1
|
Zhang Q, Wu YX, Yu XQ, Zhang BY, Ma LY. EZH2 serves as a promising therapeutic target for fibrosis. Bioorg Chem 2023; 137:106578. [PMID: 37156135 DOI: 10.1016/j.bioorg.2023.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Fibrosis affects the function of many organs and tissues, and its persistent development can lead to tissue sclerosis and cancer, even leading to death further. Recent studies suggested that enhancer of zeste homolog 2 (EZH2), a major regulator of epigenetic repression, played an important role in the occurrence and development of fibrosis through gene silencing or transcriptional activation. As the most studied and powerful pro-fibrotic cytokine closely related to EZH2, TGF-β1 was primarily involved in the regulation of fibrosis along with the typical Smads and non-Smads signaling pathways. In addition, EZH2 inhibitors demonstrated inhibitory effects in several types of fibrosis. This review summarized the relationship underlying the action of EZH2, TGF-β1/Smads, and TGF-β1/non-Smads with fibrosis and described the research progress of EZH2 inhibitors in the treatment of fibrosis.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ya-Xi Wu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xiao-Qian Yu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Bao-Yin Zhang
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, PR China; China Meheco Topfond Pharmaceutical Co., Key Laboratory of Cardio-cerebrovascular Drug, Zhumadian 463000, PR China.
| |
Collapse
|
2
|
Liu C, Chen Q, Schneller SW. 2- and 3-Fluoro-3-deaza-1',6'-isoneplanocin: Synthesis and antiviral properties (including Ebola and Marburg). Bioorg Med Chem Lett 2023; 85:129219. [PMID: 36898483 DOI: 10.1016/j.bmcl.2023.129219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/18/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
To extend the antiviral properties of 2- and 3-fluoro-3-deazaneplanocins into the evolving 3-deaza-1',6'-isoneplanocin library, 2- (11) and 3-fluoro-1',6'-iso-3-deazaneplanocin A (12) have been explored. The requisite synthesis began with an Ullmann reaction by coupling of a protected cyclopentenyl iodide with either 2-fluoro- or 3-fluoro-3-deazaadenine. Target 12 displayed significant activity towards 5 viruses (μM): H1N1 (EC50 < 0.36, CC50 > 357, SI > 1000), hepatitis B virus (EC50 1.28, CC50 > 357, SI > 279), norovirus (EC50 0.64, CC50 > 357, SI > 558), Ebola (EC50 < 0.1, CC50 > 100, SI > 1000), and Marburg (EC50 < 0.1, CC50 > 100, SI > 1000). On the other hand, while 11 showed limited antiviral effects, its toxicity was significant, precluding any further usefulness.
Collapse
Affiliation(s)
- Chong Liu
- Molette Laboratory for Drug Discovery, Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Qi Chen
- Department of Chemistry, Slippery Rock University, Slippery Rock, PA 16057, USA
| | - Stewart W Schneller
- Molette Laboratory for Drug Discovery, Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
3
|
Choi SM, An YJ, Choi ER, Nam YE, Seo EW, Kang C, Ahn SB, Kim UI, Kim M, Kim K, Cho JH. Synthesis of 3-Deazaneplanocin A analogs and Their Antiviral Activity against RNA-Viruses. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Li W, Chen X, Zhou L. Photocatalytic Defluorinative Three-Component Reaction of α-Trifluoromethyl Alkenes, Alkenes, and Sodium Sulfinates: Synthesis of Monofluorocyclopentenes. Org Lett 2022; 24:5946-5950. [PMID: 35926080 DOI: 10.1021/acs.orglett.2c02202] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A photocatalytic three-component reaction of α-trifluoromethyl alkenes, electron-rich alkenes, and sodium sulfinates for the synthesis of gem-difluoroalkenes in a radical/polar crossover manner was developed. Due to the strong electron-withdrawing nature of the sulfonyl group, the resultant gem-difluoroalkenes can be converted into various monofluorocyclopentenes via intramolecular base-mediated SNV reactions in one pot.
Collapse
Affiliation(s)
- Weiyu Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaofei Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Kezin VA, Matyugina ES, Novikov MS, Chizhov AO, Snoeck R, Andrei G, Kochetkov SN, Khandazhinskaya AL. New Derivatives of 5-Substituted Uracils: Potential Agents with a Wide Spectrum of Biological Activity. Molecules 2022; 27:2866. [PMID: 35566215 PMCID: PMC9102953 DOI: 10.3390/molecules27092866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Pyrimidine nucleoside analogues are widely used to treat infections caused by the human immunodeficiency virus (HIV) and DNA viruses from the herpes family. It has been shown that 5-substituted uracil derivatives can inhibit HIV-1, herpes family viruses, mycobacteria and other pathogens through various mechanisms. Among the 5-substituted pyrimidine nucleosides, there are not only the classical nucleoside inhibitors of the herpes family viruses, 2'-deoxy-5-iodocytidine and 5-bromovinyl-2'-deoxyuridine, but also derivatives of 1-(benzyl)-5-(phenylamino)uracil, which proved to be non-nucleoside inhibitors of HIV-1 and EBV. It made this modification of nucleoside analogues very promising in connection with the emergence of new viruses and the crisis of drug resistance when the task of creating effective antiviral agents of new types that act on other targets or exhibit activity by other mechanisms is very urgent. In this paper, we present the design, synthesis and primary screening of the biological activity of new nucleoside analogues, namely, 5'-norcarbocyclic derivatives of substituted 5-arylamino- and 5-aryloxyuracils, against RNA viruses.
Collapse
Affiliation(s)
- Vasily A. Kezin
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia; (V.A.K.); (E.S.M.); (S.N.K.)
| | - Elena S. Matyugina
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia; (V.A.K.); (E.S.M.); (S.N.K.)
| | - Mikhail S. Novikov
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, 400131 Volgograd, Russia;
| | - Alexander O. Chizhov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninski pr. 47, 119991 Moscow, Russia
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium; (R.S.); (G.A.)
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium; (R.S.); (G.A.)
| | - Sergei N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia; (V.A.K.); (E.S.M.); (S.N.K.)
| | - Anastasia L. Khandazhinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia; (V.A.K.); (E.S.M.); (S.N.K.)
| |
Collapse
|
6
|
Oka N, Kanda M, Furuzawa M, Arai W, Ando K. Synthesis of Truncated Carbocyclic Nucleosides Using 5'-Deoxy-5'-Heteroarylsulfonylnucleosides. Curr Protoc 2022; 2:e398. [PMID: 35319170 DOI: 10.1002/cpz1.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This article describes the detailed protocol for the synthesis of "truncated" carbocyclic nucleosides with a cyclopentene core and without a 4'-hydroxymethyl group. The synthesis was performed using 5'-deoxy-5'-heteroarylsulfonylnucleosides, which were prepared by the 5'-O-mesylation of the appropriately protected nucleosides, followed by a nucleophilic substitution with heteroarylthiols and the oxidation of the resulting 5'-S-heteroaryl-5'-thionucleosides. The treatment of the 5'-deoxy-5'-heteroarylsulfonylnucleosides with 1,8-diazabicyclo[5.4.0]undec-7-ene affords the truncated carbocyclic nucleosides, presumably via a domino reaction involving the α-deprotonation of the heteroarylsulfone, elimination of the nucleobase, formation of an α,β-unsaturated sulfone, Michael addition of the nucleobase to the α,β-unsaturated sulfone, and an intramolecular Julia-Kocienski reaction. This protocol would be useful for the short-step synthesis of biologically active carbocyclic nucleosides. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of 5'-deoxy-5'-heteroarylsulfonylnucleosides Basic Protocol 2: Synthesis of truncated carbocyclic nucleosides.
Collapse
Affiliation(s)
- Natsuhisa Oka
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan.,Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Mayuka Kanda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Minami Furuzawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Wakaba Arai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Kaori Ando
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| |
Collapse
|
7
|
Pal S, Chandra G, Patel S, Singh S. Fluorinated Nucleosides: Synthesis, Modulation in Conformation and Therapeutic Application. CHEM REC 2022; 22:e202100335. [PMID: 35253973 DOI: 10.1002/tcr.202100335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/22/2022] [Indexed: 12/17/2022]
Abstract
Over the last twenty years, fluorination on nucleoside has established itself as the most promising tool to use to get biologically active compounds that could sustain the clinical trial by affecting the pharmacodynamics and pharmacokinetic properties. Due to fluorine's inherent unique properties and its judicious introduction into the molecule, makes the corresponding nucleoside metabolically very stable, lipophilic, and opens a new site of intermolecular binding. Fluorination on various nucleosides has been extensively studied as a result, a series of fluorinated nucleosides come up for different therapeutic uses which are either approved by the FDA or under the advanced stage of the clinical trial. Here in this review, we are summarizing the latest development in the chemistry of fluorination on nucleoside that led to varieties of new analogs like carbocyclic, acyclic, and conformationally biased nucleoside and their biological properties, the influence of fluorine on conformation, oligonucleotide stability, and their use in therapeutics.
Collapse
Affiliation(s)
- Shantanu Pal
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar Argul, Odisha, India, 752050
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar, India, 824236
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar, India, 824236
| | - Sakshi Singh
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar Argul, Odisha, India, 752050
| |
Collapse
|
8
|
Oka N, Kanda M, Furuzawa M, Arai W, Ando K. Serendipitous One-Step Synthesis of Cyclopentene Derivatives from 5'-Deoxy-5'-heteroarylsulfonylnucleosides as Nucleoside-Derived Julia-Kocienski Reagents. J Org Chem 2021; 86:16684-16698. [PMID: 34762430 DOI: 10.1021/acs.joc.1c01940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A serendipitous one-step transformation of 5'-deoxy-5'-heteroarylsulfonylnucleosides into cyclopentene derivatives is reported. This unique transformation likely proceeds via a domino reaction initiated by α-deprotonation of the heteroaryl sulfone and subsequent elimination reaction to generate a nucleobase and an α,β-unsaturated sulfone that contains a formyl group. The Michael addition of the nucleobase to the α,β-unsaturated sulfone and the subsequent intramolecular Julia-Kocienski reaction eventually generate the cyclopentene ring. Heteroarylthio and acylthio groups can be incorporated into the cyclopentene core in place of the nucleobase by conducting this reaction in the presence of a heteroarylthiol and a thiocarboxylic acid, respectively. cis,cis-Trisubstituted cyclopentene derivatives are obtained as a single stereoisomer from ribonucleoside-derived Julia-Kocienski sulfones.
Collapse
Affiliation(s)
- Natsuhisa Oka
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan.,Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Mayuka Kanda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Minami Furuzawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Wakaba Arai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kaori Ando
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|