein, we reported the discovery of a series of novel THR-β agonists featuring pyrrolo[3,2-b]pyridin-5-one skeletons based on structure-based drug design. Further optimization led to compound 15, which exhibited higher potency and selectivity for THR-β over THR-α compared to clinical drug MGL-3196. More significantly, an excellent liver-to-serum ratio of 93:1 was observed for compound 15. We believe that the high hepatic concentration of compound 15 may result in no cardiotoxicity.
Collapse
Affiliation(s)
- Liuyu Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yipei Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ju Liang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Junli Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaxi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Bing Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Huang S, Deng Z, Wang W, Liao G, Zhao Y, Zhong H, Zhang Q, Liu J, Mao X, Chen B, Pan D, Zhou Y. CS27109, A Selective Thyroid Hormone Receptor- β Agonist Alleviates Metabolic-Associated Fatty Liver Disease in Murine Models. Int J Endocrinol 2023; 2023:4950597. [PMID: 36825196 PMCID: PMC9943626 DOI: 10.1155/2023/4950597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND/AIM Thyroid hormone receptor-β (THR-β) agonists play crucial roles in dyslipidemia and metabolic associated fatty liver disease (MAFLD). We developed a novel oral and liver-targeted THR-β agonist, CS27109, and evaluated its efficacy in the treatment of metabolic disorders. MATERIALS AND METHODS We evaluated in vitro and in vivo efficacy and/or safety of CS27109 along with MGL3196 (a phase III THR-β agonist). RESULTS CS27109 showed pronounced activity and selectivity to THR-β and favorable PK properties, which was equivalent to MGL3196. In the hamster model, animals treated with a high dose of CS27109 showed equivalent reductions in serum TC and LDL-c with groups treated with MGL3196. In the rat model, CS27109 and MGL3196 reduced serum ALT, TC, TG, LDL-c, liver weight ratio, and liver steatosis. CS27109 simultaneously decreased liver TG and TC, and MGL3196 additionally reduced AST. In the mouse model, CS27109 dose-dependently reduced serum AST, ALT, liver inflammation, and NAS score, and also downregulated TC, LDL-c, liver steatosis, and fibrosis, but not in a dose-dependent manner. MGL3196 revealed an equivalent effect with CS27109 in that model. CS27109 also exhibited tolerable toxicity to the heart. CONCLUSIONS CS27109 shows comparative in vitro and in vivo efficacy with MGL3196, suggesting its potential therapeutic application in the treatment of MAFLD such as dyslipidemia and steatohepatitis.
Collapse
Affiliation(s)
- Shengjian Huang
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen 518052, China
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Zhou Deng
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen 518052, China
| | - Wei Wang
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Guoqiang Liao
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Yiru Zhao
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Hua Zhong
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Qian Zhang
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Jing Liu
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Xuhua Mao
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Beizhong Chen
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Desi Pan
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen 518052, China
| | - You Zhou
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen 518052, China
| |
Collapse
|
4
|
Regulation of gene transcription by thyroid hormone receptor β agonists in clinical development for the treatment of non-alcoholic steatohepatitis (NASH). PLoS One 2020; 15:e0240338. [PMID: 33306682 PMCID: PMC7732128 DOI: 10.1371/journal.pone.0240338] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Thyroid hormones are important modulators of metabolic activity in mammals and alter cholesterol and fatty acid levels through activation of the nuclear thyroid hormone receptor (THR). Currently, there are several THRβ agonists in clinical trials for the treatment of non-alcoholic steatohepatitis (NASH) that have demonstrated the potential to reduce liver fat and restore liver function. In this study, we tested three THRβ-agonism-based NASH treatment candidates, GC-1 (sobetirome), MGL-3196 (resmetirom), and VK2809, and compared their selectivity for THRβ and their ability to modulate the expression of genes specific to cholesterol and fatty acid biosynthesis and metabolism in vitro using human hepatic cells and in vivo using a rat model. Treatment with GC-1 upregulated the transcription of CPT1A in the human hepatocyte-derived Huh-7 cell line with a dose-response comparable to that of the native THR ligand, triiodothyronine (T3). VK2809A (active parent of VK2809), MGL-3196, and VK2809 were approximately 30-fold, 1,000-fold, and 2,000-fold less potent than T3, respectively. Additionally, these relative potencies were confirmed by quantification of other direct gene targets of THR, namely, ANGPTL4 and DIO1. In primary human hepatocytes, potencies were conserved for every compound except for VK2809, which showed significantly increased potency that was comparable to that of its active counterpart, VK2809A. In high-fat diet fed rats, a single dose of T3 significantly reduced total cholesterol levels and concurrently increased liver Dio1 and Me1 RNA expression. MGL-3196 treatment resulted in concentration-dependent decreases in total and low-density lipoprotein cholesterol with corresponding increases in liver gene expression, but the compound was significantly less potent than T3. In conclusion, we have implemented a strategy to rank the efficacy of THRβ agonists by quantifying changes in the transcription of genes that lead to metabolic alterations, an effect that is directly downstream of THR binding and activation.
Collapse
|