1
|
Omar MH, Emam SH, Mikhail DS, Elmeligie S. Combretastatin A-4 based compounds as potential anticancer agents: A review. Bioorg Chem 2024; 153:107930. [PMID: 39504638 DOI: 10.1016/j.bioorg.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
The current review discusses the importance of combretastatin A-4 (CA-4) as a lead compound of microtubule targeting agents. CA-4 holds a unique place among naturally occurring compounds having cytotoxic activity. In this review an overall picture of design strategies, structure-activity relationship, synthesis, cytotoxic activity, and binding interactions of promising CA-4 analogues, are discussed and arranged chronologically from 2016 to early 2023. Also, this review emphasizes their biological activity as anticancer agents, within an overview of clinical application limitation and suggested strategies to overcome. Dual targeting tubulin inhibitors showed highpotentialto surpass medication resistance and provide synergistic efficacy. Linking platinum (IV), amino acids, and HDAC targeting moieties to active tubulin inhibitorsproduced potent active compounds. Analogues of CA-4 bridged with azetidin-2-one, pyrazole, sulfide, or carrying selenium atom exhibited cytotoxic action against a variety of malignant cell lines through different pathways.
Collapse
Affiliation(s)
- Mai H Omar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Salwa Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
2
|
Massaro M, Ciani R, Grossi G, Cavallaro G, de Melo Barbosa R, Falesiedi M, Fortuna CG, Carbone A, Schenone S, Sánchez-Espejo R, Viseras C, Vago R, Riela S. Halloysite Nanotube-Based Delivery of Pyrazolo[3,4- d]pyrimidine Derivatives for Prostate and Bladder Cancer Treatment. Pharmaceutics 2024; 16:1428. [PMID: 39598551 PMCID: PMC11597611 DOI: 10.3390/pharmaceutics16111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The development of therapies targeting unregulated Src signaling through selective kinase inhibition using small-molecule inhibitors presents a significant challenge for the scientific community. Among these inhibitors, pyrazolo[3,4-d]pyrimidine heterocycles have emerged as potent agents; however, their clinical application is hindered by low solubility in water. To overcome this limitation, some carrier systems, such as halloysite nanotubes (HNTs), can be used. METHODS Herein, we report the development of HNT-based nanomaterials as carriers for pyrazolo[3,4-d]pyrimidine molecules. To achieve this objective, the clay was modified by two different approaches: supramolecular loading into the HNT lumen and covalent grafting onto the HNT external surface. The resulting nanomaterials were extensively characterized, and their morphology was imaged by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In addition, the kinetic release of the molecules supramolecularly loaded into the HNTs was also evaluated. QSAR studies were conducted to elucidate the physicochemical and pharmacokinetic properties of these inhibitors, and structure-based virtual screening (SBVS) was performed to analyze their binding poses in protein kinases implicated in cancer. RESULTS The characterization methods demonstrate successful encapsulation of the drugs and the release properties under physiological conditions. Furthermore, QSAR studies and SBVS provide valuable insights into the physicochemical, pharmacokinetic, and binding properties of these inhibitors, reinforcing their potential efficacy. CONCLUSIONS The cytotoxicity of these halloysite-based nanomaterials, and of pure molecules for comparison, was tested on RT112, UMUC3, and PC3 cancer cell lines, demonstrating their potential as effective agents for prostate and bladder cancer treatment.
Collapse
Affiliation(s)
- Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d’Orleans II, Ed. 17, 90128 Palermo, Italy; (M.M.); (R.C.)
| | - Rebecca Ciani
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d’Orleans II, Ed. 17, 90128 Palermo, Italy; (M.M.); (R.C.)
| | - Giancarlo Grossi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy; (G.G.); (M.F.); (A.C.); (S.S.)
| | - Gianfranco Cavallaro
- Dipartimento di Scienze Chimiche (DSC), Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Raquel de Melo Barbosa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Seville, C/Professor García González 2, 41012 Sevilla, Spain;
| | - Marta Falesiedi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy; (G.G.); (M.F.); (A.C.); (S.S.)
| | - Cosimo G. Fortuna
- Dipartimento di Scienze Chimiche (DSC), Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy; (G.G.); (M.F.); (A.C.); (S.S.)
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy; (G.G.); (M.F.); (A.C.); (S.S.)
| | - Rita Sánchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain; (R.S.-E.); (C.V.)
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain; (R.S.-E.); (C.V.)
- Andalusian Institute of Earth Sciences, CSIC-UGR, 18100 Armilla, Spain
| | - Riccardo Vago
- Istituto San Raffaele (IRCCS), Istituto di Ricerca Urologica, Divisione di Oncologia Sperimentale, 20132 Milano, Italy;
| | - Serena Riela
- Dipartimento di Scienze Chimiche (DSC), Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
3
|
Kandhasamy K, Surajambika RR, Velayudham PK. Pyrazolo - Pyrimidines as Targeted Anticancer Scaffolds - A Comprehensive Review. Med Chem 2024; 20:293-310. [PMID: 37885114 DOI: 10.2174/0115734064251256231018104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Globally, cancer is the leading cause of death, which causes 10 million deaths yearly. Clinically, several drugs are used in treatment but due to drug resistance and multidrug resistance, there occurs a failure in the cancer treatment. OBJECTIVES The present review article is a comprehensive review of pyrazole and pyrimidine hybrids as potential anticancer agents. METHODS The review comprises more than 60 research works done in this field. The efficiency of the reported pyrazolopyrimidine fused heterocyclic with their biological data and the influence of the structural aspects of the molecule have been discussed. RESULTS This review highlighted pyrazolo-pyrimidines as targeted anticancer agents with effect on multiple targets. CONCLUSION The review will be helpful for the researchers involved in targeted drugs for cancer therapy for designing new scaffolds with pyrazolo-pyrimidine moieties.
Collapse
Affiliation(s)
- Kesavamoorthy Kandhasamy
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Chennai- 600 097, India
| | | | - Pradeep Kumar Velayudham
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Chennai- 600 097, India
| |
Collapse
|
4
|
Peerzada MN, Dar MS, Verma S. Development of tubulin polymerization inhibitors as anticancer agents. Expert Opin Ther Pat 2023; 33:797-820. [PMID: 38054831 DOI: 10.1080/13543776.2023.2291390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Microtubules are intracellular, filamentous, polymeric structures that extend throughout the cytoplasm, composed of α-tubulin and β-tubulin subunits. They regulate many cellular functions including cell polarity, cell shape, mitosis, intracellular transport, cell signaling, gene expression, cell integrity, and are associated with tumorigenesis. Inhibition of tubulin polymerization within tumor cells represents a crucial focus in the pursuit of developing anticancer treatments. AREAS COVERED This review focuses on the natural product and their synthetic congeners as tubulin inhibitors along with their site of interaction on tubulin. This review also covers the developed novel tubulin inhibitors and important patents focusing on the development of tubulin inhibition for cancer treatment reported from 2018 to 2023. The scientific and patent literature has been searched on PubMed, Espacenet, ScienceDirect, and Patent Guru from 2018-2023. EXPERT OPINION Tubulin is one of the promising targets explored extensively for drug discovery. Compounds binding in the colchicine site could be given importance because they can elude resistance mediated by the P-glycoprotein efflux pump and no colchicine site binding inhibitor is approved by FDA so far. The research on the development of antibody drug conjugates (ADCs) for tubluin polymerization inhibition could be significant strategy for cancer treatment.
Collapse
Affiliation(s)
- Mudasir Nabi Peerzada
- Tumor Biology Department, Drug Discovery Laboratory, National Institute of Pathology, Indian Council of Medical Research, Safdarjung Hospital Campus, New Delhi, India
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammad Sultan Dar
- Department of Neurosurgery, Sub-District Hospital Sopore, Jammu and Kashmir, India
| | - Saurabh Verma
- Tumor Biology Department, Drug Discovery Laboratory, National Institute of Pathology, Indian Council of Medical Research, Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
5
|
Huo XS, Tang-Yang J, Zeng WB, Jian XE, Ma XX, Yue-Yang P, Wen-Wei Y, Zhao PL. Synthesis and biological evaluation of novel 5-substituted/unsubstituted triazolothiadiazines as tubulin depolymerizing and vascular disrupting agents with promising antitumor activity. Drug Dev Res 2023; 84:975-987. [PMID: 37089026 DOI: 10.1002/ddr.22066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 04/25/2023]
Abstract
A novel series of 5-substituted/unsubstituted [1,2,4]triazolo[3,4-b][1,3,4] thiadiazine compounds has been achieved successfully through chemoselective reduction of the C = N bond, based on our prior work. Initial biological evaluation illustrated that the most active derivative 7j exhibited significant cell growth inhibitory activity toward MCF-7, A549, HCT116, and A2780 with the IC50 values of 0.75, 0.94, 2.90, and 4.15 μM, respectively. Most importantly, all the representative analogs did not demonstrate obvious cytotoxic activity against the non-tumoural cell line HEK-293 (IC50 > 100 μM). The mechanism study revealed that 7j caused the G2 /M phase arrest, induced cell apoptosis in HeLa cells in a concentration-dependent manner, and also showed potent tubulin polymerization inhibitory effect. Meanwhile, 7j exerted significant antivascular activity in the wound-healing and tube formation assays. These observations indicate that 5-unsubstituted 6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine scaffold might be considered as a potential lead for antitubulin inhibitors to develop highly efficient anticancer agents with potent selectivity over normal human cells.
Collapse
Affiliation(s)
- Xian-Sen Huo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Ji Tang-Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Wen-Bin Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Xuan-Xuan Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Peng Yue-Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - You Wen-Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R.China
| |
Collapse
|
6
|
Zhao R, Hong Z, Wang B, Kempson J, Cornelius L, Li J, Li YX, Mathur A. Regioselective synthesis of N1-substituted-4-nitropyrazole-5-carboxylates via the cyclocondensation of ethyl 4-(dimethylamino)-3-nitro-2-oxobut-3-enoate with substituted hydrazines. Org Biomol Chem 2022; 20:9746-9752. [PMID: 36444969 DOI: 10.1039/d2ob02006h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple and expeditious method for the regioselective synthesis of N1-substituted-4-nitropyrazole-5-carboxylates was developed. The method involves cyclocondensation of ethyl 4-(dimethylamino)-3-nitro-2-oxobut-3-enoate with a series of monosubstituted hydrazines to give N1-substituted-4-nitropyrazole-5-carboxylates with excellent regioselectivity and good yields. Solvent effects on regioselectivity of the cyclocondensation were examined.
Collapse
Affiliation(s)
- Rulin Zhao
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543, USA.
| | - Zhenqiu Hong
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543, USA.
| | - Bei Wang
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543, USA.
| | - James Kempson
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543, USA.
| | - Lyndon Cornelius
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543, USA.
| | - Jianqing Li
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Yi-Xin Li
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early, 700 Bay Rd, Redwood City, CA 04063, USA
| | - Arvind Mathur
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ 08543, USA.
| |
Collapse
|
7
|
Jaragh-Alhadad L, Behbehani H, Karnik S. Cancer targeted drug delivery using active low-density lipoprotein nanoparticles encapsulated pyrimidines heterocyclic anticancer agents as microtubule inhibitors. Drug Deliv 2022; 29:2759-2772. [PMID: 36029014 PMCID: PMC9427048 DOI: 10.1080/10717544.2022.2117435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recently, nanomedicine had the potential to increase the delivery of active compounds to specific cell sites. Nano-LDL particles are recognized as an excellent active nano-platform for cancer-targeted delivery. Loading of therapeutic agents into nano-LDL particles achieved by surface loading, core loading, and apolipoprotein-B100 interaction. Therefore, loading nano-LDL particles’ core with pyrimidine heterocyclic anticancer agents will increase cancer cytotoxic activity targeting tubulin protein. First, by mimicking the native LDL particle's metabolic pathway, and second the agent’s chemical functional groups like the native amino acids cytosine and thymine structures will not be recognized as a foreign entity from the cell’s immune system. Nano-LDL particles will internalize through LDL-receptors endocytosis and transport the anticancer agent into the middle of the cancer cell, reducing its side effects on other healthy cells. Generally, the data revealed that pyrimidine heterocyclic anticancer agents’ size is at the nano level. Agents’ morphological examination showed nanofibers, thin sheets, clusters, and rod-like structures. LDL particles’ size became bigger after loading with pyrimidine heterocyclic anticancer agents and ranged between 121.6 and 1045 nm. Then, particles were tested for their cytotoxicity against breast (MDA468) and prostate (DU145) cancer cell lines as surrogate models with dose-response study 10, 5, 1 µM. The IC50 values of the agents against DU145 and MDA468 possessed cell growth inhibition even at the 1 µM concentration ranges of 3.88 ± 1.05 µM and 3.39 ± 0.97 µM, respectively. In sum, nano-LDL particles proved their efficiency as active drug delivery vehicles to target tubulin in cancer cells.
Collapse
Affiliation(s)
- Laila Jaragh-Alhadad
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait.,Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Haider Behbehani
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Sadashiva Karnik
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.,Cleveland Clinic Learner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
8
|
Recent Advances in Synthesis and Properties of Pyrazoles. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pyrazole-containing compounds represent one of the most influential families of N-heterocycles due to their proven applicability and versatility as synthetic intermediates in preparing relevant chemicals in biological, physical-chemical, material science, and industrial fields. Therefore, synthesizing structurally diverse pyrazole derivatives is highly desirable, and various researchers continue to focus on preparing this functional scaffold and finding new and improved applications; this review highlights some of the most recent and strategic examples regarding the synthesis and properties of different pyrazole derivatives, mainly reported from 2017–present. The discussion involves strategically functionalized rings (i.e., amines, carbaldehydes, halides, etc.) and their use in forming various fused systems, predominantly bicyclic cores with 5:6 fusion taking advantage of our experience in this field and the more recent investigations of our research group.
Collapse
|
9
|
Ultrasonic energy for construction of bioactive heterocycles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Shehab WS, Aziz MA, Elhoseni NKR, Assy MG, Abdellattif MH, Hamed EO. Design, Synthesis, Molecular Docking, and Evaluation Antioxidant and Antimicrobial Activities for Novel 3-Phenylimidazolidin-4-One and 2-Aminothiazol-4-One Derivatives. Molecules 2022; 27:767. [PMID: 35164032 PMCID: PMC8840376 DOI: 10.3390/molecules27030767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
On our way to discovering and developing compounds that have an antioxidant impact compared to ascorbic acid and other biological activities, we designed, synthesized, and evaluated a new series of heterocyclic moieties drugs (1-11) as antioxidants and antimicrobial agents. As starting moieties, these new candidates were derived from two promising heterocyclic compounds, imidazoldin-4-one and thiazol-4-one. Firstly, diphenylimidazol 1 was obtained because of the cyclo condensation one-pot ternary reaction of urea, aniline, and chloroacetic acid under thermal conditions. Out of this starting compound, we could design and create new vital rings such as purine and triazine as in compounds 5 and 6, respectively. Secondly, the start thiazole derivative 7 was obtained from the intermolecular cyclization of thiourea, chloroacetic acid, p-nitobezaldehyde in the presence of sodium acetate. We synthesized various derivatives from this second starting compound 7 by being subjected to different reagents such as aniline, phenylenediamine, phenylhydrazine, and barbituric acid to yield 8, 9, 10, and 11, respectively. Using ascorbic acid as the standard compound, the pharmacological testing for antioxidant activity assessment of the produced derivatives was evaluated against ABTS (2,20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid). Candidate 6 exhibited the best activity as an antioxidant agent compared to ascorbic acid as a reference compound. Moreover, all compounds were evaluated as antimicrobial agents against a series of bacteria and fungi. Among all synthesized compounds, compound 6 achieved high efficiency against two types of fungi and four kinds of bacteria, as Clotrimazole and Ampicillin were used as the reference agents, respectively. All chemical structures of the novel synthesized candidates were unequivocally elucidated and confirmed utilizing spectroscopical and elemental investigations.
Collapse
Affiliation(s)
- Wesam S. Shehab
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.A.A.); (N.K.R.E.); (M.G.A.); (E.O.H.)
| | - Maged A. Aziz
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.A.A.); (N.K.R.E.); (M.G.A.); (E.O.H.)
| | - Nourhan Kh. R. Elhoseni
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.A.A.); (N.K.R.E.); (M.G.A.); (E.O.H.)
| | - Mohamed G. Assy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.A.A.); (N.K.R.E.); (M.G.A.); (E.O.H.)
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Eman O. Hamed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.A.A.); (N.K.R.E.); (M.G.A.); (E.O.H.)
| |
Collapse
|
11
|
Islam F, Doshi A, Robles AJ, Quadery TM, Zhang X, Zhou X, Hamel E, Mooberry SL, Gangjee A. Design, Synthesis, and Biological Evaluation of 5,6,7,8-Tetrahydrobenzo[4,5]thieno[2,3- d]pyrimidines as Microtubule Targeting Agents. Molecules 2022; 27:321. [PMID: 35011550 PMCID: PMC8747035 DOI: 10.3390/molecules27010321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
A series of eleven 4-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines were designed and synthesized and their biological activities were evaluated. Synthesis involved the Gewald reaction to synthesize ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate ring, and SNAr reactions. Compound 4 was 1.6- and ~7-fold more potent than the lead compound 1 in cell proliferation and microtubule depolymerization assays, respectively. Compounds 4, 5 and 7 showed the most potent antiproliferative effects (IC50 values < 40 nM), while compounds 6, 8, 10, 12 and 13 had lower antiproliferative potencies (IC50 values of 53-125 nM). Additionally, compounds 4-8, 10 and 12-13 circumvented Pgp and βIII-tubulin mediated drug resistance, mechanisms that diminish the clinical efficacy of paclitaxel (PTX). In the NCI-60 cell line panel, compound 4 exhibited an average GI50 of ~10 nM in the 40 most sensitive cell lines. Compound 4 demonstrated statistically significant antitumor effects in a murine MDA-MB-435 xenograft model.
Collapse
Affiliation(s)
- Farhana Islam
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA; (F.I.); (A.D.); (T.M.Q.); (X.Z.); (X.Z.)
| | - Arpit Doshi
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA; (F.I.); (A.D.); (T.M.Q.); (X.Z.); (X.Z.)
| | - Andrew J. Robles
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA;
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Tasdique M. Quadery
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA; (F.I.); (A.D.); (T.M.Q.); (X.Z.); (X.Z.)
| | - Xin Zhang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA; (F.I.); (A.D.); (T.M.Q.); (X.Z.); (X.Z.)
| | - Xilin Zhou
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA; (F.I.); (A.D.); (T.M.Q.); (X.Z.); (X.Z.)
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Susan L. Mooberry
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA;
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA; (F.I.); (A.D.); (T.M.Q.); (X.Z.); (X.Z.)
| |
Collapse
|
12
|
Li Q, Chen L, Jian XE, Lv DX, You WW, Zhao PL. Design, synthesis and antiproliferative activity of novel 2,4-diamino-5-methyleneaminopyrimidine derivatives as potential anticancer agents. Bioorg Med Chem Lett 2021; 47:128213. [PMID: 34157389 DOI: 10.1016/j.bmcl.2021.128213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/07/2023]
Abstract
In order to discover new anticancer agents, 25 novel 2,4-diamino-5-methyleneaminopyrimidine derivatives were designed and synthesized based on our previous work via a ring-opening strategy. Among them, compared with 5-FU, compound 7i exhibited 4.9-, 2.9-, 2.1-, and 3.0-fold improvement in inhibiting HCT116, HT-29, MCF-7, and HeLa cells proliferation with IC50 values of 4.93, 5.57, 8.84, and 14.16 μM, respectively. Moreover, further mechanistic studies indicated that compound 7i could concentration-dependently induce cell cycle arrest and apoptosis in HCT116 cells. These findings revealed that 2,4-diamino-5-methyleneaminopyrimidine scaffold has potential for further investigation to explore novel anticancer agents.
Collapse
Affiliation(s)
- Qiu Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Dong-Xin Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|