1
|
Abbasi Shiran J, Kaboudin B, Panahi N, Razzaghi-Asl N. Privileged small molecules against neglected tropical diseases: A perspective from structure activity relationships. Eur J Med Chem 2024; 271:116396. [PMID: 38643671 DOI: 10.1016/j.ejmech.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
Neglected tropical diseases (NTDs) comprise diverse infections with more incidence in tropical/sub-tropical areas. In spite of preventive and therapeutic achievements, NTDs are yet serious threats to the public health. Epidemiological reports of world health organization (WHO) indicate that more than 1.5 billion people are afflicted with at least one NTD type. Among NTDs, leishmaniasis, chagas disease (CD) and human African trypanosomiasis (HAT) result in substantial morbidity and death, particularly within impoverished countries. The statistical facts call for robust efforts to manage the NTDs. Currently, most of the anti-NTD drugs are engaged with drug resistance, lack of efficient vaccines, limited spectrum of pharmacological effect and adverse reactions. To circumvent the issue, numerous scientific efforts have been directed to the synthesis and pharmacological development of chemical compounds as anti-infectious agents. A survey of the anti-NTD agents reveals that the majority of them possess privileged nitrogen, sulfur and oxygen-based heterocyclic structures. In this review, recent achievements in anti-infective small molecules against parasitic NTDs are described, particularly from the SAR (Structure activity relationship) perspective. We also explore current advocating strategies to extend the scope of anti-NTD agents.
Collapse
Affiliation(s)
- J Abbasi Shiran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, PO Code: 5618953141, Iran
| | - B Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - N Panahi
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - N Razzaghi-Asl
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, PO Code: 5618953141, Iran; Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Pal R, Teli G, Akhtar MJ, Matada GSP. Synthetic product-based approach toward potential antileishmanial drug development. Eur J Med Chem 2024; 263:115927. [PMID: 37976706 DOI: 10.1016/j.ejmech.2023.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Leishmaniasis is a parasitic disease and is categorized as a tropically neglected disease (NTD) with no effective vaccines available. The available chemotherapeutics against leishmaniasis are associated with an increase in the incidence of toxicity and drug resistance. Consequently, targeting metabolic pathways and enzymes of parasites which differs from the mammalian host can be exploited to treat and overcome the resistance. The classical methods of identifying the structural fragments and the moieties responsible for the biological activities from the standard compounds and their modification are options for developing more effective novel compounds. Significant progress has been made in refining the development of potent non-toxic molecules and addressing the limitations of the current treatment available. Several examples of synthetic product-based approach utilizing their core heterocyclic rings including furan, pyrrole, thiazole, imidazole, pyrazole, triazole, quinazoline, quinoline, pyrimidine, coumarin, indole, acridine, oxadiazole, purine, chalcone, carboline, phenanthrene and metal containing derivatives and their structure-activity relationships are discussed in this review. It also analyses the groups/fragments interacting with the host cell receptors and will support the medicinal chemists with novel antileishmanial agents.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Ghanshyam Teli
- School of Pharmacy, Sangam University, Atoon, Bhilwara, 311001, Rajasthan, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PO 620, PC 130, Azaiba Bousher, Muscat, Sultanate of Oman
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| |
Collapse
|
3
|
Kryshchyshyn-Dylevych A, Kaminskyy D, Lesyk R. In-vitro antiviral screening of some thiopyranothiazoles. Chem Biol Interact 2023; 386:110738. [PMID: 37816448 DOI: 10.1016/j.cbi.2023.110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Thiopyranothiazoles represent a promising class of drug-like molecules with broad pharmacological profiles. Some novel derivatives of isothiochromeno[4a,4-d]thiazole and chromeno[4',3':4,5]thiopyrano[2,3-d]thiazole were synthesized and screened against diverse viruses: coronavirus SARS, Influenza Viruses of type A and type B, Adeno- and Rhinovirus, Dengue Fever Virus, Respiratory Syncytial Virus, Rift Valley Fever Virus, Tacaribe Virus, Venezuelan Equine Encephalitis Virus, as well as Vaccinia and Human Cytomegalovirus. The antiviral activity assays revealed highly active isothiochromeno[4a,4-d]thiazole bearing phenazone fragment towards Influenza Virus type A (H1N1) with the selectivity index (SI) within 150. 5,8-Dihydro-2H-[1,3]thiazolo [5',4':5,6]thiopyrano [2,3-d][1,3]thiazol-2,6(3H)-diones showed moderate antiviral activity against influenza viruses and SARS-CoV. The obtained data indicate thiopyranothiazoles as promising class of fused 4-thiazolidinone derivatives possessing antiviral effects.
Collapse
Affiliation(s)
- Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine.
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| |
Collapse
|
4
|
Tuszewska H, Szczepański J, Mandziuk S, Trotsko N. Thiazolidin-4-one-based derivatives - Efficient tools for designing antiprotozoal agents. A review of the last decade. Bioorg Chem 2023; 133:106398. [PMID: 36739686 DOI: 10.1016/j.bioorg.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/25/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Thiazolidin-4-one derivatives have a wide range of therapeutic implementations and clinical significance for medicinal chemistry. This heterocyclic ring has been reported to possess a variety of biological activities, including antiprotozoal activities that have inspired scientists to integrate this scaffold with different pharmacophoric fragments to design novel and effective antiprotozoal compounds. There are reviews describing thiazolidin-4-ones small molecules as good candidates with a single type of antiprotozoal activity, but none of these show collected news associated with the antiprotozoal activity of thiazolidin-4-ones and their SAR analysis from the last decade. In this review we are focusing on the antitoxoplasmic, anti-trypanosomal, antimalarial, antileishmanial, and antiamoebic activity of these derivatives, we attempt to summarize and analyze the recent developments with regard to the antiprotozoal potential of 4-TZD covering the structure-activity relationship and main molecular targets. The importance of various structural modifications at C2, N3, and C5 of the thiazolidine-4-one core has also been discussed in this review. We hope that all information concluded in this review can be useful for other researchers in constructing new effective antiprotozoal agents.
Collapse
Affiliation(s)
- Helena Tuszewska
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland
| | - Jacek Szczepański
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland
| | - Sławomir Mandziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8, Jaczewski Str., 20-090 Lublin, Poland
| | - Nazar Trotsko
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland.
| |
Collapse
|
5
|
Nandurkar Y, Shinde A, Bhoye MR, Jagadale S, Mhaske PC. Synthesis and Biological Screening of New 2-(5-Aryl-1-phenyl-1 H-pyrazol-3-yl)-4-aryl Thiazole Derivatives as Potential Antimicrobial Agents. ACS OMEGA 2023; 8:8743-8754. [PMID: 36910954 PMCID: PMC9996765 DOI: 10.1021/acsomega.2c08137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
A new series of 2-(5-aryl-1-phenyl-1H-pyrazol-3-yl)-4-aryl thiazoles (10a-ab) have been synthesized by a cyclocondensation reaction of 5-aryl-1-phenyl-1H-pyrazole-3-carbothioamide (7a-d) with substituted phenacyl bromide (8a-f). The structure of newly synthesized 2-(5-aryl-1-phenyl-1H-pyrazol-3-yl)-4-aryl thiazole (10a-ab) derivatives was characterized by spectroscopic analysis. The compounds 10a-ab were evaluated for in vitro antibacterial activity against Escherichia coli (NCIM 2574), Proteus mirabilis (NCIM 2388), Bacillus subtilis (NCIM 2063), Staphylococcus aureus (NCIM 2178), and in vitro antifungal activity against Aspergillus niger (ATCC 504) and Candida albicans (NCIM 3100). Among the twenty-eight pyrazolyl-thiazole derivatives, six compounds, 10g, 10h, 10i, 10j, 10o, and 10t, showed good activity against P. mirabilis; four compounds 10q, 10u, 10y, and 10z showed good activity against S. aureus; and twenty-four derivatives showed good antifungal activity against A. niger. Compounds 10g, 10q, 10r, 10s, and 10ab showed comparable activity with respect to the reference drug Ravuconazole. Thus, the significant antimicrobial activity of 2-(5-aryl-1-phenyl-1H-pyrazol-3-yl)-4-aryl thiazole (10a-ab) derivatives prompted that these scaffolds could assist in the development of lead compounds to treat microbial infections.
Collapse
Affiliation(s)
- Yogesh Nandurkar
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College, Tilak Road, Pune 411030, India
- Department
of Chemistry, Nowrosjee Wadia College, Pune 411001, India
| | - Abhijit Shinde
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College, Tilak Road, Pune 411030, India
| | - Manish R. Bhoye
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College, Tilak Road, Pune 411030, India
- Department
of Chemistry, S.N. Arts, D.J.M. Commerce
and B.N.S. Science College, Sangamner 422605, District Ahmednagar, India
| | - Shivaji Jagadale
- Department
of Chemistry, S.K. Gandhi Arts, Amolak Science
and P.H. Gandhi Commerce College Kada, Tal. Ashti 414202, District Beed, India
| | - Pravin Chimaji Mhaske
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College, Tilak Road, Pune 411030, India
| |
Collapse
|
6
|
Pawar S, Kumawat MK, Kundu M, Kumar K. Synthetic and medicinal perspective of antileishmanial agents: An overview. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.133977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Schadich E, Nylén S, Gurská S, Kotulová J, Andronati S, Pavlovsky V, Soboleva S, Polishchuk P, Hajdúch M, Džubák P. Activity of 1-aryl-4-(naphthalimidoalkyl) piperazine derivatives against Leishmania major and Leishmania mexicana. Parasitol Int 2022; 91:102647. [PMID: 35985636 DOI: 10.1016/j.parint.2022.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
A series of 1-aryl-4-(phthalimidoalkyl) piperazines and 1-aryl-4-(naphthalimidoalkyl) piperazines were retrieved from a proprietary library based on their high structural similarity to haloperidol, an antipsychotic with antiparasitic activity, and assessed as potential antileishmanial scaffolds. Selected compounds were tested for antileishmanial activity against promastigotes of Leishmania major and Leishmania mexicana in dose-response assays. Two of the 1-aryl-4-(naphthalimidoalkyl) piperazines (compounds 10 and 11) were active against promastigotes of both Leishmania species without being toxic to human fibroblasts. Their activity was found to correlate with the length of their alkyl chains. Further analyses showed that compound 11 was also active against intracellular amastigotes of both Leishmania species. In promastigotes of both Leishmania species, compound 11 induced collapse of the mitochondrial electrochemical potential and increased the intracellular Ca2+ concentration. Therefore, it may serve as a promising lead compound for the development of novel antiparasitic drugs.
Collapse
Affiliation(s)
- Ermin Schadich
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and University Hospital, Palacky University Olomouc, Czech Republic
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and University Hospital, Palacky University Olomouc, Czech Republic
| | - Jana Kotulová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and University Hospital, Palacky University Olomouc, Czech Republic
| | - Sergey Andronati
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine, Odessa, Ukraine
| | - Victor Pavlovsky
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine, Odessa, Ukraine
| | | | - Pavel Polishchuk
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and University Hospital, Palacky University Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and University Hospital, Palacky University Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and University Hospital, Palacky University Olomouc, Czech Republic.
| |
Collapse
|
8
|
Ćavar Zeljković S, Schadich E, Džubák P, Hajdúch M, Tarkowski P. Antiviral Activity of Selected Lamiaceae Essential Oils and Their Monoterpenes Against SARS-Cov-2. Front Pharmacol 2022; 13:893634. [PMID: 35586050 PMCID: PMC9108200 DOI: 10.3389/fphar.2022.893634] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
This study presents the very first report on the in vitro antiviral activity of selected essential oils of Lamiaceae plant species and their monoterpenes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nineteen essential oils were obtained by hydrodistillation of dried plant material, and their monoterpene profiles were determined. In addition, the exact concentrations of each monoterpene that were found at a significant level were defined. Both essential oils and their monoterpene components were tested for cytotoxic and antiviral activity against SARS-CoV-2 in infected Vero 76 cells. The results showed that the essential oils of four Mentha species, i.e., M. aquatica L. cv. Veronica, M. pulegium L., M. microphylla K.Koch, and M. x villosa Huds., but also Micromeria thymifolia (Scop.) Fritsch and Ziziphora clinopodioides Lam., and five different monoterpenes, i.e., carvacrol, carvone, 1,8-cineol, menthofuran, and pulegone, inhibited the SARS-CoV-2 replication in the infected cells. However, the antiviral activity varied both among essential oils and monoterpenes. Carvone and carvacrol exhibited moderate antiviral activity with IC50 concentrations of 80.23 ± 6.07 μM and 86.55 ± 12.73 μM, respectively, while the other monoterpenes were less active (IC50 > 100.00 μM). Structure-activity relations of related monoterpenes showed that the presence of keto and hydroxyl groups is associated with the activity of carvone and carvacrol, respectively. Furthermore, the carvone-rich essential oil of M. x villosa had the greatest activity among all active essential oils (IC50 127.00 ± 4.63 ppm) while the other active oils exhibited mild (140 ppm < IC50 < 200 ppm) to weak antiviral activity (IC50 > 200 ppm). Both essential oils and monoterpenes showed limited or no cytotoxicity against Vero 76 cells. Hierarchical cluster analysis showed that the differences in the antiviral activity of essential oils were directly attributed to the antiviral efficacies of their particular single monoterpenes. The findings presented here on the novel antiviral property of plant essential oils and monoterpenes might be used in the development of different measures against SARS-CoV-2.
Collapse
Affiliation(s)
- Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czechia
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
- *Correspondence: Sanja Ćavar Zeljković, ,
| | - Ermin Schadich
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Petr Tarkowski
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czechia
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| |
Collapse
|
9
|
Recent Progress in the Development of Indole-Based Compounds Active against Malaria, Trypanosomiasis and Leishmaniasis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010319. [PMID: 35011552 PMCID: PMC8746838 DOI: 10.3390/molecules27010319] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 01/06/2023]
Abstract
Human protozoan diseases represent a serious health problem worldwide, affecting mainly people in social and economic vulnerability. These diseases have attracted little investment in drug discovery, which is reflected in the limited available therapeutic arsenal. Authorized drugs present problems such as low efficacy in some stages of the disease or toxicity, which result in undesirable side effects and treatment abandonment. Moreover, the emergence of drug-resistant parasite strains makes necessary an even greater effort to develop safe and effective antiparasitic agents. Among the chemotypes investigated for parasitic diseases, the indole nucleus has emerged as a privileged molecular scaffold for the generation of new drug candidates. In this review, the authors provide an overview of the indole-based compounds developed against important parasitic diseases, namely malaria, trypanosomiasis and leishmaniasis, by focusing on the design, optimization and synthesis of the most relevant synthetic indole scaffolds recently reported.
Collapse
|
10
|
Honglin D, Xiaojie S, Lingling C, Hao W, Chao G, Zhengjie W, Limin L, Jiajie M, Fuqiang Y, Hongmin L, Yu K, Qiurong Z. Synthesis and Antitumor Activity Evaluation of 2,4,6-Trisubstituted Quinazoline Derivatives Containing Thiazole Structure. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Mech D, Kurowska A, Trotsko N. The Bioactivity of Thiazolidin-4-Ones: A Short Review of the Most Recent Studies. Int J Mol Sci 2021; 22:11533. [PMID: 34768964 PMCID: PMC8584074 DOI: 10.3390/ijms222111533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Thiazolidin-4-ones is an important heterocyclic ring system of a pharmacophore and a privileged scaffold in medicinal chemistry. This review is focused on the latest scientific reports regarding biological activities of thiazolidin-4-ones published in 2020 and 2021. The review covers recent information about antioxidant, anticancer, anti-inflammatory, analgesic, anticonvulsant, antidiabetic, antiparasitic, antimicrobial, antitubercular and antiviral properties of thiazolidin-4-ones. Additionally, the influence of different substituents in molecules on their biological activity was discussed in this paper. Thus, this study may help to optimize the structure of thiazolidin-4-one derivatives as more efficient drug agents. Presented information may be used as a practical hint for rational design of new small molecules with biological activity, especially among thiazolidin-4-ones.
Collapse
Affiliation(s)
| | | | - Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (D.M.); (A.K.)
| |
Collapse
|
12
|
Synthesis and X-ray crystal structure of unexpected novel thiazolidinone/1,3,4-thiadiazole heterocycle via S-alkylation and Smiles rearrangement dual approaches. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Petrou A, Fesatidou M, Geronikaki A. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021; 26:3166. [PMID: 34070661 PMCID: PMC8198555 DOI: 10.3390/molecules26113166] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. OBJECTIVE To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. RESULTS Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.
Collapse
Affiliation(s)
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (M.F.)
| |
Collapse
|
14
|
Evaluation of Anticonvulsant Activity of Dual COX-2/5-LOX Inhibitor Darbufelon and Its Novel Analogues. Sci Pharm 2021. [DOI: 10.3390/scipharm89020022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neuroinflammation is an integral part of epilepsy pathogenesis and other convulsive conditions, and non-steroidal anti-inflammatory drugs (NSAIDs) present a potent tool for the contemporary search and design of novel anticonvulsants. In the present paper, evaluation of the anticonvulsant activity of the potential NSAID dual COX-2/5-LOX inhibitor darbufelone methanesulfonate using an scPTZ model in mice in dose 100 mg/kg is reported. Darbufelone possesses anticonvulsant properties in the scPTZ model and presents interest for in-depth studies as a possible anticonvulsant multi-target agent with anti-inflammatory activity. The series of 4-thiazolidinone derivatives have been synthesized following the analogue-based drug design and hybrid-pharmacophore approach using a darbufelone matrix. The synthesized derivatives showed a significant protection level for animals in the scPTZ model and are promising compounds for the design of potential anticonvulsants with satisfactory drug-like parameters.
Collapse
|
15
|
Holota S, Komykhov S, Sysak S, Gzella A, Cherkas A, Lesyk R. Synthesis, Characterization and In Vitro Evaluation of Novel 5-Ene-thiazolo[3,2- b][1,2,4]triazole-6(5 H)-ones as Possible Anticancer Agents. Molecules 2021; 26:1162. [PMID: 33671733 PMCID: PMC7926352 DOI: 10.3390/molecules26041162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022] Open
Abstract
The present paper is devoted to the search for drug-like molecules with anticancer properties using the thiazolo[3,2-b][1,2,4]triazole-6-one scaffold. A series of 24 novel thiazolo-[3,2-b][1,2,4]triazole-6-ones with 5-aryl(heteryl)idene- and 5-aminomethylidene-moieties has been synthesized employing three-component and three-stage synthetic protocols. A mixture of Z/E-isomers was obtained in solution for the synthesized 5-aminomethylidene-thiazolo[3,2-b]-[1,2,4]triazole-6-ones. The compounds have been studied for their antitumor activity in the NCI 60 lines screen. Some compounds present excellent anticancer properties at 10 μM. Derivatives 2h and 2i were the most active against cancer cell lines without causing toxicity to normal somatic (HEK293) cells. A preliminary SAR study had been performed for the synthesized compounds.
Collapse
Affiliation(s)
- Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine;
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, Volya Avenue 13, 43025 Lutsk, Ukraine
| | - Sergiy Komykhov
- State Scientific Institution “Institute for Single Crystals”, National Academy of Sciences of Ukraine, Nauky Ave 60, 61072 Kharkiv, Ukraine
- Applied Chemistry Department, Karazin Kharkiv National University, Svobody Sq. 4, 61022 Kharkiv, Ukraine
| | - Stepan Sysak
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine;
| | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Andriy Cherkas
- Department of Internal Medicine #1, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; or
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine;
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| |
Collapse
|