1
|
Chengalroyen MD, Mehaffy C, Lucas M, Bauer N, Raphela ML, Oketade N, Warner DF, Lewinsohn DA, Lewinsohn DM, Dobos KM, Mizrahi V. Modulation of riboflavin biosynthesis and utilization in mycobacteria. Microbiol Spectr 2024; 12:e0320723. [PMID: 38916330 PMCID: PMC11302143 DOI: 10.1128/spectrum.03207-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
Riboflavin (vitamin B2) is the precursor of the flavin coenzymes, FAD and FMN, which play a central role in cellular redox metabolism. While humans must obtain riboflavin from dietary sources, certain microbes, including Mycobacterium tuberculosis (Mtb), can biosynthesize riboflavin de novo. Riboflavin precursors have also been implicated in the activation of mucosal-associated invariant T (MAIT) cells which recognize metabolites derived from the riboflavin biosynthesis pathway complexed to the MHC-I-like molecule, MR1. To investigate the biosynthesis and function of riboflavin and its pathway intermediates in mycobacterial metabolism and physiology, we constructed conditional knockdowns (hypomorphs) in riboflavin biosynthesis and utilization genes in Mycobacterium smegmatis (Msm) and Mtb by inducible CRISPR interference. Using this comprehensive panel of hypomorphs, we analyzed the impact of gene silencing on viability, on the transcription of (other) riboflavin pathway genes, on the levels of the pathway proteins, and on riboflavin itself. Our results revealed that (i) despite lacking a canonical transporter, both Msm and Mtb assimilate exogenous riboflavin when supplied at high concentration; (ii) there is functional redundancy in lumazine synthase activity in Msm; (iii) silencing of ribA2 or ribF is profoundly bactericidal in Mtb; and (iv) in Msm, ribA2 silencing results in concomitant knockdown of other pathway genes coupled with RibA2 and riboflavin depletion and is also bactericidal. In addition to their use in genetic validation of potential drug targets for tuberculosis, this collection of hypomorphs provides a useful resource for future studies investigating the role of pathway intermediates in MAIT cell recognition of mycobacteria. IMPORTANCE The pathway for biosynthesis and utilization of riboflavin, precursor of the essential coenzymes, FMN and FAD, is of particular interest in the flavin-rich pathogen, Mycobacterium tuberculosis (Mtb), for two important reasons: (i) the pathway includes potential tuberculosis (TB) drug targets and (ii) intermediates from the riboflavin biosynthesis pathway provide ligands for mucosal-associated invariant T (MAIT) cells, which have been implicated in TB pathogenesis. However, the riboflavin pathway is poorly understood in mycobacteria, which lack canonical mechanisms to transport this vitamin and to regulate flavin coenzyme homeostasis. By conditionally disrupting each step of the pathway and assessing the impact on mycobacterial viability and on the levels of the pathway proteins as well as riboflavin, our work provides genetic validation of the riboflavin pathway as a target for TB drug discovery and offers a resource for further exploring the association between riboflavin biosynthesis, MAIT cell activation, and TB infection and disease.
Collapse
Affiliation(s)
- Melissa D. Chengalroyen
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Niel Bauer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mabule L. Raphela
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Nurudeen Oketade
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Digby F. Warner
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
| | | | - David M. Lewinsohn
- Oregon Health and Science University, Portland, Oregon, USA
- Portland VA Medical Center, Portland, Oregon, USA
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Valerie Mizrahi
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Singh M, Dhanwal A, Verma A, Augustin L, Kumari N, Chakraborti S, Agarwal N, Sriram D, Dey RJ. Discovery of potent antimycobacterial agents targeting lumazine synthase (RibH) of Mycobacterium tuberculosis. Sci Rep 2024; 14:12170. [PMID: 38806590 PMCID: PMC11133327 DOI: 10.1038/s41598-024-63051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Tuberculosis (TB) continues to be a global health crisis, necessitating urgent interventions to address drug resistance and improve treatment efficacy. In this study, we validate lumazine synthase (RibH), a vital enzyme in the riboflavin biosynthetic pathway, as a potential drug target against Mycobacterium tuberculosis (M. tb) using a CRISPRi-based conditional gene knockdown strategy. We employ a high-throughput molecular docking approach to screen ~ 600,000 compounds targeting RibH. Through in vitro screening of 55 shortlisted compounds, we discover 3 compounds that exhibit potent antimycobacterial activity. These compounds also reduce intracellular burden of M. tb during macrophage infection and prevent the resuscitation of the nutrient-starved persister bacteria. Moreover, these three compounds enhance the bactericidal effect of first-line anti-TB drugs, isoniazid and rifampicin. Corroborating with the in silico predicted high docking scores along with favourable ADME and toxicity profiles, all three compounds demonstrate binding affinity towards purified lumazine synthase enzyme in vitro, in addition these compounds exhibit riboflavin displacement in an in vitro assay with purified lumazine synthase indicative of specificity of these compounds to the active site. Further, treatment of M. tb with these compounds indicate reduced production of flavin adenine dinucleotide (FAD), the ultimate end product of the riboflavin biosynthetic pathway suggesting the action of these drugs on riboflavin biosynthesis. These compounds also show acceptable safety profile in mammalian cells, with a high selective index. Hence, our study validates RibH as an important drug target against M. tb and identifies potent antimycobacterial agents.
Collapse
Affiliation(s)
- Monica Singh
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Anannya Dhanwal
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Arpita Verma
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Linus Augustin
- Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Niti Kumari
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India
| | - Soumyananda Chakraborti
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
- National Institute of Malaria Research, Indian Council of Medical Research (ICMR), New Delhi, 110077, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Ruchi Jain Dey
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
3
|
Warrier I, Perry A, Hubbell SM, Eichelman M, van Opijnen T, Meyer MM. RNA cis-regulators are important for Streptococcus pneumoniae in vivo success. PLoS Genet 2024; 20:e1011188. [PMID: 38442125 PMCID: PMC10942264 DOI: 10.1371/journal.pgen.1011188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Bacteria have evolved complex transcriptional regulatory networks, as well as many diverse regulatory strategies at the RNA level, to enable more efficient use of metabolic resources and a rapid response to changing conditions. However, most RNA-based regulatory mechanisms are not well conserved across different bacterial species despite controlling genes important for virulence or essential biosynthetic processes. Here, we characterize the activity of, and assess the fitness benefit conferred by, twelve cis-acting regulatory RNAs (including several riboswitches and a T-box), in the opportunistic pathogen Streptococcus pneumoniae TIGR4. By evaluating native locus mutants of each regulator that result in constitutively active or repressed expression, we establish that growth defects in planktonic culture are associated with constitutive repression of gene expression, while constitutive activation of gene expression is rarely deleterious. In contrast, in mouse nasal carriage and pneumonia models, strains with either constitutively active and repressed gene expression are significantly less fit than matched control strains. Furthermore, two RNA-regulated pathways, FMN synthesis/transport and pyrimidine synthesis/transport display exceptional sensitivity to mis-regulation or constitutive gene repression in both planktonic culture and in vivo environments. Thus, despite lack of obvious phenotypes associated with constitutive gene expression in vitro, the fitness benefit conferred on bacteria via fine-tuned metabolic regulation through cis-acting regulatory RNAs is substantial in vivo, and therefore easily sufficient to drive the evolution and maintenance of diverse RNA regulatory mechanisms.
Collapse
Affiliation(s)
- Indu Warrier
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ariana Perry
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| | - Sara M. Hubbell
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| | - Matthew Eichelman
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| | - Tim van Opijnen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Boston Children’s Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michelle M. Meyer
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| |
Collapse
|
4
|
Pavlova N, Traykovska M, Penchovsky R. Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development. Antibiotics (Basel) 2023; 12:1607. [PMID: 37998809 PMCID: PMC10668854 DOI: 10.3390/antibiotics12111607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial drug resistance has emerged as a significant challenge in contemporary medicine due to the proliferation of numerous bacterial strains resistant to all existing antibiotics. Meanwhile, riboswitches have emerged as promising targets for discovering antibacterial drugs. Riboswitches are regulatory elements in certain bacterial mRNAs that can bind to specific molecules and control gene expression via transcriptional termination, prevention of translation, or mRNA destabilization. By targeting riboswitches, we aim to develop innovative strategies to combat antibiotic-resistant bacteria and enhance the efficacy of antibacterial treatments. This convergence of challenges and opportunities underscores the ongoing quest to revolutionize medical approaches against evolving bacterial threats. For the first time, this innovative review describes the rational design and applications of chimeric antisense oligonucleotides as antibacterial agents targeting four riboswitches selected based on genome-wide bioinformatic analyses. The antisense oligonucleotides are coupled with the cell-penetrating oligopeptide pVEC, which penetrates Gram-positive and Gram-negative bacteria and specifically targets glmS, FMN, TPP, and SAM-I riboswitches in Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. The average antibiotic dosage of antisense oligonucleotides that inhibits 80% of bacterial growth is around 700 nM (4.5 μg/mL). Antisense oligonucleotides do not exhibit toxicity in human cell lines at this concentration. The results demonstrate that these riboswitches are suitable targets for antibacterial drug development using antisense oligonucleotide technology. The approach is fully rational because selecting suitable riboswitch targets and designing ASOs that target them are based on predefined criteria. The approach can be used to develop narrow or broad-spectrum antibiotics against multidrug-resistant bacterial strains for a short time. The approach is easily adaptive to new resistance using targeting NGS technology.
Collapse
Affiliation(s)
| | | | - Robert Penchovsky
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
5
|
Jaroensuk J, Chuaboon L, Kesornpun C, Chaiyen P. Enzymes in riboflavin biosynthesis: Potential antibiotic drug targets. Arch Biochem Biophys 2023; 748:109762. [PMID: 37739114 DOI: 10.1016/j.abb.2023.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The rapid resistance of pathogens to antibiotics has emerged as a major threat to global health. Identification of new antibiotic targets is thus needed for developing alternative drugs. Genes encoding enzymes involved in the biosynthesis of riboflavin and flavin cofactors (FMN/FAD) are attractive targets because these enzymatic reactions are necessary for most bacteria to synthesize flavin cofactors for use in their central metabolic reactions. Moreover, humans lack most of these enzymes because we uptake riboflavin from our diet. This review discusses the current knowledge of enzymes involved in bacterial biosynthesis of riboflavin and other flavin cofactors, as well as the functions of the FMN riboswitch. Here, we highlight recent progress in the structural and mechanistic characterization, and inhibition of GTP cyclohydrolase II (GCH II), lumazine synthase (LS), riboflavin synthase (RFS), FAD synthetase (FADS), and FMN riboswitch, which have been identified as plausible antibiotic targets. As the structures and functions of these enzymes and regulatory systems are not completely understood, they are attractive as subjects for future in-depth biochemical and biophysical analysis.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand
| | - Litavadee Chuaboon
- School of Pharmacy and Biomass and Oil Palm Center of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chatchai Kesornpun
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand.
| |
Collapse
|
6
|
Chengalroyen MD, Mehaffy C, Lucas M, Bauer N, Raphela ML, Oketade N, Warner DF, Lewinsohn DA, Lewinsohn DM, Dobos KM, Mizrahi V. Modulation of riboflavin biosynthesis and utilization in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555301. [PMID: 37693561 PMCID: PMC10491194 DOI: 10.1101/2023.08.30.555301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Riboflavin (vitamin B2) is the precursor of the flavin coenzymes, FAD and FMN, which play a central role in cellular redox metabolism. While humans must obtain riboflavin from dietary sources, certain microbes, including Mycobacterium tuberculosis (Mtb), can biosynthesize riboflavin de novo. Riboflavin precursors have also been implicated in the activation of mucosal-associated invariant T (MAIT) cells which recognize metabolites derived from the riboflavin biosynthesis pathway complexed to the MHC-I-like molecule, MR1. To investigate the biosynthesis and function of riboflavin and its pathway intermediates in mycobacterial metabolism, physiology and MAIT cell recognition, we constructed conditional knockdowns (hypomorphs) in riboflavin biosynthesis and utilization genes in Mycobacterium smegmatis (Msm) and Mtb by inducible CRISPR interference. Using this comprehensive panel of hypomorphs, we analyzed the impact of gene silencing on viability, on the transcription of (other) riboflavin pathway genes, on the levels of the pathway proteins and on riboflavin itself. Our results revealed that (i) despite lacking a canonical transporter, both Msm and Mtb assimilate exogenous riboflavin when supplied at high concentration; (ii) there is functional redundancy in lumazine synthase activity in Msm; (iii) silencing of ribA2 or ribF is profoundly bactericidal in Mtb; and (iv) in Msm, ribA2 silencing results in concomitant knockdown of other pathway genes coupled with RibA2 and riboflavin depletion and is also bactericidal. In addition to their use in genetic validation of potential drug targets for tuberculosis, this collection of hypomorphs provides a useful resource for investigating the role of pathway intermediates in MAIT cell recognition of mycobacteria.
Collapse
Affiliation(s)
- Melissa D. Chengalroyen
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
| | - Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Niel Bauer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Mabule L. Raphela
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
| | - Nurudeen Oketade
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Digby F. Warner
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| | | | - David M. Lewinsohn
- Oregon Health and Science University, Oregon, USA
- Portland VA Medical Center, Oregon, USA
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Valerie Mizrahi
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|
7
|
Gupta P, Khadake RM, Panja S, Shinde K, Rode AB. Alternative RNA Conformations: Companion or Combatant. Genes (Basel) 2022; 13:1930. [PMID: 36360167 PMCID: PMC9689429 DOI: 10.3390/genes13111930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 09/06/2024] Open
Abstract
RNA molecules, in one form or another, are involved in almost all aspects of cell physiology, as well as in disease development. The diversity of the functional roles of RNA comes from its intrinsic ability to adopt complex secondary and tertiary structures, rivaling the diversity of proteins. The RNA molecules form dynamic ensembles of many interconverting conformations at a timescale of seconds, which is a key for understanding how they execute their cellular functions. Given the crucial role of RNAs in various cellular processes, we need to understand the RNA molecules from a structural perspective. Central to this review are studies aimed at revealing the regulatory role of conformational equilibria in RNA in humans to understand genetic diseases such as cancer and neurodegenerative diseases, as well as in pathogens such as bacteria and viruses so as to understand the progression of infectious diseases. Furthermore, we also summarize the prior studies on the use of RNA structures as platforms for the rational design of small molecules for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | - Ambadas B. Rode
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad—Gurugram Expressway, Faridabad 121001, India
| |
Collapse
|
8
|
Giarimoglou N, Kouvela A, Maniatis A, Papakyriakou A, Zhang J, Stamatopoulou V, Stathopoulos C. A Riboswitch-Driven Era of New Antibacterials. Antibiotics (Basel) 2022; 11:antibiotics11091243. [PMID: 36140022 PMCID: PMC9495366 DOI: 10.3390/antibiotics11091243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Riboswitches are structured non-coding RNAs found in the 5′ UTR of important genes for bacterial metabolism, virulence and survival. Upon the binding of specific ligands that can vary from simple ions to complex molecules such as nucleotides and tRNAs, riboswitches change their local and global mRNA conformations to affect downstream transcription or translation. Due to their dynamic nature and central regulatory role in bacterial metabolism, riboswitches have been exploited as novel RNA-based targets for the development of new generation antibacterials that can overcome drug-resistance problems. During recent years, several important riboswitch structures from many bacterial representatives, including several prominent human pathogens, have shown that riboswitches are ideal RNA targets for new compounds that can interfere with their structure and function, exhibiting much reduced resistance over time. Most interestingly, mainstream antibiotics that target the ribosome have been shown to effectively modulate the regulatory behavior and capacity of several riboswitches, both in vivo and in vitro, emphasizing the need for more in-depth studies and biological evaluation of new antibiotics. Herein, we summarize the currently known compounds that target several main riboswitches and discuss the role of mainstream antibiotics as modulators of T-box riboswitches, in the dawn of an era of novel inhibitors that target important bacterial regulatory RNAs.
Collapse
Affiliation(s)
- Nikoleta Giarimoglou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 15341 Athens, Greece
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-997932
| |
Collapse
|
9
|
Dhameliya TM, Devani AA, Patel KA, Shah KC. Comprehensive Coverage on Anti‐mycobacterial Endeavour Reported in 2021. ChemistrySelect 2022. [DOI: 10.1002/slct.202200921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Aanal A. Devani
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| | - Krupa A. Patel
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| | - Kashvi C. Shah
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| |
Collapse
|
10
|
Patti G, Pellegrino C, Ricciardi A, Novara R, Cotugno S, Papagni R, Guido G, Totaro V, De Iaco G, Romanelli F, Stolfa S, Minardi ML, Ronga L, Fato I, Lattanzio R, Bavaro DF, Gualano G, Sarmati L, Saracino A, Palmieri F, Di Gennaro F. Potential Role of Vitamins A, B, C, D and E in TB Treatment and Prevention: A Narrative Review. Antibiotics (Basel) 2021; 10:1354. [PMID: 34827292 PMCID: PMC8614960 DOI: 10.3390/antibiotics10111354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022] Open
Abstract
(1) Background: Tuberculosis (TB) is one of the world's top infectious killers, in fact every year 10 million people fall ill with TB and 1.5 million people die from TB. Vitamins have an important role in vital functions, due to their anti-oxidant, pro-oxidant, anti-inflammatory effects and to metabolic functions. The aim of this review is to discuss and summarize the evidence and still open questions regarding vitamin supplementation as a prophylactic measure in those who are at high risk of Mycobacterium tuberculosis (MTB) infection and active TB; (2) Methods: We conducted a search on PubMed, Scopus, Google Scholar, EMBASE, Cochrane Library and WHO websites starting from March 1950 to September 2021, in order to identify articles discussing the role of Vitamins A, B, C, D and E and Tuberculosis; (3) Results: Supplementation with multiple micronutrients (including zinc) rather than vitamin A alone may be more beneficial in TB. The WHO recommend Pyridoxine (vitamin B6) when high-dose isoniazid is administered. High concentrations of vitamin C sterilize drug-susceptible, MDR and extensively drug-resistant MTB cultures and prevent the emergence of drug persisters; Vitamin D suppresses the replication of mycobacterium in vitro while VE showed a promising role in TB management as a result of its connection with oxidative balance; (4) Conclusions: Our review suggests and encourages the use of vitamins in TB patients. In fact, their use may improve outcomes by helping both nutritionally and by interacting directly and/or indirectly with MTB. Several and more comprehensive trials are needed to reinforce these suggestions.
Collapse
Affiliation(s)
- Giulia Patti
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Carmen Pellegrino
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Aurelia Ricciardi
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Roberta Novara
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Sergio Cotugno
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Roberta Papagni
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Giacomo Guido
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Valentina Totaro
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Giuseppina De Iaco
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Federica Romanelli
- Microbiology and Virology Unit, University of Bari, University Hospital Policlinico, 70124 Bari, Italy; (F.R.); (S.S.); (L.R.)
| | - Stefania Stolfa
- Microbiology and Virology Unit, University of Bari, University Hospital Policlinico, 70124 Bari, Italy; (F.R.); (S.S.); (L.R.)
| | - Maria Letizia Minardi
- Infectious Diseases Clinic, University Hospital “Tor Vergata”, Department of Systems Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (M.L.M.); (I.F.); (L.S.)
| | - Luigi Ronga
- Microbiology and Virology Unit, University of Bari, University Hospital Policlinico, 70124 Bari, Italy; (F.R.); (S.S.); (L.R.)
| | - Ilenia Fato
- Infectious Diseases Clinic, University Hospital “Tor Vergata”, Department of Systems Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (M.L.M.); (I.F.); (L.S.)
| | - Rossana Lattanzio
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Davide Fiore Bavaro
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Gina Gualano
- National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00161 Rome, Italy;
| | - Loredana Sarmati
- Infectious Diseases Clinic, University Hospital “Tor Vergata”, Department of Systems Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (M.L.M.); (I.F.); (L.S.)
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Fabrizio Palmieri
- National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00161 Rome, Italy;
| | - Francesco Di Gennaro
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| |
Collapse
|