1
|
Xiong S, Zhang J, Zhao Z, Liu J, Yao C, Huang J. NORAD accelerates skin wound healing through extracellular vesicle transfer from hypoxic adipose derived stem cells: miR-524-5p pathway and Pumilio protein mechanism. Int J Biol Macromol 2024; 279:135621. [PMID: 39276896 DOI: 10.1016/j.ijbiomac.2024.135621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Skin wound healing is a multifaceted biological process that encompasses a variety of cell types and intricate signaling pathways. Recent research has uncovered that exosomes derived from adipose stem cells, commonly referred to as ADSC exosomes, play a crucial role in facilitating the healing process. Moreover, it has been demonstrated that an anoxic, or low-oxygen, environment significantly enhances the effectiveness of these exosomes in promoting skin repair. The primary objective of this study was to investigate the underlying mechanisms through which ADSC exosomes contribute to Skin wound healing, particularly by regulating the long non-coding RNA known as NORAD under hypoxic conditions. A significant focus of our research was to examine the interplay between the microRNA miR-524-5p and the Pumilio protein, as we aimed to understand how these molecular interactions might influence the overall healing process. In this study, ADSC exosomes were extracted by simulating hypoxia in vitro and their effects on the proliferation and migration of skin fibroblasts (FB) were evaluated. The expression levels of NORAD, miR-524-5p and Pumilio were analyzed by fluorescence quantitative PCR. Pumilio protein was silenced by siRNA technique to evaluate its role in ADSC exosome-mediated wound healing. The experimental results showed that under hypoxia conditions, NORAD levels in ADSC exosomes increased significantly and could effectively regulate the expression of miR-524-5p. After Pumilio protein silencing, the proliferation and migration ability of fibroblasts were significantly reduced, indicating that Pumilio protein played a role in the process of wound healing. By inhibiting miR-524-5p, the expression of Pumilio protein was restored, further confirming its regulatory mechanism.
Collapse
Affiliation(s)
- Shi Xiong
- Nanjing University of Chinese Medicine, No.138 Xianlin Road, Nanjing 210023, Jiangsu, China; Plastic Surgery Department, Ningbo No.2 Hospital, No.41 Xibei Street, Ningbo City, Zhejiang Province 315099, China
| | - Jun Zhang
- Department of Plastic Surgery, Affiliated Hospital Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210000, China
| | - Zhijie Zhao
- Nanjing University of Chinese Medicine, No.138 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Jia Liu
- Department of Plastic Surgery, Affiliated Hospital Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210000, China
| | - Chang Yao
- Department of Breast Surgery, Affiliated Hospital Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210000, China
| | - Jinlong Huang
- Department of Plastic Surgery, Affiliated Hospital Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210000, China.
| |
Collapse
|
2
|
Aghayants S, Zhu J, Yu J, Tao R, Li S, Zhou S, Zhou Y, Zhu Z. The emerging modulators of non-coding RNAs in diabetic wound healing. Front Endocrinol (Lausanne) 2024; 15:1465975. [PMID: 39439564 PMCID: PMC11493653 DOI: 10.3389/fendo.2024.1465975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Diabetic wound healing is a complex physiological process often hindered by the underlying metabolic dysfunctions associated with diabetes. Despite existing treatments, there remains a critical need to explore innovative therapeutic strategies to improve patient outcomes. This article comprehensively examines the roles of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating key phases of the wound healing process: inflammation, angiogenesis, re-epithelialization, and tissue remodeling. Through a deep review of current literature, we discuss recent discoveries of ncRNAs that have been shown to either promote or impair the wound healing process in diabetic wound healing, which were not covered in earlier reviews. This review highlights the specific mechanisms by which these ncRNAs impact cellular behaviors and pathways critical to each healing stage. Our findings indicate that understanding these recently identified ncRNAs provides new insights into their potential roles in diabetic wound healing, thereby contributing valuable knowledge for future research directions in this field.
Collapse
Affiliation(s)
- Sis Aghayants
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Tao
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengzhi Zhou
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Dong Y, Wang M, Wang Q, Cao X, Chen P, Gong Z. Single-cell RNA-seq in diabetic foot ulcer wound healing. Wound Repair Regen 2024. [PMID: 39264020 DOI: 10.1111/wrr.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024]
Abstract
Diabetic foot ulcer (DFU) is a chronic and serious complication of diabetes mellitus. It is mainly caused by hyperglycaemia, diabetic peripheral vasculopathy and diabetic peripheral neuropathy. These conditions result in ulceration of foot tissues and chronic wounds. If left untreated, DFU can lead to amputation or even endanger the patient's life. Single-cell RNA sequencing (scRNA-seq) is a technique used to identify and characterise transcriptional subpopulations at the single-cell level. It provides insight into cellular function and the molecular drivers of disease. The objective of this paper is to examine the subpopulations, genes and molecules of cells associated with chronic wounds of diabetic foot by using scRNA-seq. The paper aims to explore the wound-healing mechanism of DFU from three aspects: inflammation, angiogenesis and extracellular matrix remodelling. The goal is to gain a better understanding of the mechanism of DFU wound healing and identify possible DFU therapeutic targets, providing new insights for the application of DFU personalised therapy.
Collapse
Affiliation(s)
- Yan Dong
- Medical School, Nantong University, Nantong, China
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, China
| | - Mengting Wang
- Medical School, Nantong University, Nantong, China
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, China
| | - Qianqian Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, China
| | - Xiaoliang Cao
- Medical School, Nantong University, Nantong, China
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, China
| | - Peng Chen
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, China
| | - Zhenhua Gong
- Medical School, Nantong University, Nantong, China
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, China
- Nantong Clinical Medical College, Kangda College of Nanjing Medical University, Nantong, China
| |
Collapse
|
4
|
Yang Y, Huang J, Li X, Lin R, Wang X, Xiao G, Zeng J, Wang Z. Periplaneta americana extract promotes infectious diabetic ulcers wound healing by downregulation of LINC01133/SLAMF9. Chin J Nat Med 2024; 22:608-618. [PMID: 39059830 DOI: 10.1016/s1875-5364(24)60569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 07/28/2024]
Abstract
Wound healing in diabetic ulcers remains a significant clinical challenge, primarily due to bacterial infection and impaired angiogenesis. Periplaneta americana extract (PAE) has been widely used to treat diabetic wounds, yet its underlying mechanisms are not fully understood. This study aimed to elucidate these mechanisms by analyzing long non-coding RNA (lncRNA) expressions in the wound tissues from diabetic anal fistula patients treated with or without PAE, using high-throughput sequencing. Peripheral blood monocytes from patients were differentiated into M0 macrophages with human macrophage colony-stimulating factor (hM-CSF) and subsequently polarized into M1 macrophages with lipopolysaccharide. The results indicated that LINC01133 and SLAMF9 were downregulated in wound tissues of patients treated with PAE. Furthermore, PAE suppressed M1 macrophage polarization and enhanced human umbilical vein endothelial cell (HUVEC) proliferation, migration, and angiogenesis. These effects were diminished when LINC01133 or SLAMF9 were overexpressed. Mechanistically, LINC01133 was shown to upregulate SLAMF9 through interaction with ELAVL1. Overexpression of SLAMF9 reversed the effects of LINC01133 silencing on macrophage polarization and HUVEC functions. In conclusion, PAE facilitates the healing of infected diabetic ulcers by downregulating the LINC01133/SLAMF9 pathway.
Collapse
Affiliation(s)
- Yuhang Yang
- Department of Anorectal Disease 1, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Jun Huang
- Department of Anorectal Disease 1, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Xintian Li
- Department of Anorectal Disease 1, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Renjing Lin
- Department of Anorectal Disease 1, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Xiaoyan Wang
- Department of Anorectal Disease 1, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Ge Xiao
- Department of Anorectal Disease 1, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Juanni Zeng
- Department of Anorectal Disease 1, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China; Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine/Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, China.
| | - Zhenquan Wang
- Department of Anorectal Disease 3, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China.
| |
Collapse
|
5
|
Qin B, Peng Q, Dong H, Lei L, Wu S. Non-coding RNAs in diabetic foot ulcer- a focus on infected wounds. Diabetes Metab Res Rev 2024; 40:e3740. [PMID: 37839046 DOI: 10.1002/dmrr.3740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/19/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Diabetes mellitus is associated with a wide range of neuropathies, vasculopathies, and immunopathies, resulting in many complications. More than 30% of diabetic patients risk developing diabetic foot ulcers (DFUs). Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play essential roles in various biological functions in the hyperglycaemic environment that determines the development of DFU. Ulceration results in tissue breakdown and skin barrier scavenging, thereby facilitating bacterial infection and biofilm formation. Many bacteria contribute to diabetic foot infection (DFI), including Staphylococcus aureus (S. aureus) et al. A heterogeneous group of "ncRNAs," termed small RNAs (sRNAs), powerfully regulates biofilm formation and DFI healing. Multidisciplinary foot care interventions have been identified for nonhealing ulcers. With an appreciation of the link between disease processes and ncRNAs, a novel therapeutic model of bioactive materials loaded with ncRNAs has been developed to prevent and manage diabetic foot complications.
Collapse
Affiliation(s)
- Boquan Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Peng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxian Dong
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shizhou Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Kuang LW, Zhang CC, Li BH, Liu HZ, Wang H, Li GC. Identification of the MALAT1/miR-106a-5p/ZNF148 feedback loop in regulating HaCaT cell proliferation, migration and apoptosis. Regen Med 2023; 18:239-258. [PMID: 36710662 DOI: 10.2217/rme-2022-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Aims: This study aims to investigate the function of positive feedback loops involving noncoding RNA in diabetic wound healing. Methods: We developed a mouse diabetic wound model to confirm that hyperglycemia can impair wound healing. We also used an in vitro keratinocyte model in high-glucose conditions to investigate the mechanism of delayed wound healing. Results: MALAT1 was decreased in diabetic mouse wound tissue and can promote keratinocyte biological functions. MALAT1 could bind to miR-106a-5p to modulate the expression of ZNF148, a target gene of miR-106a-5p. Surprisingly, ZNF148 bound to a region in the MALAT1 promoter to stimulate gene expression. Conclusion: ZNF148-activated MALAT1 increases ZNF148 expression by competitively binding miR-106a-3p, generating a positive feedback loop that enhances keratinocyte function.
Collapse
Affiliation(s)
- Li-Wen Kuang
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, 430062, PR China
| | - Chen-Chen Zhang
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, 430062, PR China
| | - Bing-Hui Li
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, 430062, PR China
| | - Hui-Zhen Liu
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, 430062, PR China
| | - Hui Wang
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, 430062, PR China
| | - Gong-Chi Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, 430022, PR China
| |
Collapse
|
7
|
Kuang L, Zhang C, Li B, Deng H, Chen R, Li G. Human Keratinocyte-Derived Exosomal MALAT1 Promotes Diabetic Wound Healing by Upregulating MFGE8 via microRNA-1914-3p. Int J Nanomedicine 2023; 18:949-970. [PMID: 36852184 PMCID: PMC9961177 DOI: 10.2147/ijn.s399785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Purpose Diabetic wound is a highly prevalent and refractory disease. Extensive studies have confirmed that keratinocytes and macrophages play an important role in the process of wound healing. Additionally, exosomes are regarded as a vital intercellular communication tool. This study aimed to investigate the role of human keratinocyte-derived exosomal MALAT1 in the treatment of diabetic wound by influencing the biological function of macrophages. Methods We mainly assessed the function of MALAT1 on the biological changes of macrophages, and the expression of MALAT1 in the keratinocyte-exosomes analyzed by quantitative real-time polymerase chain reaction (RT-qPCR). The downstream interaction between RNAs or proteins was assessed by mechanistic experiments. Besides, we evaluated the effects of human keratinocyte-derived exosomal MALAT1 on diabetic wound healing in vivo to verify in vitro results. Results We demonstrated that human keratinocyte-derived exosomal MALAT1 enhanced the biological functions of high glucose-injured macrophages, including phagocytosis, converting to a pro-healing phenotype and reducing apoptosis. Mechanistically, MALAT1 accelerated the expression of MFGE8 by competitively binding to miR-1914-3p, thereby affecting the function of macrophages and the signal axis of TGFB1/SMAD3, and finally promoting the healing of diabetic wounds. Human keratinocyte-derived exosomal MALAT1 might promote collagen deposition, ECM remodeling, and expression of MFGE8, VEGF, and CD31 but reduce the expression of TGFB and SMAD3 in an in vivo model of diabetic mice wounds, which accelerated diabetic wound healing and restored its function. Conclusion The current study revealed that human keratinocyte-derived exosomal MALAT1 would suppress miR-1914-3p to activate MFGE8 and eventually promote wound healing by enhancing macrophage phagocytosis, converting to a pro-healing phenotype and reducing apoptosis. It proposed that keratinocyte-derived exosomes might have the capacity to serve as a new method for the clinical treatment of diabetic wound.
Collapse
Affiliation(s)
- Liwen Kuang
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430062, People’s Republic of China
| | - Chenchen Zhang
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430062, People’s Republic of China
| | - Binghui Li
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430062, People’s Republic of China
| | - Haibo Deng
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430062, People’s Republic of China
| | - Ran Chen
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430062, People’s Republic of China
| | - Gongchi Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China,Correspondence: Gongchi Li, Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Road, Wuhan, Hubei, 430022, People’s Republic of China, Tel +8613618615209, Email
| |
Collapse
|
8
|
Tang YB, Uwimana MMP, Zhu SQ, Zhang LX, Wu Q, Liang ZX. Non-coding RNAs: Role in diabetic foot and wound healing. World J Diabetes 2022; 13:1001-1013. [PMID: 36578864 PMCID: PMC9791568 DOI: 10.4239/wjd.v13.i12.1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic foot ulcer (DFU) and poor wound healing are chronic complications in patients with diabetes. The increasing incidence of DFU has resulted in huge pressure worldwide. Diagnosing and treating this condition are therefore of great importance to control morbidity and improve prognosis. Finding new markers with potential diagnostic and therapeutic utility in DFU has gathered increasing interest. Wound healing is a process divided into three stages: Inflammation, proliferation, and regeneration. Non-coding RNAs (ncRNAs), which are small protected molecules transcribed from the genome without protein translation function, have emerged as important regulators of diabetes complications. The deregulation of ncRNAs may be linked to accelerated DFU development and delayed wound healing. Moreover, ncRNAs can be used for therapeutic purposes in diabetic wound healing. Herein, we summarize the role of microRNAs, long ncRNAs, and circular RNAs in diverse stages of DFU wound healing and their potential use as novel therapeutic targets.
Collapse
Affiliation(s)
- Yi-Bo Tang
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Muhuza Marie Parfaite Uwimana
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Shu-Qi Zhu
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Li-Xia Zhang
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Qi Wu
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Zhao-Xia Liang
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
9
|
Shen J, Zhao X, Zhong Y, Yang P, Gao P, Wu X, Wang X, An W. Exosomal ncRNAs: The pivotal players in diabetic wound healing. Front Immunol 2022; 13:1005307. [PMID: 36420273 PMCID: PMC9677725 DOI: 10.3389/fimmu.2022.1005307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Diabetes is the most prevalent metabolic disease in the world today. In addition to elevated blood glucose, it also causes serious complications, which has a significant effect on the quality of life of patients. Diabetic trauma is one of complications as a result of the interaction of diabetic neuropathy, peripheral vascular disease, infection, trauma, and other factors. Diabetic trauma usually leads to poor healing of the trauma and even to severe foot ulcers, wound gangrene, and even amputation, causing serious psychological, physical, and financial burdens to diabetic patients. Non-coding RNAs (ncRNAs) carried by exosomes have been demonstrated to be relevant to the development and treatment of diabetes and its complications. Exosomes act as vehicle, which contain nucleic acids such as mRNA and microRNA (miRNA), and play a role in the intercellular communication and the exchange of substances between cells. Because exosomes are derived from cells, there are several advantages over synthetic nanoparticle including good biocompatibility and low immunogenicity. Exosomal ncRNAs could serve as markers for the clinical diagnosis of diabetes and could also be employed to accelerate diabetic wound healing via the regulation of the immune response and modulation of cell function. ncRNAs in exosomes can be employed to promote diabetic wound healing by regulating inflammation and accelerating re-vascularization, re-epithelialization, and extracellular matrix remodeling. Herein, exosomes in terms of ncRNA (miRNA, lncRNA, and circRNA) to accelerate diabetic wounds healing were summarized, and we discussed the challenge of the loading strategy of ncRNA into exosomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenlin An
- *Correspondence: Xudong Wang, ; Wenlin An,
| |
Collapse
|