1
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
2
|
Okada S, Nishimura K, Ainaya Q, Shiraishi K, Anufriev SA, Sivaev IB, Sakurai Y, Suzuki M, Yokoyama M, Nakamura H. Development of a Gadolinium-Boron-Conjugated Albumin for MRI-Guided Neutron Capture Therapy. Mol Pharm 2023; 20:6311-6318. [PMID: 37909734 DOI: 10.1021/acs.molpharmaceut.3c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Noninvasive monitoring of boron agent biodistribution is required in advance of neutron capture therapy. In this study, we developed a gadolinium-boron-conjugated albumin (Gd-MID-BSA) for MRI-guided neutron capture therapy. Gd-MID-BSA was prepared by labeling bovine serum albumin with a maleimide-functionalized gadolinium complex and a maleimide-functionalized closo-dodecaborate orthogonally. The accumulation of Gd-MID-BSA in tumors in CT26 tumor-bearing mice reached a maximum at 24 h after the injection, as confirmed by T1-based MRI and biodistribution analysis using inductively coupled plasma optical emission spectrometry. The concentrations of boron and gadolinium in the tumors exceeded the thresholds required for boron neutron capture therapy (BNCT) and gadolinium neutron capture therapy (GdNCT), respectively. The boron concentration ratios of tumor to blood and tumor to normal tissues satisfied the clinical criteria, indicating the reduction of undesired nuclear reactions of endogenous nuclei. The molar ratio of boron to gadolinium in the tumor was close to that of Gd-MID-BSA, demonstrating that the accumulation of Gd-MID-BSA in the tumor can be evaluated by MRI. Thermal neutron irradiation with Gd-MID-BSA resulted in significant suppression of tumor growth compared to the group injected with a boron-conjugated albumin without gadolinium (MID-BSA). The neutron irradiation with Gd-MID-BSA did not cause apparent side effects. These results demonstrate that the conjugation of gadolinium and boron within the albumin molecule offers a novel strategy for enhancing the therapeutic effect of BNCT and the potential of MRI-guided neutron capture therapy as a promising treatment for malignant tumors.
Collapse
Affiliation(s)
- Satoshi Okada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
| | - Kai Nishimura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
| | - Qarri Ainaya
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
| | - Kouichi Shiraishi
- Division of Medical Engineering, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1 Kashiwashita, Kashiwa, Chiba 277-8567, Japan
| | - Sergey A Anufriev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| | - Igor B Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494, Japan
| | - Masayuki Yokoyama
- Division of Medical Engineering, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1 Kashiwashita, Kashiwa, Chiba 277-8567, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
3
|
Marforio TD, Carboni A, Calvaresi M. In Vivo Application of Carboranes for Boron Neutron Capture Therapy (BNCT): Structure, Formulation and Analytical Methods for Detection. Cancers (Basel) 2023; 15:4944. [PMID: 37894311 PMCID: PMC10605826 DOI: 10.3390/cancers15204944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Carboranes have emerged as one of the most promising boron agents in boron neutron capture therapy (BNCT). In this context, in vivo studies are particularly relevant, since they provide qualitative and quantitative information about the biodistribution of these molecules, which is of the utmost importance to determine the efficacy of BNCT, defining their localization and (bio)accumulation, as well as their pharmacokinetics and pharmacodynamics. First, we gathered a detailed list of the carboranes used for in vivo studies, considering the synthesis of carborane derivatives or the use of delivery system such as liposomes, micelles and nanoparticles. Then, the formulation employed and the cancer model used in each of these studies were identified. Finally, we examined the analytical aspects concerning carborane detection, identifying the main methodologies applied in the literature for ex vivo and in vivo analysis. The present work aims to identify the current strengths and weakness of the use of carboranes in BNCT, establishing the bottlenecks and the best strategies for future applications.
Collapse
Affiliation(s)
| | - Andrea Carboni
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
4
|
Fujikawa Y, Fukuo Y, Nishimura K, Tsujino K, Kashiwagi H, Hiramatsu R, Nonoguchi N, Furuse M, Takami T, Hu N, Miyatake SI, Takata T, Tanaka H, Watanabe T, Suzuki M, Kawabata S, Nakamura H, Wanibuchi M. Evaluation of the Effectiveness of Boron Neutron Capture Therapy with Iodophenyl-Conjugated closo-Dodecaborate on a Rat Brain Tumor Model. BIOLOGY 2023; 12:1240. [PMID: 37759639 PMCID: PMC10525593 DOI: 10.3390/biology12091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
High-grade gliomas present a significant challenge in neuro-oncology because of their aggressive nature and resistance to current therapies. Boron neutron capture therapy (BNCT) is a potential treatment method; however, the boron used by the carrier compounds-such as 4-borono-L-phenylalanine (L-BPA)-have limitations. This study evaluated the use of boron-conjugated 4-iodophenylbutanamide (BC-IP), a novel boron compound in BNCT, for the treatment of glioma. Using in vitro drug exposure experiments and in vivo studies, we compared BC-IP and BPA, with a focus on boron uptake and retention characteristics. The results showed that although BC-IP had a lower boron uptake than BPA, it exhibited superior retention. Furthermore, despite lower boron accumulation in tumors, BNCT mediated by BC-IP showed significant survival improvement in glioma-bearing rats compared to controls (not treated animals and neutrons only). These results suggest that BC-IP, with its unique properties, may be an alternative boron carrier for BNCT. Further research is required to optimize this potential treatment modality, which could significantly contribute to advancing the treatment of high-grade gliomas.
Collapse
Affiliation(s)
- Yoshiki Fujikawa
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (Y.F.); (Y.F.); (K.T.); (H.K.); (R.H.); (N.N.); (M.F.); (T.T.); (M.W.)
| | - Yusuke Fukuo
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (Y.F.); (Y.F.); (K.T.); (H.K.); (R.H.); (N.N.); (M.F.); (T.T.); (M.W.)
| | - Kai Nishimura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (K.N.); (H.N.)
| | - Kohei Tsujino
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (Y.F.); (Y.F.); (K.T.); (H.K.); (R.H.); (N.N.); (M.F.); (T.T.); (M.W.)
| | - Hideki Kashiwagi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (Y.F.); (Y.F.); (K.T.); (H.K.); (R.H.); (N.N.); (M.F.); (T.T.); (M.W.)
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (Y.F.); (Y.F.); (K.T.); (H.K.); (R.H.); (N.N.); (M.F.); (T.T.); (M.W.)
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (Y.F.); (Y.F.); (K.T.); (H.K.); (R.H.); (N.N.); (M.F.); (T.T.); (M.W.)
| | - Motomasa Furuse
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (Y.F.); (Y.F.); (K.T.); (H.K.); (R.H.); (N.N.); (M.F.); (T.T.); (M.W.)
| | - Toshihiro Takami
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (Y.F.); (Y.F.); (K.T.); (H.K.); (R.H.); (N.N.); (M.F.); (T.T.); (M.W.)
| | - Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (N.H.); (S.-I.M.)
| | - Shin-Ichi Miyatake
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (N.H.); (S.-I.M.)
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (T.T.); (H.T.); (T.W.); (M.S.)
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (T.T.); (H.T.); (T.W.); (M.S.)
| | - Tsubasa Watanabe
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (T.T.); (H.T.); (T.W.); (M.S.)
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (T.T.); (H.T.); (T.W.); (M.S.)
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (Y.F.); (Y.F.); (K.T.); (H.K.); (R.H.); (N.N.); (M.F.); (T.T.); (M.W.)
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (K.N.); (H.N.)
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (Y.F.); (Y.F.); (K.T.); (H.K.); (R.H.); (N.N.); (M.F.); (T.T.); (M.W.)
| |
Collapse
|