1
|
Zhang BS, Deng BJ, Zhi YX, Guo TJ, Wang YM, Gou XY, Quan ZJ, Wang XC, Liang YM. A switch strategy for the synthesis of C4-ethylamine indole and C7-aminoindoline via controllable carbon elimination. Chem Sci 2024:d4sc05111d. [PMID: 39290589 PMCID: PMC11403580 DOI: 10.1039/d4sc05111d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Controllable β-carbon elimination to extrude norbornene remains a long-standing challenge in palladium and norbornene chemistry. Herein, this manuscript describes a switchable synthesis of biologically active C4-ethylaminoindole and C7-aminoindoline scaffolds by controlling β-carbon elimination, utilizing aziridine as a C-H ethylamination reagent through a C-N bond cleavage reaction. Furthermore, the protecting groups of the product can be easily removed, offering an unusual method for the synthesis of dopamine receptor agonists.
Collapse
Affiliation(s)
- Bo-Sheng Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Bao-Jie Deng
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yuan-Xin Zhi
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Tian-Jiao Guo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yi-Ming Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Xue-Ya Gou
- State Key Laboratory of Applied OrganicChemistry, Lanzhou University Lanzhou 730000 China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yong-Min Liang
- State Key Laboratory of Applied OrganicChemistry, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
2
|
Gu X, Dai M, Qing X, Liu Y, Zhang Z, Wei Z, Liang T. Iron-Catalyzed Friedel-Crafts-type 3,5-Diacylation of Indoles. J Org Chem 2024; 89:10272-10282. [PMID: 38967436 DOI: 10.1021/acs.joc.4c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The exploration of remote functionalization of indoles is impeded by the inherently dominant reactivity intrinsic to the pyrrole moiety. Herein, we delineate a novel strategy facilitated by Lewis acid mediation, enabling the remote C-H functionalization, which culminates in the synthesis of an array of selectively functionalized indole derivatives, encompassing 3-trifluoroacetyl and 5-benzoyl motifs, utilizing trifluoroacetic anhydride and various acyl chlorides. Notably, the protocol exhibits versatility, as epitomized by the extension of C5-acylation to alkylation and sulfonation reactions. This methodology is distinguished by its exemplary regio- and chemo-selectivity, extensive substrate scope, commendable tolerance to a diverse array of functional groups, and the employment of comparatively mild reaction conditions.
Collapse
Affiliation(s)
- Xiaoting Gu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Maoyi Dai
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xirui Qing
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yifeng Liu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhuan Zhang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Taoyuan Liang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
3
|
Wang Y, Tian B, Li Y, Li W, Chen Z, Liu S, Li S. A Sustainable and Versatile Cellulose-based CO Surrogate for Carbonylative Reactions. CHEMSUSCHEM 2024; 17:e202301324. [PMID: 38199959 DOI: 10.1002/cssc.202301324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
The highly toxic and flammable nature of CO lead to high handling demand for its use and storage, undoubtedly constricting its further academic exploration for carbonylative reactions in laboratory. Although many CO surrogates have been developed and applied in carbonylative reactions instead of CO gas, exploration of more versatile CO surrogates for diverse carbonylations is still highly desirable. Here we report a cellulose-based CO surrogate (cellulose-CO), which prepared from cheap and abundant cellulose through a simple and green process. The very mild and efficient CO release makes this reagent a highly competitive candidate for providing CO in carbonylation. This surrogate is compatible with a wide variety of functional groups in various carbonylative reactions due to the excellent compatibility of cellulose-CO. Moreover, the cellulose-CO exhibits excellent chemical stability which can be stored exposed to air for 12 months, making this CO surrogate a robust and general reagent in CO chemistry.
Collapse
Affiliation(s)
- You Wang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yi Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| |
Collapse
|
4
|
Tian XY, Zhang WX, Chen XY, Jia MQ, Zhang SY, Chen YF, Yuan S, Song J, Li J. Discovery of novel coumarin-based derivatives as inhibitors of tubulin polymerization targeting the colchicine binding site with potent anti-gastric cancer activities. Eur J Med Chem 2024; 265:116079. [PMID: 38150962 DOI: 10.1016/j.ejmech.2023.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
In this work, a series of novel coumarin-based derivatives were designed and synthesized as tubulin polymerization inhibitors targeting the colchicine binding site, and their antiproliferative activities against MGC-803, HCT-116 and KYSE30 cells were evaluated. Among them, the compound I-3 (MY-1442) bearing a 6-methoxy-1,2,3,4-tetrahydroquinoline group exhibited most potent inhibitory activities on MGC-803 (IC50 = 0.034 μM), HCT-116 (IC50 = 0.081 μM) and KYSE30 cells (IC50 = 0.19 μM). Further mechanism studies demonstrated that compound I-3 (MY-1442) could directly bind to the colchicine binding site of β-tubulin to inhibit tubulin polymerization and microtubules at the cellular level. The results of molecular docking indicated there were well binding interactions between compound I-3 (MY-1442) and the colchicine binding site of β-tubulin. Compound I-3 (MY-1442) also exhibited effective anti-proliferation, pro-apoptosis, and anti-migration abilities against gastric cancer cells MGC-803. Additionally, compound I-3 (MY-1442) could regulate the expression of cell cycle- and apoptosis-related proteins. Importantly, compound I-3 (MY-1442) could significantly inhibit tumor growth in the MGC-803 xenograft tumor model with a TGI rate of 65.5 % at 30 mg/kg/day. Taken together, this work suggested that the coumarin skeleton exhibited great potential to be a key pharmacophore of tubulin polymerization inhibitors for the discovery of anticancer agents.
Collapse
Affiliation(s)
- Xin-Yi Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Xin Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao-Yu Chen
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Mei-Qi Jia
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi-Fan Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuo Yuan
- Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jia Li
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
5
|
Goel B, Jaiswal S, Jain SK. Indole derivatives targeting colchicine binding site as potential anticancer agents. Arch Pharm (Weinheim) 2023; 356:e2300210. [PMID: 37480173 DOI: 10.1002/ardp.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
Microtubules are appealing as intracellular targets for anticancer activity due to their importance in cell division. Three important binding sites are present on the tubulin protein: taxane, vinca, and colchicine binding sites (CBS). Many USFDA-approved drugs such as paclitaxel, ixabepilone, vinblastine, and combretastatin act by altering the dynamics of the microtubules. Additionally, a large number of compounds have been synthesized by medicinal chemists around the globe that target different tubulin binding sites. Although CBS inhibitors have proved their cytotoxic potential, no CBS-targeting drug had been able to reach the market. Several studies have reported design, synthesis, and biological evaluation of indole derivatives as potential anticancer agents. These compounds have been shown to inhibit cancer cell proliferation, induce apoptosis, and disrupt microtubule formation. Moreover, the binding affinity of these compounds to the CBS has been demonstrated using molecular docking studies and competitive binding assays. The present work has reviewed indole derivatives as potential colchicine-binding site inhibitors. The structure-activity relationship studies have revealed the crucial pharmacophoric features required for the potent and selective binding of indole derivatives to the CBS. The development of these compounds with improved efficacy and reduced toxicity could potentially lead to the development of novel and effective cancer therapies.
Collapse
Affiliation(s)
- Bharat Goel
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Shivani Jaiswal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
An update on the recent advances and discovery of novel tubulin colchicine binding inhibitors. Future Med Chem 2023; 15:73-95. [PMID: 36756851 DOI: 10.4155/fmc-2022-0212] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Microtubules, formed by α- and β-tubulin heterodimer, are considered as a major target to prevent the proliferation of tumor cells. Microtubule-targeted agents have become increasingly effective anticancer drugs. However, due to the relatively sophisticated chemical structure of taxane and vinblastine, their application has faced numerous obstacles. Conversely, the structure of colchicine binding site inhibitors (CBSIs) is much easier to be modified. Moreover, CBSIs have strong antiproliferative effect on multidrug-resistant tumor cells and have become the mainstream research orientation of microtubule-targeted agents. This review focuses mainly on the recent advances of CBSIs during 2017-2022, attempts to depict their biological activities to analyze the structure-activity relationships and offers new perspectives for designing next generation of novel CBSIs.
Collapse
|
7
|
Elwood JL, Henry MC, Lopez-Fernandez JD, Mowat JM, Boyle M, Buist B, Livingstone K, Jamieson C. Functionalized Tetrazoles as Latent Active Esters in the Synthesis of Amide Bonds. Org Lett 2022; 24:9491-9496. [PMID: 36524745 PMCID: PMC9806851 DOI: 10.1021/acs.orglett.2c03971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report the use of N-2,4-dinitrophenyltetrazoles as latent active esters (LAEs) in the synthesis of amide bonds. Activating the tetrazole generates an HOBt-type active ester without the requirement for exogenous coupling agents. The methodology was widely applicable to a range of substrates, with up to quantitative yields obtained. The versatility and functional group tolerance were exemplified with the one-step synthesis of various pharmaceutical agents and the N-acylation of resin-bound peptides.
Collapse
|
8
|
Krymov SK, Scherbakov AM, Dezhenkova LG, Salnikova DI, Solov’eva SE, Sorokin DV, Vullo D, De Luca V, Capasso C, Supuran CT, Shchekotikhin AE. Indoline-5-Sulfonamides: A Role of the Core in Inhibition of Cancer-Related Carbonic Anhydrases, Antiproliferative Activity and Circumventing of Multidrug Resistance. Pharmaceuticals (Basel) 2022; 15:ph15121453. [PMID: 36558903 PMCID: PMC9783868 DOI: 10.3390/ph15121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The overexpression and activity of carbonic anhydrase (CA, EC 4.2.1.1) isoforms CA IX and CA XII promote the accumulation of exceeding protons and acidosis in the extracellular tumor environment. Sulfonamides are effective inhibitors of most families of CAs. In this study, using scaffold-hopping, indoline-5-sulfonamide analogs 4a-u of the CA IX-selective inhibitor 3 were designed and synthesized to evaluate their biological properties. 1-Acylated indoline-5-sulfonamides demonstrated inhibitory activity against tumor-associated CA IX and XII with KI values up to 132.8 nM and 41.3 nM. Compound 4f, as one of the most potent inhibitors of CA IX and XII, exhibits hypoxic selectivity, suppressing the growth of MCF7 cells at 12.9 µM, and causes partial inhibition of hypoxia-induced CA IX expression in A431 skin cancer cells. 4e and 4f reverse chemoresistance to doxorubicin of K562/4 with overexpression of P-gp.
Collapse
Affiliation(s)
- Stepan K. Krymov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Lyubov G. Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Diana I. Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Svetlana E. Solov’eva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Danila V. Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50122 Florence, Italy
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50122 Florence, Italy
- Correspondence: (C.T.S.); (A.E.S.)
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
- Correspondence: (C.T.S.); (A.E.S.)
| |
Collapse
|
9
|
Song J, Guan YF, Liu WB, Song CH, Tian XY, Zhu T, Fu XJ, Qi YQ, Zhang SY. Discovery of novel coumarin-indole derivatives as tubulin polymerization inhibitors with potent anti-gastric cancer activities. Eur J Med Chem 2022; 238:114467. [DOI: 10.1016/j.ejmech.2022.114467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022]
|
10
|
Akyildiz V, Lafzi F, Kilic H, Saracoglu N. Solvent-controlled regioselective C(5)-H/N(1)-H bond alkylations of indolines and C(6)-H bond alkylations of 1,2,3,4-tetrahydroquinolines with para-quinone methides. Org Biomol Chem 2022; 20:3570-3588. [PMID: 35419578 DOI: 10.1039/d2ob00035k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solvent-promoted and -controlled regioselective bond alkylation reactions of para-quinone methides (p-QMs) with N-H free-indoline and 1,2,3,4-tetrahydroquinoline (THQ) under metal-free conditions have been developed. In the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent, 1,6-addition alkylation reactions of p-QMs with NH-free indolines and THQs efficiently gave C5-alkylated indolines and C6-alkylated THQs. Using catalytic amounts of HFIP in DCM, the reaction of indolines and p-QMs resulted in the alkylation of indolines at the N1-position. HFIP plays two roles in the reactions: converting the indoline and THQ into bidentate nucleophiles and activating the p-QMs to achieve the 1,6-addition alkylation via hydrogen bond clusters. The indoline and THQ act as a C-nucleophile due to the H-bond clusters between HFIP and the nitrogen atom, whereas upon using catalytic amounts of HFIP, the compounds act as an N-nucleophile. All alkylation products were transformed into the corresponding indoles and quinolines via oxidation in the presence of diethyl azodicarboxylate (DEAD). Furthermore, the synthetic utilities have been showcased with both the removal of the tert-butyl groups from the C5-alkylated indole products and submission to their Suzuki coupling reactions.
Collapse
Affiliation(s)
- Volkan Akyildiz
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey.
| | - Ferruh Lafzi
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey.
| | - Haydar Kilic
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey.
| | - Nurullah Saracoglu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey.
| |
Collapse
|
11
|
Alexey R, Dariya S, Liudmyla I, Lilia V, Valeriy M, Dmytro L, Oleksandr B, Svitlana S, Sergii O, Elijah B, Mariia S, Yaroslav B, Pavel K. Structure-based virtual screening and biological evaluation of novel inhibitors of mycobacterium Z-ring formation. J Cell Biochem 2022; 123:852-862. [PMID: 35297088 DOI: 10.1002/jcb.30232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/07/2022]
Abstract
The major part of commercial prodrugs against Mycobacterium tuberculosis (Mtb) demonstrated a significant inhibitory effect on cell division and inhibition of bacterial growth in vitro. However, further implementation often failed to overcome the compensatory system of interchangeable cascades. This is the most common situation for the compounds, which hit the key enzymes activities involved in all basic stages of the cell cycle. We decided to find more compounds, which could affect a cytoskeleton complex playing important role in sensing the external signals, intracellular transport, and cell division. In general, the bacterial cytoskeleton is crucial for response to the environment and participates in cell-to-cell communication. In turn, filamentous temperature-sensitive Z (FtsZ) protein, a mycobacterial tubulin homolog, is essential for Z-ring formation and further bacteria cell division. We predicted the most preferable binding-sites and conducted a high-throughput virtual screening. Modeling results suggest that some compounds bind in a specific region on the surface Mtb FtsZ, which is absent in human, and other could hit GTPase activity of the FtsZ. Further in vitro studies confirmed that these novel molecules can efficiently bind to these pockets, demonstrating an effect on the polymerization state and kinetics mechanisms. The rescaling of the experiment on the cell line revealed that reported compounds are able to alter the polymerization level of the filamentous and, therefore, prevent mycobacteria reproduction.
Collapse
Affiliation(s)
- Rayevsky Alexey
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
- Department of Molecular Modeling, Enamine Ltd., Kyiv, Ukraine
| | - Samofalova Dariya
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
- R&D Department, Life Chemicals Inc., Niagara-on-the-Lake, Ontario, Canada
| | - Ishchenko Liudmyla
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Vygovska Lilia
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Mazur Valeriy
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Labudzynskyi Dmytro
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Borysov Oleksandr
- Department of Molecular Modeling, Enamine Ltd., Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Spivak Svitlana
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| | - Ozheredov Sergii
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| | - Bulgakov Elijah
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| | - Stykhylias Mariia
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Blume Yaroslav
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| | - Karpov Pavel
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| |
Collapse
|
12
|
Sun YX, Song J, Kong LJ, Sha BB, Tian XY, Liu XJ, Hu T, Chen P, Zhang SY. Design, synthesis and evaluation of novel bis-substituted aromatic amide dithiocarbamate derivatives as colchicine site tubulin polymerization inhibitors with potent anticancer activities. Eur J Med Chem 2021; 229:114069. [PMID: 34971875 DOI: 10.1016/j.ejmech.2021.114069] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
Abstract
As the continuation of our work on the development of tubulin inhibitors with potential anticancer activities, novel bis-substituted aromatic amide dithiocarbamate derivatives were designed by contacting bis-substituted aryl scaffolds (potential anti-tubulin fragments) with N-containing heterocycles (potential anti-tubulin fragments) in one hybrid using the anticancer dithioformate unit as the linker. The antiproliferative activity against three digestive tract tumor cells was evaluated and preliminary structure activity relationships were summarized. Among these compounds, compound 20q exhibited most potent antiproliferative activity against MGC-803, HCT-116, Kyse30 and Kyse450 cells with IC50 values of 0.084, 0.227, 0.069 and 0.078 μM, respectively. In further studies, compound 20q was identified as a novel tubulin inhibitor targeting the colchicine binding site. Compound 20q could inhibit the microtubule assembly and disrupt cytoskeleton in Kyse30 and Kyse450 cells. The results of molecular docking suggested that compound 20q could tightly bind into the colchicine binding site of tubulin by hydrogen bonds and hydrophobic interactions. Compound 20q dose-dependently inhibited the cell growth and colony formation, effectively arrested cells at the G2/M phase and induce mitochondrial apoptosis in Kyse30 and Kyse450 cells. In addition, Compound 20q could regulate the expression of G2/M phase and mitochondrial apoptosis related proteins. Collectively, compound 20q was here reported as a novel tubulin inhibitor with potential anticancer activities.
Collapse
Affiliation(s)
- Ya-Xin Sun
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Jun Kong
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Bei-Bei Sha
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin-Yi Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiu-Juan Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Tao Hu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ping Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.
| |
Collapse
|