1
|
Balbisi M, Sugár S, Turiák L. Protein glycosylation in lung cancer from a mass spectrometry perspective. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38576136 DOI: 10.1002/mas.21882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/27/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Lung cancer is a severe disease for which better diagnostic and therapeutic approaches are urgently needed. Increasing evidence implies that aberrant protein glycosylation plays a crucial role in the pathogenesis and progression of lung cancer. Differences in glycosylation patterns have been previously observed between healthy and cancerous samples as well as between different lung cancer subtypes, which suggests untapped diagnostic potential. In addition, understanding the changes mediated by glycosylation may shed light on possible novel therapeutic targets and personalized treatment strategies for lung cancer patients. Mass spectrometry based glycomics and glycoproteomics have emerged as powerful tools for in-depth characterization of changes in protein glycosylation, providing valuable insights into the molecular basis of lung cancer. This paper reviews the literature on the analysis of protein glycosylation in lung cancer using mass spectrometry, which is dominated by manuscripts published over the past 5 years. Studies analyzing N-glycosylation, O-glycosylation, and glycosaminoglycan patterns in tissue, serum, plasma, and rare biological samples of lung cancer patients are highlighted. The current knowledge on the potential utility of glycan and glycoprotein biomarkers is also discussed.
Collapse
Affiliation(s)
- Mirjam Balbisi
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Simon Sugár
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Lilla Turiák
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
2
|
Zhang Y, Nie R, Liu W, Dong S, Yang J, Wang X, Wang Y, Zheng L. Sulfation on polysaccharides from Zizania latifolia extracted using ultrasound: Characterization, antioxidant and anti-non-small cell lung cancer activities. ULTRASONICS SONOCHEMISTRY 2024; 103:106803. [PMID: 38335835 PMCID: PMC10873727 DOI: 10.1016/j.ultsonch.2024.106803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Zizania latifolia is a highly nutritious vegetable being praised as "Ginseng in Water". Polysaccharides are the main bioactive ingredients in Z. latifolia, but there have been no reports on the yield- and activity-guided ultrasonic-assisted extraction (UAE), sulfation and anti-non-small cell lung cancer (NSCLC) activity. In this study, Z. latifolia polysaccharides (ZLP) were extracted using UAE under an optimized power, followed by sulfation to give three derivatives (SZLP-1 ∼ 3). After characterization, the antioxidant and anti-NSCLC activities were evaluated. The optimal ultrasonic power for ZLP extraction was screened out to be 300 W, under which the yield was 16.9 ± 2.10 %, and the scavenging rate against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical was 63.3 ± 5.71 %, significantly higher than those of other powers and hot-water extraction. A series of characterizations fully confirmed the sulfated modification of ZLP. Sulfation improved the antioxidation of ZLP and was positively proportional to the degree of substitution (DS), of which SZLP-2 with a DS of 15.1 ± 2.50 elicited strong hydroxyl and DPPH radicals-scavenging capacities. Meanwhile, SZLP-2 also exerted promising anti-NSCLC potency via inhibiting A549 cell proliferation, with a median inhibition concentration (IC50) of 0.57 ± 0.01 mg/mL at 72 h, markedly smaller than that of unmodified ZLP (0.78 ± 0.04 mg/mL). In summary, the yield- and activity-guided UAE led to the ZLP with high yield and strong antioxidation. Further sulfation enhanced the bioactivities and produced the promising SZLP-2, which showed great potential in the development of novel antioxidant and anti-NSCLC drug.
Collapse
Affiliation(s)
- Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China.
| | - Rongnan Nie
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Wenxuan Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Shuaiyi Dong
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Jingchun Yang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Xinyu Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Yang Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Lixue Zheng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| |
Collapse
|
3
|
Li J, Xu X, Liu J, Chen Y, Jin S, Zhang G, Yin S, Wang J, Tian K, Luan X, Tan X, Zhao X, Zhang N, Wang Z. N-Acetylglucosamine mitigates lung injury and pulmonary fibrosis induced by bleomycin. Biomed Pharmacother 2023; 166:115069. [PMID: 37633052 DOI: 10.1016/j.biopha.2023.115069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 08/28/2023] Open
Abstract
Lung injury and pulmonary fibrosis contribute to morbidity and mortality, and, in particular, are characterized as leading cause on confirmed COVID-19 death. To date, efficient therapeutic approach for such lung diseases is lacking. N-Acetylglucosamine (NAG), an acetylated derivative of glucosamine, has been proposed as a potential protector of lung function in several types of lung diseases. The mechanism by which NAG protects against lung injury, however, remains unclear. Here, we show that NAG treatment improves pulmonary function in bleomycin (BLM)-induced lung injury model measured by flexiVent system. At early phase of lung injury, NAG treatment results in silenced immune response by targeting ARG1+ macrophages activation, and, consequently, blocks KRT8+ transitional stem cell in the alveolar region to stimulate PDGF Rβ+ fibroblasts hyperproliferation, thereby attenuating the pulmonary fibrosis. This combinational depression of immune response and extracellular matrix deposition within the lung mitigates lung injury and pulmonary fibrosis induced by BLM. Our findings provide novel insight into the protective role of NAG in lung injury.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China; Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Jiane Liu
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China; Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Yunqing Chen
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Shengxi Jin
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Guangmin Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Shulan Yin
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Jingqi Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Kangqi Tian
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaoyang Luan
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaohua Tan
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiangzhong Zhao
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, China
| | - Na Zhang
- Yantai Zhifu Baoshang Hemodialysis Center,Yantai, Shandong 264001, China.
| | - Zheng Wang
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China; Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|