1
|
Lee JY, Jeon S, Cho JE, Kim S, Kim HR, Park HG, Kim S, Park CM. Synthesis and evaluation of N-arylindazole-3-carboxamide derivatives as novel antiviral agents against SARS-CoV-2. Bioorg Med Chem Lett 2024; 114:130015. [PMID: 39489229 DOI: 10.1016/j.bmcl.2024.130015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
N-Arylindazole-3-carboxamide derivatives synthesized from an anti-MERS-CoV hit compound showed potent inhibitory activities against SARS-CoV-2. Among them, 5-chloro-N-(3,5-dichlorophenyl)-1H-indazole-3-carboxamide (4a) exhibited a potent inhibitory effect (EC50 = 0.69 µM), low cytotoxicity, and satisfactory in vitro PK profiles. Thus, N-arylindazole-3-carboxamide 4a provides a novel template for future development of anti-coronavirus agents.
Collapse
Affiliation(s)
- Jun Young Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 24114, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangeun Jeon
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Jung-Eun Cho
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 24114, Republic of Korea
| | - Sungmin Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 24114, Republic of Korea
| | - Hyoung Rae Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 24114, Republic of Korea
| | - Hyeung-Geun Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| | - Chul Min Park
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 24114, Republic of Korea; Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 24114, Republic of Korea.
| |
Collapse
|
2
|
Baykova SO, Baykov SV, Solodyankina OV, Boyarskiy VP. Access to 4-((Pyridin-2-yl)amino)quinazolinones via Annulation of 2-Aminobenzonitriles with N'-(Pyridin-2-yl)- N, N-dimethyl Ureas. J Org Chem 2024; 89:12094-12103. [PMID: 39166766 DOI: 10.1021/acs.joc.4c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We have developed a convenient protocol for synthesizing N-(2-pyridyl)-substituted 4-(amino)quinazolin-2(1H)-ones by reacting N,N-dimethyl-N'-pyridylureas with 2-aminobenzonitriles. The method relies on the ability of N,N-dimethyl-N'-pyridyl/quinolinyl ureas to act as masked isocyanates under thermal activation, followed by a Dimroth rearrangement of 4-imino-3-(hetaryl)-3,4-dihydroquinazolin-2(1H)-ones. Conducted at 120 °C, either in DMF or under solvent-free conditions, this approach has produced 28 derivatives of 4-aminoquinazolinones, featuring pyridine or quinoline substituents, with yields of up to 92%.
Collapse
Affiliation(s)
- Svetlana O Baykova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia
| | - Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia
| | - Olga V Solodyankina
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia
| | - Vadim P Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia
| |
Collapse
|
3
|
Ibrahim NSM, Kadry HH, Zaher AF, Mohamed KO. Synthesis of novel pyrimido[4,5-b]quinoline derivatives as dual EGFR/HER2 inhibitors as anticancer agents. Arch Pharm (Weinheim) 2024; 357:e2300513. [PMID: 38148301 DOI: 10.1002/ardp.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
A series of novel N-aryl-5-aryl-6,7,8,9-tetrahydropyrimido[4,5-b]quinolin-4-amines 4a-4l was synthesized as potential anticancer agents through Dimroth rearrangement reaction of intermediates 3a-3c. Pyrimido[4,5-b]quinolines 4a-4l showed promising activity against the Michigan Cancer Foundation-7 (MCF-7) cell line, compared with lapatinib as the reference drug. Compounds 4d, 4h, 4i, and 4l demonstrated higher cytotoxic activity than lapatinib, with IC50 values of 2.67, 6.82, 4.31, and 1.62 µM, respectively. Compounds 4d, 4i, and 4l showed promising epidermal growth factor receptor (EGFR) inhibition with IC50 values of 0.065, 0.116, and 0.052 µM, respectively. These compounds were subjected to human epidermal growth factor receptor 2 (HER2) inhibition and showed IC50 values of 0.09, 0.164, and 0.055 µM, respectively. Compounds 4d, 4i, and 4l are good candidates as dual EGFR/HER2 inhibitors. The most active compound, 4l, was subjected to cell-cycle analysis and induced cell-cycle arrest at the S phase. Compound 4l induced apoptosis 60-fold compared with control untreated MCF-7 cells. 4l can inhibit cancer metastasis. It reduced MCF-7 cell infiltration and metastasis by 45% compared with control untreated cells.
Collapse
Affiliation(s)
- Nahla Said M Ibrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan H Kadry
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ashraf F Zaher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khaled O Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Arish Branch, Arish, Egypt
| |
Collapse
|
4
|
Yadav Y, Singh K, Sharma S, Mishra VK, Sagar R. Recent Efforts in Identification of Privileged Scaffolds as Antiviral Agents. Chem Biodivers 2023; 20:e202300921. [PMID: 37589569 DOI: 10.1002/cbdv.202300921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/18/2023]
Abstract
Viral infections are the most important health concern nowadays to mankind, which is unexpectedly increasing the health complications and fatality rate worldwide. The recent viral infection outbreak developed a pressing need for small molecules that can be quickly deployed for the control/treatment of re-emerging or new emerging viral infections. Numerous viruses, including the human immunodeficiency virus (HIV), hepatitis, influenza, SARS-CoV-1, SARS-CoV-2, and others, are still challenging due to emerging resistance to known drugs. Therefore, there is always a need to search for new antiviral small molecules that can combat viral infection with new modes of action. This review highlighted recent progress in developing new antiviral molecules based on natural product-inspired scaffolds. Herein, the structure-activity relationship of the FDA-approved drugs along with the molecular docking studies of selected compounds have been discussed against several target proteins. The findings of new small molecules as neuraminidase inhibitors, other than known drug scaffolds, Anti-HIV and SARS-CoV are incorporated in this review paper.
Collapse
Affiliation(s)
- Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
5
|
Discovery of Novel Thioquinazoline- N-aryl-acetamide/ N-arylacetohydrazide Hybrids as Anti-SARS-CoV-2 Agents: Synthesis, in vitro Biological Evaluation, and Molecular Docking Studies. J Mol Struct 2022; 1276:134690. [PMCID: PMC9709698 DOI: 10.1016/j.molstruc.2022.134690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
In the current investigation, two novel series of (tetrahydro)thioquinazoline-N-arylacetamides and (tetrahydro)thioquinazoline-N-arylacetohydrazides were designed, synthesized and investigated for their antiviral activity against SARS-CoV-2. The thioquinazoline-N-arylacetamide 17g as well as the tetrahydrothioquinazoline-N-arylacetohydrazides 18c and 18f showed potent antiviral activity with IC50 of 21.4, 38.45 and 26.4 µM, respectively. In addition, 18c and 18f demonstrated potential selectivity toward the SARS-CoV-2 over the host cells with SI of 10.67 and 16.04, respectively. Further evaluation of the mechanism of action of the three derivatives 17g, 18c, and 18f displayed that they can inhibit the virus at the adsorption as well as at the replication stages, in addition to their virucidal properties. In addition, 17g, 18c, and 18f demonstrated satisfactory physicochemical properties as well as drug-likeness properties to be further optimized for the discovery of novel antiviral agents. The docking simulation predicted the binding pattern of the target compounds rationalizing their differential activity based on their hydrophobic interaction and fitting in the hydrophobic S2 subsite of the binding site
Collapse
|
6
|
Kumar R, Kumar V, Kamal R, Kumar A, Kaur S, Bansal A, Chetti P. 2,4‐Bis(2‐(
E
)‐arylidenehydrazinyl)quinazolines: Expeditious Synthesis, Characterization, Antiproliferative Effects against Breast Cancer Cell Line and Molecular Docking Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202202635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry Kurukshetra University Kurukshetra, Kurukshetra 136119 Haryana INDIA
- Current Address: Department of Chemistry M. M. Engineering College Maharishi Markandeshwar (Deemed to be University) Mullana Ambala 133207 Haryana INDIA
| | - Vipan Kumar
- Department of Chemistry Kurukshetra University Kurukshetra, Kurukshetra 136119 Haryana INDIA
- Current Address: Department of Chemistry & MAP Section Department of Genetics and Plant Breeding CCS Haryana Agriculture University Hisar 125004 Haryana INDIA
| | - Raj Kamal
- Department of Chemistry Kurukshetra University Kurukshetra, Kurukshetra 136119 Haryana INDIA
| | - Ajay Kumar
- Department of Botanical & Environmental Sciences Guru Nanak Dev University Amritsar 143005 Punjab INDIA
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences Guru Nanak Dev University Amritsar 143005 Punjab INDIA
| | - Arubhi Bansal
- Department of Chemistry National Institute of Technology (NIT) Kurukshetra 136119 Haryana INDIA
| | - Prabhakar Chetti
- Department of Chemistry National Institute of Technology (NIT) Kurukshetra 136119 Haryana INDIA
| |
Collapse
|
7
|
Tang Q, Peng T, Hu J, Zhang T, Chen P, Chen D, Wang Y, Chen L, Tong L, Chen Y, Xie H, Liang G. Discovery of N-(3-bromo-1H-indol-5-yl)-quinazolin-4-amine as an effective molecular skeleton to develop reversible/irreversible pan-HER inhibitors. Eur J Med Chem 2022; 233:114249. [DOI: 10.1016/j.ejmech.2022.114249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022]
|
8
|
Lee JY, Shin YS, Jeon S, Lee SI, Cho J, Myung S, Jang MS, Kim S, Song JH, Kim HR, Park CM. Synthesis and biological evaluation of 2-benzylaminoquinazolin-4(3 H)-one derivatives as a potential treatment for SARS-CoV-2. B KOREAN CHEM SOC 2022; 43:412-416. [PMID: 35440837 PMCID: PMC9011860 DOI: 10.1002/bkcs.12470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
Abstract
Despite the continuing global crisis caused by coronavirus disease 2019 (COVID-19), there is still no effective treatment. Therefore, we designed and synthesized a novel series of 2-benzylaminoquinazolin-4(3H)-one derivatives and demonstrated that they are effective against SARS-CoV-2. Among the synthesized derivatives, 7-chloro-2-(((4-chlorophenyl)(phenyl)methyl)amino)quinazolin-4(3H)-one (Compound 39) showed highest anti-SARS-CoV-2 activity, with a half-maximal inhibitory concentration value greater than that of remdesivir (IC50 = 4.2 μM vs. 7.6 μM, respectively), which gained urgent approval from the U.S. Food and Drug Administration. In addition, Compound 39 showed good results in various assays measuring metabolic stability, human ether a-go-go, Cytochromes P450 (CYPs) inhibition, and plasma protein binding (PPB), and showed better solubility and pharmacokinetics than our previous work.
Collapse
Affiliation(s)
- Jun Young Lee
- Center for Convergent Research of Emerging Virus Infection (CEVI)Korea Research Institute of Chemical TechnologyYuseong‐gu, DaejeonSouth Korea
| | - Young Sup Shin
- Center for Convergent Research of Emerging Virus Infection (CEVI)Korea Research Institute of Chemical TechnologyYuseong‐gu, DaejeonSouth Korea
| | - Sangeun Jeon
- Zoonotic Virus LaboratoryInstitut Pasteur KoreaSeongnam‐siGyeonggi‐doSouth Korea
| | - Se In Lee
- Center for Convergent Research of Emerging Virus Infection (CEVI)Korea Research Institute of Chemical TechnologyYuseong‐gu, DaejeonSouth Korea
| | - Jung‐Eun Cho
- Center for Convergent Research of Emerging Virus Infection (CEVI)Korea Research Institute of Chemical TechnologyYuseong‐gu, DaejeonSouth Korea
| | - Subeen Myung
- Center for Convergent Research of Emerging Virus Infection (CEVI)Korea Research Institute of Chemical TechnologyYuseong‐gu, DaejeonSouth Korea
- Medicinal Chemistry and PharmacologyKorea University of Science and TechnologyDaejeonSouth Korea
| | - Min Seong Jang
- Department of Non‐Clinical StudiesKorea Institute of ToxicologyYuseong‐gu, DaejeonSouth Korea
| | - Seungtaek Kim
- Zoonotic Virus LaboratoryInstitut Pasteur KoreaSeongnam‐siGyeonggi‐doSouth Korea
| | - Jong Hwan Song
- Center for Convergent Research of Emerging Virus Infection (CEVI)Korea Research Institute of Chemical TechnologyYuseong‐gu, DaejeonSouth Korea
| | - Hyoung Rae Kim
- Center for Convergent Research of Emerging Virus Infection (CEVI)Korea Research Institute of Chemical TechnologyYuseong‐gu, DaejeonSouth Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection (CEVI)Korea Research Institute of Chemical TechnologyYuseong‐gu, DaejeonSouth Korea
- Medicinal Chemistry and PharmacologyKorea University of Science and TechnologyDaejeonSouth Korea
| |
Collapse
|