1
|
Bilgic A, Aydin Z. A new bodipy/pillar[5]arene functionalized magnetic sporopollenin for the detection of Cu(II) and Hg(II) ions in aqueous solution. J Colloid Interface Sci 2024; 657:102-113. [PMID: 38035413 DOI: 10.1016/j.jcis.2023.11.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
In this study, a new bodipy/pillar[5]arene functionalized magnetic MS-Sp-P[5]-bodipy microcapsule sensor was prepared based on the use of environmentally friendly for the selective and sensitive detection of Cu(II) and Hg(II) ions in aqueous media. SEM results used in the characterization process of the materials synthesized at each stage confirmed the structural and morphological changes in the pore structure, while other characterization results (FT-IR and XRD) elucidated the role of pillar[5]arene compound and bodipy dye in the synthesis of magnetic microcapsule sensors. The colloidal solution of MS-Sp-P[5]-bodipy (water/ethanol)) showed two fluorescence bands centered at 402 and 540 nm. The detection limits of MS-Sp-P[5]-bodipy for Hg(II) and Cu(II) were calculated to be 0.06 µM and 2.27 µM, respectively (at 540 nm). The linear range of the magnetic sensor for Hg(II) and Cu(II) was found to be in the range of 1-150 µM and 10-150 µM, respectively. The experimental results (response time, pH, temperature, sensitivity and selectivity) demonstrated the applicability and potential of the prepared magnetic microcapsule sensor for the detection of Cu(II) and Hg(II) in water and tap water samples containing heavy metal ions.
Collapse
Affiliation(s)
- Ali Bilgic
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey.
| | - Ziya Aydin
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey
| |
Collapse
|
2
|
Fan H, Wu W, Chen Z, Zhu Q, Sun X. FD-1050@NPs-cRGD: A novel NIR-II fluorophore for triple-negative breast cancer imaging. Bioorg Med Chem Lett 2023; 82:129153. [PMID: 36706843 DOI: 10.1016/j.bmcl.2023.129153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/12/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive disease that is prone to metastasis and recurrence. It accounts for 15-20% of all breast cancer cases. Surgical resection is effective in removing most of the malignant tissues for non-metastasized tumors; however, some residual tumor tissues would be left, leading to a poor prognosis. Thus, real-time monitoring of surgical resection would be beneficial for the surgical resection of tumors. Although NIR-II fluorescent probe-guided surgical resection has been widely used for other types of diseases, it is not currently used for TNBC in clinical practice. Here, we describe the design and synthesis of a novel NIR-II fluorescent probe, FD-1050@NPs-cRGD, that targets TNBC. We found that it has a high fluorescence quantum efficiency, good stability, and low cytotoxicity. In vivo imaging in mice demonstrated a high tumor signal/normal tissue signal ratio, indicating that FD-1050@NPs-cRGD has great potential to be applied in tumor imaging of TNBC.
Collapse
Affiliation(s)
- Hulin Fan
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Xun Sun
- School of Pharmacy, Fudan University, Shanghai 201203, China; The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China.
| |
Collapse
|
3
|
Xu S, Liu Y, Wang Z, He A, Jin G. Symmetry dual functional pyrimidine-BODIPY probes for imaging targeting and activity study. Front Chem 2022; 10:977008. [PMID: 36204148 PMCID: PMC9530934 DOI: 10.3389/fchem.2022.977008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Nondestructive diagnosis of tumor has always been the goal of scientists. Fluorescent dyes have become the rising star in the field of cancer diagnosis because of their excellent characteristics. Therefore, in this work, fluorescence probes d-Y-B and dO-Y-B with anti-tumor activity were constructed by introducing pyrimidine groups with high anti-tumor activity using fluorescence dye BODIPY as parent nucleus. The modified BODIPY group in the structure had the advantage of fluorescent dye, ensuring the strong fluorescence and photosensitivity of the target compound. That ethylenediamine acts as a bridge with two -NH- groups to increase molecular hydrogen bonding, and can bind firmly to multiple proteins. Co-localization of the target compounds d-Y-B and dO-Y-B with the hoechst dye for labeling living cells showed that these compounds had high biocompatibility and photostability for localization to HeLa cells. In vivo imaging in mice can realize specific localization and real-time visualization of tumor cells. The results of cytotoxicity experiments in vitro and computer software simulating molecular docking confirmed the potential of the target compounds as an anticancer agents. The bifunctional probe realized visualization of cancer cells in mice, and can kill cancer cells by anti-proliferation, which may provide a direction for future anticancer drug development.
Collapse
Affiliation(s)
- Shuping Xu
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, China
| | - Ying Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhou Wang
- College of Vanadium and Titanium, Panzhihua University, Panzhihua, China
| | - Aolin He
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou, China
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- *Correspondence: Guofan Jin,
| |
Collapse
|
4
|
Fawazy NG, Panda SS, Mostafa A, Kariuki BM, Bekheit MS, Moatasim Y, Kutkat O, Fayad W, El-Manawaty MA, Soliman AAF, El-Shiekh RA, Srour AM, Barghash RF, Girgis AS. Development of spiro-3-indolin-2-one containing compounds of antiproliferative and anti-SARS-CoV-2 properties. Sci Rep 2022; 12:13880. [PMID: 35974029 PMCID: PMC9380671 DOI: 10.1038/s41598-022-17883-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
A series of 1″-(alkylsulfonyl)-dispiro[indoline-3,2'-pyrrolidine-3',3″-piperidine]-2,4″-diones 6a‒o has been synthesized through regioselective multi-component azomethine dipolar cycloaddition reaction of 1-(alkylsulfonyl)-3,5-bis(ylidene)-piperidin-4-ones 3a‒h. X-ray diffraction studies (6b‒d,h) confirmed the structures. The majority of the synthesized analogs reveal promising antiproliferation properties against a variety of human cancer cell lines (MCF7, HCT116, A431 and PaCa2) with good selectivity index towards normal cell (RPE1). Some of the synthesized agents exhibit potent inhibitory properties against the tested cell lines with higher efficacies than the standard references (sunitinib and 5-fluorouracil). Compound 6m is the most potent. Multi-targeted inhibitory properties against EGFR and VEGFR-2 have been observed for the synthesized agents. Flow cytometry supports the antiproliferation properties and shows the tested agents as apoptosis and necrosis forming. Vero cell viral infection model demonstrates the anti-SARS-CoV-2 properties of the synthesized agents. Compound 6f is the most promising (about 3.3 and 4.8 times the potency of the standard references, chloroquine and hydroxychloroquine). QSAR models explain and support the observed biological properties.
Collapse
Affiliation(s)
- Nehmedo G Fawazy
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Siva S Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA, 30912, USA
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Benson M Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Mohamed S Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - May A El-Manawaty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed A F Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Reham F Barghash
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Adel S Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
5
|
Hu J, Wang Y, shao T, Lian G, Hu K, Liu Y, Zhou M, Wang X, Huang L, Meng X, Jin G. Simple and practical, highly sensitive and responsive recognition of cysteine: Design, synthesis and mechanism study of a novel curcumin fluorescent probe. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Kursunlu AN, Bastug E, Oguz A, Oguz M, Yilmaz M. A highly branched macrocycle-based dual-channel sensor: Bodipy and pillar[5]arene combination for detection of Sn (II) &Hg (II) and bioimaging in living cells. Anal Chim Acta 2022; 1196:339542. [DOI: 10.1016/j.aca.2022.339542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023]
|