1
|
Huang Z, Zeng L, Cheng B, Li D. Overview of class I HDAC modulators: Inhibitors and degraders. Eur J Med Chem 2024; 276:116696. [PMID: 39094429 DOI: 10.1016/j.ejmech.2024.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Class I histone deacetylases (HDACs) are closely associated with the development of a diverse array of diseases, including cancer, neurodegenerative disorders, HIV, and inflammatory diseases. Considering the essential roles in tumorigenesis, class I HDACs have emerged as highly desirable targets for therapeutic strategies, particularly in the field of anticancer drug development. However, the conventional class I HDAC inhibitors faced several challenges such as acquired resistance, inherent toxicities, and limited efficacy in inhibiting non-enzymatic functions of HDAC. To address these problems, novel strategies have emerged, including the development of class I HDAC dual-acting inhibitors, targeted protein degradation (TPD) technologies such as PROTACs, molecular glues, and HyT degraders, as well as covalent inhibitors. This review provides a comprehensive overview of class I HDAC enzymes and inhibitors, by initially introducing their structure and biological roles. Subsequently, we focus on the recent advancements of class I HDAC modulators, including isoform-selective class I inhibitors, dual-target inhibitors, TPDs, and covalent inhibitors, from the perspectives of rational design principles, pharmacodynamics, pharmacokinetics, and clinical progress. Finally, we also provide the challenges and outlines future prospects in the realm of class I HDAC-targeted drug discovery for cancer therapeutics.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou, 314000, China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Wang Z, Shi Z, Yang S, Niu Z, Shu K, Chen L, Zhi C, Liu F, Huang W, Fan T, Jiang Y. Design and Synthesis of c-Met and HDAC Dual Inhibitors for the Treatment of Breast Cancer. ACS Med Chem Lett 2024; 15:1516-1525. [PMID: 39291032 PMCID: PMC11403759 DOI: 10.1021/acsmedchemlett.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In recent years, it has been proposed that c-mesenchymal-to-epithelial transition factor (c-Met) and histone deacetylase (HDAC) dual inhibition is a promising cancer treatment strategy. Herein, a series of c-Met/HDAC dual inhibitors were designed and synthesized given their synergistic anticancer effect in breast cancer cells. Compound 12d exhibited excellent inhibitory activity against c-Met (IC50 = 28.92 nM) and HDAC (85.68%@1000 nM) and inhibited the proliferation of all three breast cancer cell lines. Moreover, a mechanism investigation demonstrated that 12d could simultaneously induce cell cycle arrest in the G0/G1 phase and cell apoptosis in MDA-MB-231 cells, which was endorsed by c-Met and HDAC pathway blockade. It could also suppress cell invasion. Our results suggest that developing promising c-Met/HDAC dual inhibitors is a novel strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Zuoyang Wang
- The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhichao Shi
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shiqi Yang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zizhou Niu
- The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Kaifei Shu
- The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Linbo Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Cailian Zhi
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Funian Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wenjun Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Tingting Fan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuyang Jiang
- The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Jin F, Lin Y, Yuan W, Wu S, Yang M, Ding S, Liu J, Chen Y. Recent advances in c-Met-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2024; 272:116477. [PMID: 38733884 DOI: 10.1016/j.ejmech.2024.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The cellular-mesenchymal epithelial transition factor (c-Met) is a receptor tyrosine kinase (RTK) located on the 7q31 locus encoding the Met proto-oncogene and plays a critical role in regulating cell proliferation, metastasis, differentiation, and apoptosis through various signaling pathways. However, its aberrant activation and overexpression have been implicated in many human cancers. Therefore, c-Met is a promising target for cancer treatment. However, the anticancer effect of selective single-targeted drugs is limited due to the complexity of the signaling system and the involvement of different proteins and enzymes. After inhibiting one pathway, signal molecules can be transmitted through other pathways, resulting in poor efficacy of single-targeted drug therapy. Dual inhibitors that simultaneously block c-Met and another factor can significantly improve efficacy and overcome some of the shortcomings of single-target inhibitors, including drug resistance. In this review, We introduced c-Met kinase and the synergism between c-Met and other anti-tumor targets, then dual-target inhibitors based on c-Met for the treatment of cancers were summarized and their design concepts and structure-activity relationships (SARs) were discussed elaborately, providing a valuable insight for the further development of novel c-Met-based dual inhibitors.
Collapse
Affiliation(s)
- Fanqi Jin
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Yihan Lin
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Weidong Yuan
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Shuang Wu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Min Yang
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Shi Ding
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China; Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China
| | - Ju Liu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China; Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China.
| | - Ye Chen
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China; Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China.
| |
Collapse
|
4
|
Daoui O, Nour H, Abchir O, Elkhattabi S, Bakhouch M, Chtita S. A computer-aided drug design approach to explore novel type II inhibitors of c-Met receptor tyrosine kinase for cancer therapy: QSAR, molecular docking, ADMET and molecular dynamics simulations. J Biomol Struct Dyn 2023; 41:7768-7785. [PMID: 36120976 DOI: 10.1080/07391102.2022.2124456] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Small molecules such as 4-phenoxypyridine derivatives have remarkable inhibitory activity against c-Met enzymatic activity and proliferation of cancer cell lines. Since there is a relationship between structure and biological activity of these molecules, these little compounds may have great potential for clinical pharmaceutical use against various types of cancer caused by c-Met activity. The purpose of this study was to remodel the structures of 4-phenoxypyridine derivatives to achieve strong inhibitory activity against c-Met and provide favorable pharmacokinetic properties for drug design and discovery. Therefore, this paper describes the structure-activity relationship and the rationalization of appropriate pharmacophore sites to improve the biological activity of the investigated molecules, based on bioinformatics techniques represented by a computer-aided drug design approach. Accordingly, robust and reliable 3D-QSAR models were developed based on CoMFA and CoMSIA techniques. As a result, 46 lead molecules were designed and their biological and pharmacokinetic activities were predicted in silico. Screening filters by 3D-QSAR, Molecular Docking, drug-like and ADME-Tox identified the computer-designed compounds P54 and P55 as the best candidates to achieve high inhibition of c-Met enzymatic activity compared to the synthesized template compound T14. Finally, through molecular dynamics simulations, the structural properties and dynamics of c-Met free and complex (PDB code: 3LQ8) in the presence of 4-phenoxypyridine-derived compounds in an aqueous environment are discussed. Overall, the rectosynthesis of the designed drug inhibitors (P54 and P55) and their in vitro and in vivo bioactivity evaluation may be attractive for design and discovery of novel drug effective to inhibit c-Met enzymatic activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Hassan Nour
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Mohamed Bakhouch
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, El Jadida, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
5
|
Alamshany ZM, Algamdi EM, Othman IMM, Anwar MM, Nossier ES. New pyrazolopyridine and pyrazolothiazole-based compounds as anti-proliferative agents targeting c-Met kinase inhibition: design, synthesis, biological evaluation, and computational studies. RSC Adv 2023; 13:12889-12905. [PMID: 37114032 PMCID: PMC10128108 DOI: 10.1039/d3ra01931d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
c-Met tyrosine kinase plays a key role in the oncogenic process. Inhibition of the c-Met has emerged as an attractive target for human cancer treatment. This work deals with the design and synthesis of a new set of derivatives bearing pyrazolo[3,4-b]pyridine, pyrazolo[3,4-b]thieno[3,2-e]pyridine, and pyrazolo[3,4-d]thiazole-5-thione scaffolds, 5a,b, 8a-f, and 10a,b, respectively, utilizing 3-methyl-1-tosyl-1H-pyrazol-5(4H)-one (1) as a key starting material. All the new compounds were evaluated as antiproliferative agents against HepG-2, MCF-7, and HCT-116 human cancer cell lines utilizing 5-fluorouracil and erlotinib as two standard drugs. Compounds 5a,b and 10a,b represented the most promising cytotoxic activity of IC50 values ranging from 3.42 ± 1.31 to 17.16 ± 0.37 μM. Both 5a and 5b showed the most cytotoxicity and selectivity toward HepG-2, with IC50 values of 3.42 ± 1.31 μM and 3.56 ± 1.5 μM, respectively. The enzyme assay demonstrated that 5a and 5b had inhibition potency on c-Met with IC50 values in nanomolar range of 4.27 ± 0.31 and 7.95 ± 0.17 nM, respectively in comparison with the reference drug cabozantinib (IC50; 5.38 ± 0.35 nM). The impact of 5a on the cell cycle and apoptosis induction potential in HepG-2 and on the apoptotic parameters; Bax, Bcl-2, p53, and caspase-3 was also investigated. Finally, the molecular docking simulation of the most promising derivatives 5a and 5b was screened against c-Met to investigate the binding patterns of both compounds in the active site of the c-Met enzyme. In silico ADME studies were also performed for 5a and 5b to predict their physicochemical and pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Zahra M Alamshany
- Department of Chemistry, Faculty of Science, King Abdulaziz University P.O. Box 42805 Jeddah 21551 Saudi Arabia
| | - Eman M Algamdi
- Department of Chemistry, Faculty of Science, King Abdulaziz University P.O. Box 42805 Jeddah 21551 Saudi Arabia
| | - Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre Dokki Cairo 12622 Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology Cairo 11516 Egypt
| |
Collapse
|
6
|
Pradhan V, Salahuddin, Kumar R, Mazumder A, Abdullah MM, Shahar Yar M, Ahsan MJ, Ullah Z. Molecular Target Interactions of Quinoline Derivatives as Anticancer Agents: A Review. Chem Biol Drug Des 2022; 101:977-997. [PMID: 36533867 DOI: 10.1111/cbdd.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
One of the leading causes of death worldwide is cancer, which poses substantial risks to both society and an individual's life. Cancer therapy is still challenging, despite developments in the field and continued research into cancer prevention. The search for novel anticancer active agents with a broader cytotoxicity range is therefore continuously ongoing. The benzene ring gets fused to a pyridine ring at two carbon atoms close to one another to form the double ring structure of the heterocyclic aromatic nitrogen molecule known as quinoline (1-azanaphthalene). Quinoline derivatives contain a wide range of pharmacological activities, including antitubercular, antifungal, antibacterial, and antimalarial properties. Quinoline derivatives have also been shown to have anticancer properties. There are many quinoline derivatives widely available as anticancer drugs that act via a variety of mechanisms on various molecular targets, such as inhibition of topoisomerase, inhibition of tyrosine kinases, inhibition of heat shock protein 90 (Hsp90), inhibition of histone deacetylases (HDACs), inhibition of cell cycle arrest and apoptosis, and inhibition of tubulin polymerization.
Collapse
Affiliation(s)
- Vikas Pradhan
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | | | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, India
| | - Zabih Ullah
- Department of Pharmaceutical Sciences, College of Dentistry and Pharmacy, Buraydah Colleges, Al-Qassim, Saudi Arabia
| |
Collapse
|
7
|
Tinkov OV, Grigorev VY, Grigoreva LD, Osipov VN. HDAC1 PREDICTOR: a simple and transparent application for virtual screening of histone deacetylase 1 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:915-931. [PMID: 36548122 DOI: 10.1080/1062936x.2022.2147996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Histone deacetylases play an important role in regulating gene expression by modifying histones and changing chromatin conformation. HDAC dysregulation is involved in many diseases, such as cancer, autoimmune and neurodegenerative diseases. Histone deacetylase 1 (HDAC1) inhibitors represent an important class of drugs. Quantitative Structure-Activity Relationship (QSAR) classification models were developed using 2D RDKit molecular descriptors; ECPF4 (Extended Connectivity Fingerprint) circular fingerprints; and the Random Forest, Gradient Boosting, and Support Vector Machine methods. The developed models were integrated into the HDAC1 PREDICTOR application, which is freely available at the link https://ovttiras-hdac1-inhibitors-hdac1-predictor-app-z3mrbr.streamlitapp.com. The HDAC1 PREDICTOR web application allows one to reveal the compounds for which the predicted activity to inhibit HDAC1 is higher than that of the reference Vorinostat compound (IC50 = 11.08 nM). The algorithm implemented in HDAC1 PREDICTOR for determining the contributions of molecular fragments to the inhibitory activity can be used to find the molecule segments that increase or decrease the activity, enabling the researcher to conduct a rational molecular design of new highly active HDAC1 inhibitors. The developed QSAR models and the code for their construction in the Python programming language are freely available on the GitHub platform at https://github.com/ovttiras/HDAC1-inhibitors.
Collapse
Affiliation(s)
- O V Tinkov
- Department of Pharmacology and Pharmaceutical Chemistry, Medical Faculty, Shevchenko Transnistria State University, Tiraspol, Moldova
| | - V Y Grigorev
- Department of Computer-aided Molecular Design, Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), Chernogolovka, Russia
| | - L D Grigoreva
- Department of Fundamental Physicochemical Engineering, Moscow State University, Moscow, Russia
| | - V N Osipov
- Department of Chemical Synthesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
8
|
Jakubkiene V, Valiulis GE, Schweipert M, Zubriene A, Matulis D, Meyer-Almes FJ, Tumkevicius S. Synthesis and HDAC inhibitory activity of pyrimidine-based hydroxamic acids. Beilstein J Org Chem 2022; 18:837-844. [PMID: 35923158 PMCID: PMC9296983 DOI: 10.3762/bjoc.18.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Histone deacetylases (HDACs) play an essential role in the transcriptional regulation of cells through the deacetylation of nuclear histone and non-histone proteins and are promising therapeutic targets for the treatment of various diseases. Here, the synthesis of new compounds in which a hydroxamic acid residue is attached to differently substituted pyrimidine rings via a methylene group bridge of varying length as potential HDAC inhibitors is described. The target compounds were obtained by alkylation of 2-(alkylthio)pyrimidin-4(3H)-ones with ethyl 2-bromoethanoate, ethyl 4-bromobutanoate, or methyl 6-bromohexanoate followed by aminolysis of the obtained esters with hydroxylamine. Oxidation of the 2-methylthio group to the methylsulfonyl group and following treatment with amines resulted in the formation of the corresponding 2-amino-substituted derivatives, the ester group of which reacted with hydroxylamine to give the corresponding hydroxamic acids. The synthesized hydroxamic acids were tested as inhibitors of the HDAC4 and HDAC8 isoforms. Among the synthesized pyrimidine-based hydroxamic acids N-hydroxy-6-[6-methyl-2-(methylthio)-5-propylpyrimidin-4-yloxy]hexanamide was found to be the most potent inhibitor of both the HDAC4 and HDAC8 isoforms, with an IC50 of 16.6 µM and 1.2 µM, respectively.
Collapse
Affiliation(s)
- Virginija Jakubkiene
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Gabrielius Ernis Valiulis
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Stephanstr. 7, 64295 Darmstadt, Germany
| | - Asta Zubriene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257 Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257 Vilnius, Lithuania
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Stephanstr. 7, 64295 Darmstadt, Germany
| | - Sigitas Tumkevicius
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| |
Collapse
|
9
|
Mohammed HHH, Abd El-Hafeez AA, Ebeid K, Mekkawy AI, Abourehab MAS, Wafa EI, Alhaj-Suliman SO, Salem AK, Ghosh P, Abuo-Rahma GEDA, Hayallah AM, Abbas SH. New 1,2,3-triazole linked ciprofloxacin-chalcones induce DNA damage by inhibiting human topoisomerase I& II and tubulin polymerization. J Enzyme Inhib Med Chem 2022; 37:1346-1363. [PMID: 35548854 PMCID: PMC9116245 DOI: 10.1080/14756366.2022.2072308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A series of novel 1,2,3-triazole-linked ciprofloxacin-chalcones 4a-j were synthesised as potential anticancer agents. Hybrids 4a-j exhibited remarkable anti-proliferative activity against colon cancer cells. Compounds 4a-j displayed IC50s ranged from 2.53-8.67 µM, 8.67-62.47 µM, and 4.19-24.37 µM for HCT116, HT29, and Caco-2 cells; respectively, whereas the doxorubicin, showed IC50 values of 1.22, 0.88, and 4.15 µM. Compounds 4a, 4b, 4e, 4i, and 4j were the most potent against HCT116 with IC50 values of 3.57, 4.81, 4.32, 4.87, and 2.53 µM, respectively, compared to doxorubicin (IC50 = 1.22 µM). Also, hybrids 4a, 4b, 4e, 4i, and 4j exhibited remarkable inhibitory activities against topoisomerase I, II, and tubulin polymerisation. They increased the protein expression level of γH2AX, indicating DNA damage, and arrested HCT116 in G2/M phase, possibly through the ATR/CHK1/Cdc25C pathway. Thus, the novel ciprofloxacin hybrids could be exploited as potential leads for further investigation as novel anticancer medicines to fight colorectal carcinoma.
Collapse
Affiliation(s)
- Hamada H H Mohammed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Cancer Biology Department, Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Kareem Ebeid
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia City, Minia, Egypt
| | - Aml I Mekkawy
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA.,Veterans Affairs Medical Center, La Jolla, CA, USA
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Alaa M Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
10
|
New kinase and HDAC hybrid inhibitors: recent advances and perspectives. Future Med Chem 2022; 14:745-766. [PMID: 35543381 DOI: 10.4155/fmc-2021-0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer is the second most common cause of death worldwide. It can easily acquire resistance to treatments, demanding new therapeutic strategies, such as simultaneous inhibition of kinase and HDAC enzymes with hybrid inhibitors. Different approaches to this have varied according to their targets, with a few common trends, such as the usage of heterocycle scaffolds for kinase interaction, especially pyrimidine and quinazolines, and hydroxamic acids and benzamides for HDAC inhibition. Besides the hybrid compounds developed focusing on the inhibition tyrosine kinase and receptor tyrosine kinase, many advances have occurred in the development of serine-threonine kinase/HDAC and lipid kinase/HDAC novel compounds. Here, the latest strategies employed in this research area will be reviewed, alongside trends in inhibitor design, and observed gaps will be punctuated.
Collapse
|
11
|
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225:113768. [PMID: 34450497 DOI: 10.1016/j.ejmech.2021.113768] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy. Different kinase inhibitor agents which target EGFR, VEGFR, c-Met, CDK, PDK and other targets were merged into hybrids with conventional chemotherapeutics such as tubulin polymerization and topoisomerase inhibitors. Other hybrids were designed gathering kinase inhibitors with targeted cancer therapy such as HDAC, PARP, HSP 90 inhibitors. Nitric oxide donor molecules were also merged with kinase inhibitors for cancer therapy. The current review presents the hybrids designed in the past five years discussing their design principles, results and highlights their future perspectives.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, Minia, Egypt
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| |
Collapse
|
12
|
Cabozantinib Is Effective in Melanoma Brain Metastasis Cell Lines and Affects Key Signaling Pathways. Int J Mol Sci 2021; 22:ijms222212296. [PMID: 34830178 PMCID: PMC8621572 DOI: 10.3390/ijms222212296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Melanomas have a high potential to metastasize to the brain. Recent advances in targeted therapies and immunotherapies have changed the therapeutical landscape of extracranial melanomas. However, few patients with melanoma brain metastasis (MBM) respond effectively to these treatments and new therapeutic strategies are needed. Cabozantinib is a receptor tyrosine kinase (RTK) inhibitor, already approved for the treatment of non-skin-related cancers. The drug targets several of the proteins that are known to be dysregulated in melanomas. The anti-tumor activity of cabozantinib was investigated using three human MBM cell lines. Cabozantinib treatment decreased the viability of all cell lines both when grown in monolayer cultures and as tumor spheroids. The in vitro cell migration was also inhibited and apoptosis was induced by cabozantinib. The phosphorylated RTKs p-PDGF-Rα, p-IGF-1R, p-MERTK and p-DDR1 were found to be downregulated in the p-RTK array of the MBM cells after cabozantinib treatment. Western blot validated these results and showed that cabozantinib treatment inhibited p-Akt and p-MEK 1/2. Further investigations are warranted to elucidate the therapeutic potential of cabozantinib for patients with MBM.
Collapse
|