1
|
Bello SA, Cruz-Lebrón J, Rodríguez-Rivera OA, Nicolau E. Bioactive Scaffolds as a Promising Alternative for Enhancing Critical-Size Bone Defect Regeneration in the Craniomaxillofacial Region. ACS APPLIED BIO MATERIALS 2023; 6:4465-4503. [PMID: 37877225 DOI: 10.1021/acsabm.3c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Reconstruction of critical-size bone defects (CSDs) in the craniomaxillofacial (CMF) region remains challenging. Scaffold-based bone-engineered constructs have been proposed as an alternative to the classical treatments made with autografts and allografts. Scaffolds, a key component of engineered constructs, have been traditionally viewed as biologically passive temporary replacements of deficient bone lacking intrinsic cues to promote osteogenesis. Nowadays, scaffolds are functionalized, giving rise to bioactive scaffolds promoting bone regeneration more effectively than conventional counterparts. This review focuses on the three approaches most used to bioactivate scaffolds: (1) conferring microarchitectural designs or surface nanotopography; (2) loading bioactive molecules; and (3) seeding stem cells on scaffolds, providing relevant examples of in vivo (preclinical and clinical) studies where these methods are employed to enhance CSDs healing in the CMF region. From these, adding bioactive molecules (specifically bone morphogenetic proteins or BMPs) to scaffolds has been the most explored to bioactivate scaffolds. Nevertheless, the downsides of grafting BMP-loaded scaffolds in patients have limited its successful translation into clinics. Despite these drawbacks, scaffolds containing safer, cheaper, and more effective bioactive molecules, combined with stem cells and topographical cues, remain a promising alternative for clinical use to treat CSDs in the CMF complex replacing autografts and allografts.
Collapse
Affiliation(s)
- Samir A Bello
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Junellie Cruz-Lebrón
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Osvaldo A Rodríguez-Rivera
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
2
|
Farshidfar N, Amiri MA, Jafarpour D, Hamedani S, Niknezhad SV, Tayebi L. The feasibility of injectable PRF (I-PRF) for bone tissue engineering and its application in oral and maxillofacial reconstruction: From bench to chairside. BIOMATERIALS ADVANCES 2022; 134:112557. [DOI: https:/doi.org/10.1016/j.msec.2021.112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
3
|
Farshidfar N, Amiri MA, Jafarpour D, Hamedani S, Niknezhad SV, Tayebi L. The feasibility of injectable PRF (I-PRF) for bone tissue engineering and its application in oral and maxillofacial reconstruction: From bench to chairside. BIOMATERIALS ADVANCES 2022; 134:112557. [PMID: 35527147 PMCID: PMC9295636 DOI: 10.1016/j.msec.2021.112557] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Among all the biomaterials introduced in the field of bone tissue engineering, injectable platelet-rich fibrin (I-PRF) has recently gained considerable attention. I-PRF, as a rich source of biologically active molecules, is a potential candidate which can be easily obtained in bedside and constitutes several biological factors which can result in higher anti-bacterial, anti-inflammatory and regenerative capabilities. According to the studies evaluating the osteogenic efficacy of I-PRF, this biomaterial has exhibited favorable outcomes in terms of adhesion, differentiation, migration, proliferation and mineralization potential of stem cells. In addition, the injectability and ease-of-applicability of this biomaterial has led to its various clinical applications in the oral and maxillofacial bone regeneration such as ridge augmentation, sinus floor elevation, cleft palate reconstruction and so on. Furthermore, to enhance the clinical performance of I-PRF, albumin gel-PRF as a long-lasting material for long-term utilization has been recently introduced with a gradual increase in growth factor release pattern. This review provides a comprehensive approach to better evaluate the applicability of I-PRF by separately appraising its performance in in-vitro, in-vivo and clinical situations. The critical approach of this review toward the different production protocols and different physical and biological aspects of I-PRF can pave the way for future studies to better assess the efficacy of I-PRF in bone regeneration.
Collapse
Affiliation(s)
- Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dana Jafarpour
- Faculty of Dentistry, McGill University, Montreal, Canada
| | - Shahram Hamedani
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA.
| |
Collapse
|
4
|
Aghali A. Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy. Cells 2021; 10:cells10112993. [PMID: 34831216 PMCID: PMC8616509 DOI: 10.3390/cells10112993] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Craniofacial bone defects can result from various disorders, including congenital malformations, tumor resection, infection, severe trauma, and accidents. Successfully regenerating cranial defects is an integral step to restore craniofacial function. However, challenges managing and controlling new bone tissue formation remain. Current advances in tissue engineering and regenerative medicine use innovative techniques to address these challenges. The use of biomaterials, stromal cells, and growth factors have demonstrated promising outcomes in vitro and in vivo. Natural and synthetic bone grafts combined with Mesenchymal Stromal Cells (MSCs) and growth factors have shown encouraging results in regenerating critical-size cranial defects. One of prevalent growth factors is Bone Morphogenetic Protein-2 (BMP-2). BMP-2 is defined as a gold standard growth factor that enhances new bone formation in vitro and in vivo. Recently, emerging evidence suggested that Megakaryocytes (MKs), induced by Thrombopoietin (TPO), show an increase in osteoblast proliferation in vitro and bone mass in vivo. Furthermore, a co-culture study shows mature MKs enhance MSC survival rate while maintaining their phenotype. Therefore, MKs can provide an insight as a potential therapy offering a safe and effective approach to regenerating critical-size cranial defects.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47908, USA
| |
Collapse
|
5
|
Farshidfar N, Amiri MA, Jafarpour D, Hamedani S, Niknezhad SV, Tayebi L. The feasibility of injectable PRF (I-PRF) for bone tissue engineering and its application in oral and maxillofacial reconstruction: From bench to chairside. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021. [DOI: https://doi.org/10.1016/j.msec.2021.112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Maxillary Sinus Floor Augmentation With Autogenous Bone Graft From the Ascending Mandibular Ramus. IMPLANT DENT 2019; 28:46-53. [PMID: 30475244 DOI: 10.1097/id.0000000000000845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE The objective of the present study was to assess patient satisfaction and esthetic implant outcome 10 years after maxillary sinus floor augmentation with autogenous bone graft from the mandibular ramus. MATERIALS AND METHODS Maxillary sinus floor augmentation with autogenous bone graft from the mandibular ramus was conducted in 48 consecutive patients from 2002 to 2006. Records and radiographs were retrospectively analyzed. Twenty-four patients including 34 sinus augmentation procedures and 37 implants were evaluated after 10 years. Subjective and professional evaluations of the final periimplant soft tissue, implant crown, and total implant treatment were conducted. RESULTS The 10-year survival of suprastructures and implants was 84% and 100%, respectively. The patients were highly satisfied with the esthetic and implant treatment outcome expressed by scores >90 on the visual analog scale. Most implants were characterized by scores of 1 or 2, resulting in a mean pink esthetic score of 9 (maximum 14) and a white esthetic score of 8 (maximum 10). CONCLUSION Maxillary sinus floor augmentation with autogenous bone graft is characterized by high long-term implant survival rate and patient satisfaction.
Collapse
|
7
|
Açil Y, Möller B, Wiltfang J, Fändrich F, Ungefroren H. Programmable cells of monocytic origin as a source of osteochondroprogenitors: Effect of growth factors on osteogenic differentiation. J Craniomaxillofac Surg 2017; 45:1515-1520. [PMID: 28688862 DOI: 10.1016/j.jcms.2017.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 12/20/2022] Open
Abstract
We have demonstrated previously that peripheral blood monocytes can be converted in vitro to a multipotent stem cell-like cell termed programmable cell of monocytic origin (PCMO) and subsequently into cells with chondrocyte-like phenotype. Here, we investigated whether PCMO could also be differentiated into osteoblast-like cells using growth factors with known osteoinductive potency. Following stimulation with BMP-2, BMP-7, IGF-1 or TGF-β1 for 7 and 14 days, PCMOs were analyzed for mRNA expression of collagen types I and V, alkaline phosphatase, osteocalcin, runt-related transcription factor-2 (Runx2) and Osterix (Osx) by quantitative RT-PCR (qPCR) and the levels of collagen I in culture supernatants by ELISA. The expression of osteoblastic markers was evident, albeit at a different extent in cultures of PCMOs after treatment with the above-mentioned growth factors. Culture supernatants from PCMOs stimulated for 6-10 days with BMP-2, BMP-7, IGF-1 or TGF-β1 contained high levels of collagen type I, together with earlier data indicating synthesis and proper secretion. The findings suggest that PCMOs can transform into cells that are phenotypically similar to osteoblasts and identify these cells as osteochondroprogenitors. The possibility of differentiating PCMOs from peripheral blood in sizable quantities could be a novel way to obtain autologous bone-like substitutes without donor-site morbidity.
Collapse
Affiliation(s)
- Yahya Açil
- Clinic of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Björn Möller
- Clinic of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Jörg Wiltfang
- Clinic of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Fred Fändrich
- Institute for Applied Cell Therapy, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Hendrik Ungefroren
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany.
| |
Collapse
|
8
|
Kotsougiani D, Hundepool CA, Bulstra LF, Friedrich PF, Shin AY, Bishop AT. Recipient-derived angiogenesis with short term immunosuppression increases bone remodeling in bone vascularized composite allotransplantation: A pilot study in a swine tibial defect model. J Orthop Res 2017; 35:1242-1249. [PMID: 27471833 DOI: 10.1002/jor.23378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/26/2016] [Indexed: 02/04/2023]
Abstract
Current vascularized composite allotransplantation (VCA) transplantation protocols rely upon life-long immune modulation to maintain tissue perfusion. Alternatively, bone-only VCA viability may be maintained in small animal models using surgical angiogenesis from implanted autogenous vessels to develop a neoangiogenic bone circulation that will not be rejected. This study tests the method's efficacy in a large animal model as a bridge to clinical practice, quantifying the remodeling and mechanical properties of porcine tibial VCAs. A segmental tibial defect was reconstructed in Yucatan miniature swine by transplantation of a matched tibia segment from an immunologically mismatched donor. Microsurgical repair of nutrient vessels was performed in all pigs, with simultaneous intramedullary placement of an autogenous arteriovenous (AV) bundle in Group 2. Group 1 served as a no-angiogenesis control. All received 2 weeks of immunosuppression. After 16 weeks, micro-CT and histomorphometric analyses were used to evaluate healing and remodeling. Axial compression and nanoindentation studies evaluated bone mechanical properties. Micro-CT analysis demonstrated significantly more new bone formation and bone remodeling at the distal allotransplant/recipient junction and on the endosteal surfaces of Group 2 tibias (p = 0.03). Elastic modulus and hardness were not adversely affected by angiogenesis. The combination of 2 weeks of immunosuppression and autogenous AV-bundle implantation within a microsurgically transplanted tibial allotransplant permitted long-term allotransplant survival over the study period of 16 weeks in this large animal model. Angiogenesis increased bone formation and remodeling without adverse mechanical effects. The method may allow future composite-tissue allotransplantation of bone without the risks associated with long-term immunosuppression. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1242-1249, 2017.
Collapse
Affiliation(s)
- Dimitra Kotsougiani
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota.,Department of Hand-, Plastic- and Reconstructive Surgery, -Burn Center-, BG Trauma Center Ludwigshafen, Department of Plastic Surgery, University of Heidelberg, Heidelberg, Germany
| | - Caroline A Hundepool
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota.,Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Liselotte F Bulstra
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota.,Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Patricia F Friedrich
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota
| | - Alexander Y Shin
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota
| | - Allen T Bishop
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota
| |
Collapse
|
9
|
BMP-7 Preserves Surface Integrity of Degradable-ceramic Cranioplasty in a Göttingen Minipig Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1255. [PMID: 28458969 PMCID: PMC5404440 DOI: 10.1097/gox.0000000000001255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The aim of the study was to evaluate the integrity of a craniotomy grafted site in a minipig model using different highly porous calcium phosphate ceramic scaffolds either loaded or nonloaded with bone morphogenetic protein-7 (BMP-7). METHODS Four craniotomies with a diameter of 15 mm (critical-size defect) were grafted with different highly porous (92-94 vol%) calcium phosphate ceramics [hydroxyapatite (HA), tricalcium phosphate (TCP), and biphasic calcium phosphate (BCP; a mixture of HA and TCP)] in 10 Göttingen minipigs: (a) group I (n = 5): HA versus BCP; (b) group II (n = 5): TCP versus BCP. One scaffold of each composition was supplied with 250 μg of BMP-7. In vivo computed tomography scan and fluorochrome bone labeling were performed. Specimens were evaluated 14 weeks after surgery by environmental scanning electron microscopy, fluorescence microscopy, and Giemsa staining histology. RESULTS BMP-7 significantly enhanced bone formation in TCP (P = 0.047). Slightly enhanced bone formation was observed in BCP (P = 0.059) but not in HA implants. BMP-7 enhanced ceramic degradation in TCP (P = 0.05) and BCP (P = 0.05) implants but not in HA implants. Surface integrity of grafted site was observed in all BMP-7-loaded implants after successful creeping substitution by the newly formed bone. In 9 of 10 HA implants without BMP-7, partial collapse of the implant site was observed. All TCP implants without BMP-7 collapsed. Fluorescent labeling showed bone formation at week 1 in BMP-7-stimulated implants. CONCLUSIONS BMP-7 supports bone formation, ceramic degradation, implant integration, and surface integrity of the grafted site.
Collapse
|
10
|
Choukroun J, Ghanaati S. Reduction of relative centrifugation force within injectable platelet-rich-fibrin (PRF) concentrates advances patients' own inflammatory cells, platelets and growth factors: the first introduction to the low speed centrifugation concept. Eur J Trauma Emerg Surg 2017; 44:87-95. [PMID: 28283682 PMCID: PMC5808086 DOI: 10.1007/s00068-017-0767-9] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/23/2017] [Indexed: 12/19/2022]
Abstract
Purpose The aim of this study was to analyze systematically the influence of the relative centrifugation force (RCF) on leukocytes, platelets and growth factor release within fluid platelet-rich fibrin matrices (PRF). Materials and methods Systematically using peripheral blood from six healthy volunteers, the RCF was reduced four times for each of the three experimental protocols (I–III) within the spectrum (710–44 g), while maintaining a constant centrifugation time. Flow cytometry was applied to determine the platelets and leukocyte number. The growth factor concentration was quantified 1 and 24 h after clotting using ELISA. Results Reducing RCF in accordance with protocol-II (177 g) led to a significantly higher platelets and leukocytes numbers compared to protocol-I (710 g). Protocol-III (44 g) showed a highly significant increase of leukocytes and platelets number in comparison to -I and -II. The growth factors’ concentration of VEGF and TGF-β1 was significantly higher in protocol-II compared to -I, whereas protocol-III exhibited significantly higher growth factor concentration compared to protocols-I and -II. These findings were observed among 1 and 24 h after clotting, as well as the accumulated growth factor concentration over 24 h. Discussion Based on the results, it has been demonstrated that it is possible to enrich PRF-based fluid matrices with leukocytes, platelets and growth factors by means of a single alteration of the centrifugation settings within the clinical routine. Conclusions We postulate that the so-called low speed centrifugation concept (LSCC) selectively enriches leukocytes, platelets and growth factors within fluid PRF-based matrices. Further studies are needed to evaluate the effect of cell and growth factor enrichment on wound healing and tissue regeneration while comparing blood concentrates gained by high and low RCF.
Collapse
Affiliation(s)
- J Choukroun
- Private Practice, Pain Therapy Center, Nice, France.
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, FORM (Frankfurt Orofacial Regenerative Medicine) Laboratory, University Hospital Frankfurt Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - S Ghanaati
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, FORM (Frankfurt Orofacial Regenerative Medicine) Laboratory, University Hospital Frankfurt Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Rubessa M, Polkoff K, Bionaz M, Monaco E, Milner DJ, Holllister SJ, Goldwasser MS, Wheeler MB. Use of Pig as a Model for Mesenchymal Stem Cell Therapies for Bone Regeneration. Anim Biotechnol 2017; 28:275-287. [PMID: 28267421 DOI: 10.1080/10495398.2017.1279169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone is a plastic tissue with a large healing capability. However, extensive bone loss due to disease or trauma requires extreme therapy such as bone grafting or tissue-engineering applications. Presently, bone grafting is the gold standard for bone repair, but presents serious limitations including donor site morbidity, rejection, and limited tissue regeneration. The use of stem cells appears to be a means to overcome such limitations. Bone marrow mesenchymal stem cells (BMSC) have been the choice thus far for stem cell therapy for bone regeneration. However, adipose-derived stem cells (ASC) have similar immunophenotype, morphology, multilineage potential, and transcriptome compared to BMSC, and both types have demonstrated extensive osteogenic capacity both in vitro and in vivo in several species. The use of scaffolds in combination with stem cells and growth factors provides a valuable tool for guided bone regeneration, especially for complex anatomic defects. Before translation to human medicine, regenerative strategies must be developed in animal models to improve effectiveness and efficiency. The pig presents as a useful model due to similar macro- and microanatomy and favorable logistics of use. This review examines data that provides strong support for the clinical translation of the pig model for bone regeneration.
Collapse
Key Words
- ASC, adipose-derived stem cells
- BMP, bone morphogenetic protein
- BMSC, bone marrow mesenchymal stem cells
- Bone
- DEG, differentially expressed genes
- FDR, false-discovery rate
- HA, hydroxyapatite
- HA/TCP, hydroxyapatite/tricalcium phosphate
- MRI, magnetic resonance imaging
- MSC, mesenchymal stem cells
- ONFH, osteonecrosis of the femoral head
- PCL, Poly (ϵ-caprolactone)
- PEG, polyethylene glycol
- PLGA, polylactic-coglycolic acid
- TCP, beta tri-calcium phosphate
- USSC, unrestricted somatic stem cell
- scaffolds
- stem cells
- swine
- tissue engineering
Collapse
Affiliation(s)
- Marcello Rubessa
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | - Kathryn Polkoff
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | | | - Elisa Monaco
- b Oregon State University , Corvallis , Oregon , USA
| | - Derek J Milner
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | | | - Michael S Goldwasser
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA.,d New Hanover Regional Medical Center , Wilmington , North Carolina , USA
| | - Matthew B Wheeler
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| |
Collapse
|
12
|
Cheng N, Park J, Olson J, Kwon T, Lee D, Lim R, Ha S, Kim R, Zhang X, Ting K, Tetradis S, Hong C. Effects of Bisphosphonate Administration on Cleft Bone Graft in a Rat Model. Cleft Palate Craniofac J 2017; 54:687-698. [PMID: 28094562 DOI: 10.1597/15-356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Bone grafts in patients with cleft lip and palate can undergo a significant amount of resorption. The aim of this study was to investigate the effects of bisphosphonates (BPs) on the success of bone grafts in rats. DESIGN Thirty-five female 15-week-old Fischer F344 Inbred rats were divided into the following experimental groups, each receiving bone grafts to repair an intraoral CSD: (1) Graft/saline: systemic administration of saline and (2) systemic administration of zoledronic acid immediately following surgery (graft/BP/T0), (3) 1 week postoperatively (graft/BP/T1), and (4) 3 weeks postoperatively (graft/BP/T2). As an additional control, the defect was left empty without bone graft. MAIN OUTCOME MEASURES Microcomputed tomography and histologic analyses were performed in addition to evaluation of osteoclasts through tartrate-resistant acid phosphatase staining. RESULTS Bone volume fraction (bone volume/tissue volume) for the delayed BP treatment groups (graft/BP/T1 = 45.4% ± 8.8%; graft/BP/T2 = 46.1% ± 12.4%) were significantly greater than that for the graft/saline group (31.0% ± 7.9%) and the graft/BP/T0 (27.6% ± 5.9%) 6 weeks postoperatively (P < .05). Hematoxylin and eosin staining confirmed an evident increase in bone volume and fusion of defect margins with existing palatal bone in the graft/BP/T1 and graft/BP/T2 groups. The graft/BP/T0 group showed the lowest bone volume with signs of acute inflammation. CONCLUSIONS Delayed BP administration following cleft bone graft surgery led to significant increase in bone volume and integration compared with saline controls. However, BP injection immediately after the surgery did not enhance bone volume, and rather, may negatively affect bone graft incorporation.
Collapse
|
13
|
Mele L, Vitiello PP, Tirino V, Paino F, De Rosa A, Liccardo D, Papaccio G, Desiderio V. Changing Paradigms in Cranio-Facial Regeneration: Current and New Strategies for the Activation of Endogenous Stem Cells. Front Physiol 2016; 7:62. [PMID: 26941656 PMCID: PMC4764712 DOI: 10.3389/fphys.2016.00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
Craniofacial area represent a unique district of human body characterized by a very high complexity of tissues, innervation and vascularization, and being deputed to many fundamental function such as eating, speech, expression of emotions, delivery of sensations such as taste, sight, and earing. For this reasons, tissue loss in this area following trauma or for example oncologic resection, have a tremendous impact on patients' quality of life. In the last 20 years regenerative medicine has emerged as one of the most promising approach to solve problem related to trauma, tissue loss, organ failure etc. One of the most powerful tools to be used for tissue regeneration is represented by stem cells, which have been successfully implanted in different tissue/organs with exciting results. Nevertheless, both autologous and allogeneic stem cell transplantation raise many practical and ethical concerns that make this approach very difficult to apply in clinical practice. For this reason different cell free approaches have been developed aiming to the mobilization, recruitment, and activation of endogenous stem cells into the injury site avoiding exogenous cells implant but instead stimulating patients' own stem cells to repair the lesion. To this aim many strategies have been used including functionalized bioscaffold, controlled release of stem cell chemoattractants, growth factors, BMPs, Platelet-Rich-Plasma, and other new strategies such as ultrasound wave and laser are just being proposed. Here we review all the current and new strategies used for activation and mobilization of endogenous stem cells in the regeneration of craniofacial tissue.
Collapse
Affiliation(s)
- Luigi Mele
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Pietro Paolo Vitiello
- Medical Oncology, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara," Second University of Naples Naples, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Francesca Paino
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Alfredo De Rosa
- Department of Odontology and Surgery, Second University of Naples Naples, Italy
| | - Davide Liccardo
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| |
Collapse
|
14
|
Li Y, Chen SK, Li L, Qin L, Wang XL, Lai YX. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Translat 2015; 3:95-104. [PMID: 30035046 PMCID: PMC5982383 DOI: 10.1016/j.jot.2015.05.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 12/25/2022] Open
Abstract
Large bone defects are serious complications that are most commonly caused by extensive trauma, tumour, infection, or congenital musculoskeletal disorders. If nonunion occurs, implantation for repairing bone defects with biomaterials developed as a defect filler, which can promote bone regeneration, is essential. In order to evaluate biomaterials to be developed as bone substitutes for bone defect repair, it is essential to establish clinically relevant in vitro and in vivo testing models for investigating their biocompatibility, mechanical properties, degradation, and interactional with culture medium or host tissues. The results of the in vitro experiment contribute significantly to the evaluation of direct cell response to the substitute biomaterial, and the in vivo tests constitute a step midway between in vitro tests and human clinical trials. Therefore, it is essential to develop or adopt a suitable in vivo bone defect animal model for testing bone substitutes for defect repair. This review aimed at introducing and discussing the most available and commonly used bone defect animal models for testing specific substitute biomaterials. Additionally, we reviewed surgical protocols for establishing relevant preclinical bone defect models with various animal species and the evaluation methodologies of the bone regeneration process after the implantation of bone substitute biomaterials. This review provides an important reference for preclinical studies in translational orthopaedics.
Collapse
Affiliation(s)
- Ye Li
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Shu-Kui Chen
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Li
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xin-Luan Wang
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu-Xiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol 2015; 11:140-50. [PMID: 25560703 PMCID: PMC4338988 DOI: 10.1038/nrendo.2014.234] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stem-cell-mediated bone repair has been used in clinical trials for the regeneration of large craniomaxillofacial defects, to slow the process of bone degeneration in patients with osteonecrosis of the femoral head and for prophylactic treatment of distal tibial fractures. Successful regenerative outcomes in these investigations have provided a solid foundation for wider use of stromal cells in skeletal repair therapy. However, employing stromal cells to facilitate or enhance bone repair is far from being adopted into clinical practice. Scientific, technical, practical and regulatory obstacles prevent the widespread therapeutic use of stromal cells. Ironically, one of the major challenges lies in the limited understanding of the mechanisms via which transplanted cells mediate regeneration. Animal models have been used to provide insight, but these models largely fail to reproduce the nuances of human diseases and bone defects. Consequently, the development of targeted approaches to optimize cell-mediated outcomes is difficult. In this Review, we highlight the successes and challenges reported in several clinical trials that involved the use of bone-marrow-derived mesenchymal or adipose-tissue-derived stromal cells. We identify several obstacles blocking the mainstream use of stromal cells to enhance skeletal repair and highlight technological innovations or areas in which novel techniques might be particularly fruitful in continuing to advance the field of skeletal regenerative medicine.
Collapse
Affiliation(s)
- Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Baltimore, MD 21205, USA
| | - Bruce A Bunnell
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Elizabeth Martin
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Trivia Frazier
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Ben P Hung
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Baltimore, MD 21205, USA
| | - Jeffrey M Gimble
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Loperfido C, Mesquida J, Lozada JL. Severe mandibular atrophy treated with a subperiosteal implant and simultaneous graft with rhBMP-2 and mineralized allograft: a case report. J ORAL IMPLANTOL 2015; 40:707-13. [PMID: 23574428 DOI: 10.1563/aaid-joi-d-12-00132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 71-year-old patient was successfully rehabilitated by means of a 3D model-derived, hydroxyapatite-coated titanium subperiosteal mandibular implant. The implant was specifically designed to allow bone augmentation. The deficient bone was simultaneously grafted with mineralized bone allograft and recombinant bone morphogenetic protein -2 (rhBMP-2). The 32-month postoperative cone beam computerized tomography follow-up showed vertical bone augmentation beneath the implant frame.
Collapse
|
17
|
Mostafa NZ, Talwar R, Shahin M, Unsworth LD, Major PW, Doschak MR. Cleft Palate Reconstruction Using Collagen and Nanofiber Scaffold Incorporating Bone Morphogenetic Protein in Rats. Tissue Eng Part A 2015; 21:85-95. [DOI: 10.1089/ten.tea.2014.0075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Reena Talwar
- Department of Dentistry, University of Alberta, Edmonton, Canada
| | - Mostafa Shahin
- Faculty of Pharmacy and Pharmaceutical Science, University of Alberta, Edmonton, Canada
| | - Larry D. Unsworth
- Department of Chemical Engineering, University of Alberta, Edmonton, Canada
| | - Paul W. Major
- Department of Dentistry, University of Alberta, Edmonton, Canada
| | - Michael R. Doschak
- Faculty of Pharmacy and Pharmaceutical Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
18
|
Abstract
The primary goals of craniofacial reconstruction include the restoration of the form, function, and facial esthetics, and in the case of pediatric patients, respect for craniofacial growth. The surgeon, however, faces several challenges when attempting a reconstructive cranioplasty. For that reason, craniofacial defect repair often requires sophisticated treatment strategies and multidisciplinary input. In the ideal situation, autologous tissue similar in structure and function to that which is missing can be utilized for repair. In the context of the craniofacial skeleton, autologous cranial bone, or secondarily rib, iliac crest, or scapular bone, is most favorable. Often, this option is limited by the finite supply of available bone. Therefore, alternative strategies to repair craniofacial defects are necessary. In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation. A growth factor-based approach utilizing bone morphogenetic proteins (BMPs) has demonstrated stimulatory effects on cranial bone and defect repair. When combined with cell-based and matrix-based models, regenerative goals can be optimized. This manuscript intends to review recent investigations of tissue engineering models used for the repair of craniofacial defects with a focus on the role of BMPs, scaffold materials, and novel cell lines. When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton.
Collapse
Affiliation(s)
- Chad M. Teven
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | - Sean Fisher
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Tong-Chuan He
- Department of Orthopedic Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | - Russell R. Reid
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
19
|
Lam S, Kuether J, Fong A, Reid R. Cranioplasty for large-sized calvarial defects in the pediatric population: a review. Craniomaxillofac Trauma Reconstr 2014; 8:159-70. [PMID: 26000090 DOI: 10.1055/s-0034-1395880] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/20/2014] [Indexed: 01/10/2023] Open
Abstract
Large-sized calvarial defects in pediatric patients pose a reconstructive challenge because of children's unique physiology, developing anatomy, and dynamic growth. We review the current literature and outcomes with autologous and alloplastic cranioplasty in the pediatric population.
Collapse
Affiliation(s)
- Sandi Lam
- Department of Neurosurgery, Texas Children's Hospital, Houston, Texas
| | - Justin Kuether
- Division of Plastic Surgery, Department of Surgery, University of Chicago, Chicago, Illinois
| | - Abigail Fong
- Division of Plastic Surgery, University of Chicago, Chicago, Illinois
| | - Russell Reid
- Division of Plastic Surgery, Department of Surgery, University of Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 2014; 9:18. [PMID: 24628910 PMCID: PMC3995444 DOI: 10.1186/1749-799x-9-18] [Citation(s) in RCA: 625] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/20/2014] [Indexed: 12/14/2022] Open
Abstract
This review analyzes the literature of bone grafts and introduces tissue engineering as a strategy in this field of orthopedic surgery. We evaluated articles concerning bone grafts; analyzed characteristics, advantages, and limitations of the grafts; and provided explanations about bone-tissue engineering technologies. Many bone grafting materials are available to enhance bone healing and regeneration, from bone autografts to graft substitutes; they can be used alone or in combination. Autografts are the gold standard for this purpose, since they provide osteogenic cells, osteoinductive growth factors, and an osteoconductive scaffold, all essential for new bone growth. Autografts carry the limitations of morbidity at the harvesting site and limited availability. Allografts and xenografts carry the risk of disease transmission and rejection. Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects. The combined use of scaffolds, healing promoting factors, together with gene therapy, and, more recently, three-dimensional printing of tissue-engineered constructs may open new insights in the near future.
Collapse
Affiliation(s)
| | | | - Ali Moshiri
- Division of Surgery and Radiology, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz 71345, Iran.
| | | |
Collapse
|
21
|
Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 2014. [PMID: 24628910 DOI: 10.1186/1749-799x9-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review analyzes the literature of bone grafts and introduces tissue engineering as a strategy in this field of orthopedic surgery. We evaluated articles concerning bone grafts; analyzed characteristics, advantages, and limitations of the grafts; and provided explanations about bone-tissue engineering technologies. Many bone grafting materials are available to enhance bone healing and regeneration, from bone autografts to graft substitutes; they can be used alone or in combination. Autografts are the gold standard for this purpose, since they provide osteogenic cells, osteoinductive growth factors, and an osteoconductive scaffold, all essential for new bone growth. Autografts carry the limitations of morbidity at the harvesting site and limited availability. Allografts and xenografts carry the risk of disease transmission and rejection. Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects. The combined use of scaffolds, healing promoting factors, together with gene therapy, and, more recently, three-dimensional printing of tissue-engineered constructs may open new insights in the near future.
Collapse
Affiliation(s)
| | | | - Ali Moshiri
- Division of Surgery and Radiology, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz 71345, Iran.
| | | |
Collapse
|
22
|
Bone morphogenetic proteins in craniofacial surgery: current techniques, clinical experiences, and the future of personalized stem cell therapy. J Biomed Biotechnol 2012; 2012:601549. [PMID: 23226941 PMCID: PMC3511855 DOI: 10.1155/2012/601549] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/16/2012] [Indexed: 12/29/2022] Open
Abstract
Critical-size osseous defects cannot heal without surgical intervention and can pose a significant challenge to craniofacial reconstruction. Autologous bone grafting is the gold standard for repair but is limited by a donor site morbidity and a potentially inadequate supply of autologous bone. Alternatives to autologous bone grafting include the use of alloplastic and allogenic materials, mesenchymal stem cells, and bone morphogenetic proteins. Bone morphogenetic proteins (BMPs) are essential mediators of bone formation involved in the regulation of differentiation of osteoprogenitor cells into osteoblasts. Here we focus on the use of BMPs in experimental models of craniofacial surgery and clinical applications of BMPs in the reconstruction of the cranial vault, palate, and mandible and suggest a model for the use of BMPs in personalized stem cell therapies.
Collapse
|
23
|
Becker S, Bolte H, Schünemann K, Seitz H, Bara J, Beck-Broichsitter B, Russo P, Wiltfang J, Warnke P. Endocultivation: the influence of delayed vs. simultaneous application of BMP-2 onto individually formed hydroxyapatite matrices for heterotopic bone induction. Int J Oral Maxillofac Surg 2012; 41:1153-60. [DOI: 10.1016/j.ijom.2012.03.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 01/16/2012] [Accepted: 03/20/2012] [Indexed: 11/25/2022]
|
24
|
Lan Levengood SK, Poellmann MJ, Clark SG, Ingram DA, Yoder MC, Wagoner Johnson AJ. Human endothelial colony forming cells undergo vasculogenesis within biphasic calcium phosphate bone tissue engineering constructs. Acta Biomater 2011; 7:4222-8. [PMID: 21798379 DOI: 10.1016/j.actbio.2011.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/10/2011] [Accepted: 07/07/2011] [Indexed: 11/24/2022]
Abstract
An important consideration in bone regeneration is the need for expedited neovascularization within the defect site. Formation of a vascular network is critical for cell viability and normal function leading to tissue regeneration, but spontaneous angiogenesis is too slow to yield sufficient vessel formation. In this pilot study, human umbilical cord blood (hUCB)-derived endothelial colony forming cells (ECFCs) were evaluated for in vivo vasculogenesis in the macropores of biphasic calcium phosphate (BCP)/bone morphogenetic protein-2 (BMP-2) bone tissue engineering constructs. Constructs were implanted on the abdominal wall of NOD/SCID mice for 4 weeks. This study demonstrated in vivo vasculogenesis by human ECFCs within the macropore space of BCP/BMP-2 constructs. The human ECFC-derived vessels anastomosed with the host vasculature and perfused vessels were visible in the very center of the 5mm diameter, 2.5mm tall scaffolds. Additionally, the vessels were evenly distributed throughout the construct. This study suggests that scaffolds containing ECFCs have significant potential for expedited neovascularization in bony defects.
Collapse
|
25
|
Early partial monolateral zygomatic arch defect leads to unilateral craniofacial malformation. J Craniofac Surg 2011; 22:1883-7. [PMID: 21959455 DOI: 10.1097/scs.0b013e31822e84b1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE This study used reconstructed three-dimensional imaging to examine the influence of early partial monolateral zygomatic arch defect on the craniofacial development in a minipig model. METHODS Five 7-week-old Chinese minipigs were used in this study. Each of them underwent skull radiography, three-dimensional computed tomography (CT), and surgery at 8 weeks of age. Bilateral zygomatic arches were randomized and divided into the experimental side and the control side. A standard 2-cm-long zygomatic arch defect was made by an electric drill on the experimental side. The contralateral side was left intact. One of them underwent skull radiography and three-dimensional CT 2, 4, 8, and 12 weeks after surgery. The other 3 minipigs underwent scanning 4, 8, and 12 weeks after surgery. The bone defect was observed by radiography and three-dimensional CT. All three-dimensional CT data were examined by Mimics 10.01 software, and three-dimensional images were reconstructed. The length of both zygomatic arches, the length and width of the skull, and the hemicranial angles of both sides were measured and compared. RESULTS The zygomatic arch developed to a summit at approximately 20 weeks of age. The zygomatic arch length of the experimental side is longer than that of the control side at each time point after surgery. The hemicranial angle of the experimental side is less than that of the control side at each time point after surgery. CONCLUSIONS Early partial monolateral zygomatic arch defect accelerates its growth in the sagittal plane and impedes the hemicranial growth in the coronal plane. Early reconstruction of zygomatic arch defect may be essential to minimize the developmental craniofacial malformation in children.
Collapse
|
26
|
Exchange cranioplasty using autologous calvarial particulate bone graft effectively repairs large cranial defects. Plast Reconstr Surg 2011; 127:1631-1642. [PMID: 21460669 DOI: 10.1097/prs.0b013e31821084f0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Autogenous particulate cranial bone graft has been proven to be effective for inlay cranioplasty but does not provide structural contour. This limitation can be overcome using an exchange cranioplasty technique. This study probes the effectiveness of this method for large (>5 cm(2)) or complicated cranial defects. METHODS The authors conducted a retrospective review of patients managed with autologous exchange cranioplasty between 2005 and 2010. Full-thickness calvarial bone was removed from the intact cranium; particulate bone graft was harvested from the graft endocortex or ectocortex of intact cranium. The original defect was repaired with the full-thickness graft and the donor site was covered with particulate graft. Patient records were reviewed for age at cranioplasty, operative indication, size and location of defect, operative time, blood loss, and length of follow-up. Outcome variables included complications, osseous defects, and need for revision cranioplasty. RESULTS Twenty patients underwent exchange cranioplasty at a mean age of 8.3 ± 6.2 years. Average values for the group included length of procedure, 4.7 hours; estimated blood loss, 288 ml; hospital stay, 3.1 days; and follow-up, 1.57 years (range, 24 weeks to 3.7 years). Eighty-five percent of patients underwent postoperative computed tomographic scanning to document healing. Fifteen patients had complete healing; five patients had residual bone defects (four by computed tomography and palpation, and one by computed tomography only). The cranial defect area decreased 96 percent on average from a preoperative mean of 85.2 cm(2) to a postoperative combined defect size (donor plus recipient) of 3.3 cm(2). CONCLUSION Autologous exchange cranioplasty using particulate bone graft is safe and highly effective for reconstructing even large cranial defects.
Collapse
|
27
|
Agis H, Beirer B, Watzek G, Gruber R. Effects of carboxymethylcellulose and hydroxypropylmethylcellulose on the differentiation and activity of osteoclasts and osteoblasts. J Biomed Mater Res A 2010; 95:504-9. [DOI: 10.1002/jbm.a.32842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Davies SD, Ochs MW. Bone morphogenetic proteins in craniomaxillofacial surgery. Oral Maxillofac Surg Clin North Am 2010; 22:17-31. [PMID: 20159475 DOI: 10.1016/j.coms.2009.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Craniomaxillofacial surgery has many indications for bone regeneration and augmentation, ranging from socket preservation to reconstruction of large skeletal defects. The discovery of bone morphogenetic proteins (BMPs) as osteoinductive agents and the subsequent development of commercially available recombinant forms of BMPs have offered the potential to replace traditional grafting techniques with de novo bone formation. Extensive preclinical and clinical research has focused on establishing the safety and efficacy of using recombinant BMPs to regenerate bone in the facial skeleton. This article reviews the development and current scientific basis behind the use of these new biologics.
Collapse
Affiliation(s)
- Sarah D Davies
- Department of Oral and Maxillofacial Surgery, University of Pittsburgh School of Dental Medicine, 3471 Fifth Avenue, Suite 1112, UPMC Kaufman Building, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
29
|
Bone Morphogenetic Protein-2 Delivered by Hyaluronan-Based Hydrogel Induces Massive Bone Formation and Healing of Cranial Defects in Minipigs. Plast Reconstr Surg 2010; 125:1383-1392. [DOI: 10.1097/prs.0b013e3181d629dc] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Susin C, Qahash M, Polimeni G, Lu PH, Prasad HS, Rohrer MD, Hall J, Wikesjö UME. Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-7 (rhBMP-7/rhOP-1): histological observations. J Clin Periodontol 2010; 37:574-81. [PMID: 20345394 DOI: 10.1111/j.1600-051x.2010.01554.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pre-clinical studies have shown that recombinant human bone morphogenetic protein-2 (rhBMP-2) coated onto purpose-designed titanium porous-oxide surface implants induces clinically relevant bone formation and osseointegration. The objective of this study was to examine the potential of rhBMP-7, also known as recombinant human osteogenic protein-1 (rhOP-1), coated onto titanium porous-oxide surface implants to support vertical alveolar ridge augmentation and implant osseointegration. MATERIALS AND METHODS Bilateral, critical-size, 5 mm, supraalveolar peri-implant defects were created in six young adult Hound Labrador mongrel dogs. The animals received implants coated with rhBMP-7 at 1.5 or 3.0 mg/ml randomized to contra-lateral jaw quadrants. The mucoperiosteal flaps were advanced, adapted, and sutured to submerge the implants for primary intention healing. The animals received fluorescent bone markers at 3, 4, 7, and 8 weeks post-surgery when they were euthanized for histological evaluation. RESULTS Without striking differences between treatments, the implant sites exhibited a swelling that gradually regressed to become hard to palpation disguising the implant contours. The histological evaluation showed robust bone formation; the newly formed bone assuming characteristics of the contiguous resident bone, bone formation (height and area) averaging 4.1+/-1.0 versus 3.6+/-1.7 mm and 3.6+/-1.9 versus 3.1+/-1.8 mm(2); and bone density 56%versus 50% for implants coated with rhBMP-7 at 1.5 and 3.0 mg/ml, respectively. Both treatments exhibited clinically relevant osseointegration, the corresponding bone-implant contact values averaging 51% and 47%. Notable peri-implant resident bone remodelling was observed for implants coated with rhBMP-7 at 3.0 mg/ml. CONCLUSIONS rhBMP-7 coated onto titanium porous-oxide surface implants induces clinically relevant local bone formation including osseointegration and vertical augmentation of the alveolar ridge, the higher concentration/dose associated with some local side effects.
Collapse
Affiliation(s)
- Cristiano Susin
- Medical College of Georgia School of Dentistry, Augusta, GA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Endocultivation: Does delayed application of BMP improve intramuscular heterotopic bone formation? J Craniomaxillofac Surg 2010; 38:54-9. [DOI: 10.1016/j.jcms.2009.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 09/03/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022] Open
|
32
|
Becker ST, Bolte H, Krapf O, Seitz H, Douglas T, Sivananthan S, Wiltfang J, Sherry E, Warnke PH. Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction. Oral Oncol 2009; 45:e181-8. [DOI: 10.1016/j.oraloncology.2009.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
|
33
|
Busenlechner D, Tangl S, Fitzl C, Bernhart T, Gruber R, Watzek G. Paste-like inorganic bone matrix: preclinical testing of a prototype preparation in the porcine calvaria. Clin Oral Implants Res 2009; 20:1099-104. [DOI: 10.1111/j.1600-0501.2009.01743.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Schopper C, Moser D, Spassova-Tzekova E, Russmueller G, Goriwoda W, Lagogiannis G, Ewers R, Redl H. Mineral apposition rates provide significant information on long-term effects in BMP-induced bone regeneration. J Biomed Mater Res A 2009; 89:679-86. [PMID: 18442117 DOI: 10.1002/jbm.a.32012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study, a CaP biomaterial was used as a carrier for rhBMP-2. Biomaterials were investigated in calvarial and femoral defects using a rabbit animal model, with unloaded biomaterials serving as control. Fluorochrome labels were administered at days 14 and 70. Specimens were retrieved after 12 weeks for histological analysis. When area fractions were assessed by conventional histomorphometry, no significant effect of rhBMP-2 on the amounts of regenerated bone and residual biomaterial were seen by 12 weeks. After mineral appositional rate (MAR) measurement using double labels, calculation yielded significantly higher MARs for defects at both implantation sites, when compared with surrounding bone, whether or not biomaterials were loaded with rhBMP-2. Analyzing the effect of rhBMP-2, both defect sites showed significantly higher MARs in the rhBMP-2 group. MARs of bone surrounding the defects had also been elevated significantly by rhBMP-2 at calvarial and femoral implantation sites. It is concluded that MAR measurement is suitable to identify long-term effects of rhBMP-2 on bone formation at a time when conventional histomorphometry using fractional area determination is inadequate. Also, by MAR assessment, effects of rhBMP-2 on surrounding bone can be documented.
Collapse
Affiliation(s)
- Christian Schopper
- Hospital of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Jung RE, Thoma DS, Hammerle CHF. Assessment of the potential of growth factors for localized alveolar ridge augmentation: a systematic review. J Clin Periodontol 2009; 35:255-81. [PMID: 18724854 DOI: 10.1111/j.1600-051x.2008.01270.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To systematically assess the literature regarding the clinical, histological, and radiographic outcome of bone morphogenetic proteins (BMP-2, BMP-7), growth/differentiation factor-5 (GDF-5), platelet-derived growth factor (PDGF), and parathyroid hormone (PTH) for localized alveolar ridge augmentation. MATERIAL AND METHODS Five separate Medline searches were performed in duplicate for human and animal studies, respectively. The primary outcome of the included studies was bone regeneration of localized alveolar ridge defects or craniofacial defects. RESULTS In six human studies, BMP-2 affected local bone augmentation with increasing volume for higher doses. A majority (43 of 45) of animal studies using BMP-2 showed a positive effect in favour of the growth factor (GF). In six of eight studies, a positive effect was associated with the use of BMP-7. Only one animal study was included for GDF-5 revealing statistically significantly higher bone volume. Regarding PDGF, statistically significantly higher bone volume was observed in five of 10 included studies. Four animal studies using PTH revealed statistically significantly more bone regeneration compared with controls. CONCLUSIONS Differing levels and quantity of evidence were noted to be available for the GFs evaluated, revealing that BMP-2, BMP-7, GDF-5, PDGF, and PTH may stimulate local bone augmentation to various degrees. Human data for the potential of rhBMP-2 are supportive.
Collapse
Affiliation(s)
- Ronald E Jung
- Department of Fixed and Removable Prosthodontics and Dental Material Science, Dental School, University of Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
36
|
|
37
|
BMP-2-Based Repair of Large-Scale Calvarial Defects in an Experimental Model. J Craniofac Surg 2008; 19:1315-22. [DOI: 10.1097/scs.0b013e3181843369] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
38
|
Takumi I, Akimoto M. Catcher's mask cranioplasty for extensive cranial defects in children with an open head trauma: a novel application of partial cranioplasty. Childs Nerv Syst 2008; 24:927-32. [PMID: 18228025 DOI: 10.1007/s00381-007-0574-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE In children who have suffered a severe, extensive head trauma, cranioplasty is complicated because allografting is not advisable in pediatric patients and the amount of available autologous materials is limited. To overcome these problems, we employed a combination of autologous rib grafts and calvarial grafts for partial cranioplasty. MATERIALS AND METHODS We named this partial cranioplasty technique 'catcher's mask cranioplasty'. Rib grafts were placed mimicking a baseball catcher's mask to obtain maximum strong coverage of the defect. Calvarial grafts were used to achieve a smooth forehead contour. Islands of osteoanagenesis were also used. CONCLUSIONS These autografts were of sufficient strength, esthetically satisfactory, and no patient developed sinking skin flap syndrome. Catcher's mask cranioplasty is a useful technique to successfully reconstruct the skull in pediatric patients with extensive cranial defects and an insufficient amount of autologous graft material.
Collapse
Affiliation(s)
- Ichiro Takumi
- NMS Cranio-Facial Institute, Nippon Medical School Chiba Hokuso Hospital, Inba-gun Inba-mura, Chiba Hokuso 270-1694, Japan
| | | |
Collapse
|
39
|
Choi JW, Koh KS, Hong JP, Hong SH, Ra YS. One-piece frontoorbital advancement with distraction but without a supraorbital bar for coronal craniosynostosis. J Plast Reconstr Aesthet Surg 2008; 62:1166-73. [PMID: 18595792 DOI: 10.1016/j.bjps.2007.12.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/24/2007] [Accepted: 12/15/2007] [Indexed: 10/21/2022]
Abstract
Traditional frontoorbital advancement with a supraorbital bar is the standard technique for correcting coronal craniosynostosis. However, several recent reports indicate that cranioplasty using distraction osteogenesis may be an alternative. To maximize the advantages of distraction, preservation of the dura attachment to the frontal bone appears to be important. Therefore, we designed a novel procedure for coronal craniosynostosis involving a one-piece frontoorbital advancement with distraction but without a supraorbital bar using only a small temporal burr hole. The novel one-piece frontoorbital advancement technique was used in 10 coronal craniosynostotic patients. Follow-up ranged from 8-28 months (mean 16.2 months). Osteotomy on the fronto-parietal area was performed using a saw, and a burr hole of <1.5 cm was made at the 'pterion'. While referring to a rapid prototype model, osteotomies in the orbital roof, zygomatico-frontal, nasion areas and pterion were performed using a guarded osteotome to protect the dura mater. Distraction devices were applied without detachment of the bone flap from the dura (standard cranial distraction protocols were used). The present technique resulted in minimal bleeding, shorter surgery time and minimization of the bony defect with preservation of the dural attachment. The 1.5 cm burr hole allowed visualization of the greater and lesser sphenoid bone wings, which is necessary for a safe osteotomy. The average length of distractions was 17 mm. This approach was less invasive than the traditional approach and resulted in satisfactory correction. Transfusions were not required for six patients, while the remaining four patients received a mean 37.3 ml packed red cells. The average cephalic index decreased from 96 to 86. There were no complications other than a case of meningitis which resolved following intravenous antibiotic administration. The present novel technique appears to be a good alternative surgical approach for treating non-complex forms of single suture coronal craniosyntosis.
Collapse
Affiliation(s)
- Jong W Choi
- Department of Plastic and Reconstructive Surgery, Ulsan University, College of Medicine, Seoul Asan Medical Center, Seoul, Republic of Korea.
| | | | | | | | | |
Collapse
|
40
|
Huang YH, Polimeni G, Qahash M, Wikesjö UME. Bone morphogenetic proteins and osseointegration: current knowledge – future possibilities. Periodontol 2000 2008; 47:206-23. [DOI: 10.1111/j.1600-0757.2007.00240.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Niehoff P, Springer IN, Açil Y, Lange A, Marget M, Roldán JC, Köppe K, Warnke PH, Kimmig B, Wiltfang J. HDR brachytherapy irradiation of the jaw - as a new experimental model of radiogenic bone damage. J Craniomaxillofac Surg 2008; 36:203-9. [PMID: 18436449 DOI: 10.1016/j.jcms.2008.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 01/30/2008] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Hitherto, no suitable experimental model exists to test new treatments for radiogenic bone damage, such as new step from knowledge about bone growth factors or angiogenesis factors. The goal of this investigation was to establish such a standardised experimental model. MATERIAL AND METHODS Twenty-four rats were used in this study. In 12 rats a plastic tube was implanted along the right half of the mandible and treated with a single dose of 20 Gy at a high-dose-rate (HDR) using an afterloading machine, the remainder served as control (n=12). One hundred days after irradiation both sides of the mandible were examined using paraffin embedding and non-decalcified histology. RESULTS All HDR irradiated rats developed localised alopecia within 2 weeks of radiotherapy. In the irradiated group, a clear growth reduction of the ipsilateral incisor was observed. Paraffin histology revealed minimal damage of the bone structure with slightly increased signs of regeneration. The bone apposition rate was significantly reduced on the irradiated right side, compared with the left side (p=0.028). The average diameter of the mandibular condyles on the irradiated right sides was significantly reduced when compared with the left sides (p=0.023). CONCLUSIONS It is possible to induce radiogenic damage of the mandible by using HDR brachytherapy with a single dose of 20 Gy comparable to 45 x 2 Gy of conventional irradiation. This new model is easy and predictable and appears to be suitable for the testing of new treatment modalities. It is advantageous for the testing of bone growth and angiogenesis factors that the contralateral side exhibits completely normal bone apposition characteristics enabling a split-mouth design for future experiments.
Collapse
Affiliation(s)
- Peter Niehoff
- Department of Radiotherapy (Radiooncology), University of Kiel, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shah MM, Smyth MD, Woo AS. Adverse facial edema associated with off-label use of recombinant human bone morphogenetic protein-2 in cranial reconstruction for craniosynostosis. Case report. J Neurosurg Pediatr 2008; 1:255-7. [PMID: 18352773 DOI: 10.3171/ped/2008/1/3/255] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The authors present a case of scalp and facial edema following craniofacial reconstruction for metopic craniosynostosis in which recombinant human bone morphogenetic protein-2 (rhBMP-2) was used to treat cranial defects related to the frontoorbital reconstruction. The extent of swelling, the onset, and duration were unusual for such cases and suggested a possible role of rhBMP-2 in inducing a local inflammatory response. The edema rapidly resolved after the patient underwent surgery to remove the rhBMP-2 implants.
Collapse
Affiliation(s)
- M Mohsin Shah
- Division of Neurosurgery, University of Missouri-Columbia,Columbia, MO 65203, USA.
| | | | | |
Collapse
|
43
|
Vahtsevanos K, Triaridis S, Patrikidou A, Uttley D, Moore AJ, Bell A, Stapleton S, Archer DJ. The Atkinson Morley's Hospital joint neurosurgical – maxillofacial procedures: Cranioplasty case series 1985–2003. J Craniomaxillofac Surg 2007; 35:336-42. [DOI: 10.1016/j.jcms.2007.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 06/05/2007] [Indexed: 11/28/2022] Open
|
44
|
Monteiro B, Del Carlo R, Pinheiro L, Viloria M, Silva P, Souza L, Balbinot P. Proteínas morfogenéticas ósseas associadas a osso esponjoso autógeno na reparação de falhas experimentais na calota craniana de coelhos (Oryctolagus cuniculus). ARQ BRAS MED VET ZOO 2007. [DOI: 10.1590/s0102-09352007000600016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Foi avaliada a reparação óssea após implantação de proteínas morfogenéticas ósseas (BMP) em diferentes concentrações e períodos de observação, carreadas por auto-enxerto ósseo esponjoso (EOE), em falhas ósseas, produzidas na região fronto-parietal do crânio de 20 coelhas. A falha I não foi preenchida, a II foi completamente preenchida com 3mg de EOE e as falhas III, IV, V e VI foram preenchidas com EOE associado a 0,5; 1; 2 e 5mg de BMP, respectivamente. Nas avaliações mesoscópicas, post mortem, verificou-se que, independentemente do período de tratamento, o preenchimento ósseo iniciou-se a partir das bordas para o centro e do fundo para a superfície das falhas. Na falha I manifestou-se o menor preenchimento ósseo quando comparada com as demais falhas, em todos os períodos, e nas que receberam 2mg de BMP exibiu-se a melhor cobertura óssea. Microscopicamente, verificou-se que, aos sete dias, o preenchimento ósseo iniciou-se a partir das bordas e do fundo da lesão, com mobilização e diferenciação de células provenientes do periósteo e das meninges, respectivamente e, nas avaliações subseqüentes, a atividade osteoblástica originou-se, também, de "ilhas de ossificação" semelhantes a centros de ossificação, localizadas no centro da falha. A formação trabecular aumentou, proporcionalmente, com a concentração utilizada de BMP, e a aposição e organização óssea aumentaram com o tempo de observação. Verificou-se também a presença de tecido cartilaginoso. A BMP associada ao EOE contribuiu para a formação de novo tecido ósseo, promovendo maior mobilização, diferenciação e organização celular, e abreviou o tempo de formação óssea, sugerindo processo de ossificação endocondral. Os melhores resultados foram observados com a associação de 2mg de BMP a 3mg de enxerto, e a adição de BMP, mesmo em menor quantidade, determinou precocidade de formação óssea. A maior quantidade de BMP não determinou maior preenchimento ósseo.
Collapse
|
45
|
Bone Morphogenetic Proteins: A Realistic Alternative to Bone Grafting for Alveolar Reconstruction. Oral Maxillofac Surg Clin North Am 2007; 19:535-51, vi-vii. [DOI: 10.1016/j.coms.2007.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Springer ING, Niehoff P, Açil Y, Marget M, Lange A, Warnke PH, Pielenz H, Roldán JC, Wiltfang J. BMP-2 and bFGF in an irradiated bone model. J Craniomaxillofac Surg 2007; 36:210-7. [PMID: 17945502 DOI: 10.1016/j.jcms.2007.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
INTRODUCTION Basic fibroblast growth factor (bFGF) is considered to enhance angiogenesis and to support bone formation in the presence of vital bone cells. Bone morphogenetic protein-2 (rhBMP-2) is known to induce bone formation. The aim of this study was to analyze the effect of bFGF and rhBMP-2 in the irradiated mandible. MATERIAL AND METHODS The right mandibles of 24 rats were irradiated with a single dose of 20 Gy at a high-dose-rate (HDR) after loading machine (bio effective equivalent dose to ca. 45 x 2 Gy). After 12 weeks 100 microg rhBMP-2 (n=6 animals, group 1), 100 microg bFGF (n=6 animals, group 2) and 100 microg rhBMP-2 plus 100 microg bFGF (n=6 animals, group 3) were injected along the right mandible (left mandible: no irradiation, no growth factor). Another 6 animals (group 4) remained untreated after the irradiation. After another 7 weeks the specimens were examined by non-decalcified histology. RESULTS Bone apposition of the experimental versus control sides was not statistically significantly different when one of the growth factors was applied alone (rhBMP-2: p=0.917; bFGF: p=0.345). Average bone apposition was significantly decreased on the experimental sides of group 3 (rhBMP-2+bFGF: p=0.046) and group 4 (p=0.008). Average bone densities were unaffected in all settings (for all p>0.1). CONCLUSIONS The application of bFGF and the application of rhBMP-2 alone did result in predictable bone generation in the irradiated mandible with the bone apposition being equal to that of the non-irradiated side. The application of both growth factors together or none at all after irradiation results in significantly reduced bone apposition.
Collapse
Affiliation(s)
- Ingo N G Springer
- Department of Oral and Maxillofacial Surgery, University of Kiel, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Springer ING, Wiltfang J, Dunsche A, Lier GC, Bartsch M, Warnke PH, Barth EL, Terheyden H, Russo PAJ, Czech N, Acil Y. A new method of monitoring osteomyelitis. Int J Oral Maxillofac Surg 2007; 36:527-32. [PMID: 17418531 DOI: 10.1016/j.ijom.2007.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 12/12/2006] [Accepted: 01/04/2007] [Indexed: 11/27/2022]
Abstract
Chronic infections of bone such as osteomyelitis are frequent events, especially in immunocompromised or diabetic patients, and costly on a national level. Incorrect treatment or delayed diagnosis may lead to loss of the affected extremity or mandible. The aim of this study was to assess the possible value of urinary lysylpyridinoline (LP) and hydroxylysylpyridinoline (HP) concentrations in the monitoring of mandibular osteomyelitis. Patients were assigned to the following groups: group 1 (n=85), control; group 2a (n=38), patients with active disease; group 2b (n=25), patients of group 2a 6 months after successful treatment; group 2c (n=7), patients of group 2a with ongoing osteomyelitis 6 months after treatment. The range and upper limit of normal values (HP(max) and LP(max)) were determined in group 1. Levels of LP and HP were measured by high-performance liquid chromatography and fluorescence detection. There was a significant decrease (mean 45.43% for HP and 32.12% for LP) in samples of group 2b compared to 2a (P<0.001 for HP and LP). There was a significant increase in HP values in samples from group 2c compared to 2a (P=0.018). The urinary concentrations of HP and LP appear to act as a marker of disease activity, with a decrease reflecting treatment success and an increase or stable values indicating persistent disease. An inexpensive tool (US$5 per analysis) for the monitoring of osteomyelitis is described.
Collapse
Affiliation(s)
- I N G Springer
- Department of Oral and Maxillofacial Surgery, University of Kiel, Arnold-Heller-Str. 16, D-24105 Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Springer ING, Warnke PH, Terheyden H, Açil Y, Bülhoff A, Kuchenbecker S, Bolte H, Russo PAJ, Vairaktaris EG, Wiltfang J. Craniectomy and noggin application in an infant model. J Craniomaxillofac Surg 2007; 35:177-84. [PMID: 17582779 DOI: 10.1016/j.jcms.2007.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 02/05/2007] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Noggin is an antagonist of bone morphogenetic proteins (BMP)-2, -4 and -7. Little data are available regarding its clinical utility. Two hypotheses were put forward: firstly, that spontaneous regeneration of calvarial defects with noggin protein would result in diminished bone volume when compared with calvarial defects not so treated. Secondly, that centrifugal cranial expansion would remain undisturbed whether noggin was applied or not. MATERIAL AND METHODS A unilateral defect of the frontal and parietal bones (2x4cm) was generated by excising the right coronal suture in 2-month-old minipigs (n=10) and in group 1 (n=5) no further intervention was undertaken. In the second group (n=5), a collagen type I tissue fleece and noggin protein (1.05mg/ml) were applied. After 4 months the coronal suture regions of frontal sides were examined in each animal by computed tomography and non-decalcified histology. RESULTS Bony gaps of equivalent size remained in animals of both groups. The differences in bone volumes of the experimental sides of group 1 were not statistically significantly different (p=0.117) when compared with those of group 2. A significant difference in the bone volumes of the experimental versus control (unoperated) sides was found in both group 1 (p=0.043) and group 2 (p=0.043). Internal skull diameters increased by 16.4% in both groups but the physiological centrifugal cranial expansion remained undisturbed. Bone densities of the experimental and control sides of groups 1 and 2 were not statistically significantly different (both p>0.05). CONCLUSIONS The first hypothesis was contradicted: the quantity and quality of spontaneous bone regenerates was not altered by application of noggin protein. The second hypothesis was confirmed: no disruption of subsequent cranial development was seen. It may be that a single application of noggin protein in this study was insufficient. However, it may well be suggested that the continuous supplementation of noggin, for example by adenoviral noggin gene transfer may significantly reduce the quantity of spontaneous bone regeneration in a similar experiment.
Collapse
Affiliation(s)
- Ingo N G Springer
- Department of Oral and Maxillofacial Surgery, University of Kiel, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vignes JR, Jeelani NUO, Dautheribes M, San-Galli F, Liguoro D. Cranioplasty for repair of a large bone defect in a growing skull fracture in children. J Craniomaxillofac Surg 2007; 35:185-8. [PMID: 17601742 DOI: 10.1016/j.jcms.2007.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 03/26/2007] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION In infants, calvarial defects are generally repaired with autologous grafts. However, with large defects, these techniques can be associated with complications such as bone graft resorption, loss of blood, or local infection. Alternative materials are available for cranioplasty including metals or acrylic. CASE REPORT We report the case of a 3.2kg boy who had a traumatic vaginal delivery and developed a growing skull fracture resulting in a large cranial defect (50cm(2)). We describe a specific technique of cranioplasty by interposing a titanium plate between the duroplasty and bone elements, without fixation, with autologous bone fragments deposited over the mesh. Long-term follow-up was satisfactory. CONCLUSION For large skull defects in infants, the technique described affords protection to the intracranial components, induces osteogenesis in a growing cranial skeleton, and provides satisfactory aesthetic results.
Collapse
Affiliation(s)
- Jean-Rodolphe Vignes
- Department of Neurosurgery A, CHU de Bordeaux, University of Bordeaux 2, Bordeaux, France.
| | | | | | | | | |
Collapse
|
50
|
Abstract
A major unmet need in the medical field today is the availability of suitable treatments for the ever-increasing incidence of osteoporosis and the treatment of bone deficit conditions. Although therapies exist which prevent bone loss, the options are extremely limited for patients once a substantial loss of skeletal bone mass has occurred. Patients who have reduced bone mass are predisposed to fractures and further morbidity. The FDA recently approved PTH (1-34) (Teriparatide) for the treatment of postmenopausal osteoporosis after both preclinical animal and clinical human studies indicated it induces bone formation. This is the only approved bone anabolic agent available but unfortunately it has limited use, it is relatively expensive and difficult to administer. Consequently, the discovery of low cost orally available bone anabolic agents is critical for the future treatment of bone loss conditions. The intricate process of bone formation is co-ordinated by the action of many different bone growth factors, some stored in bone matrix and others released into the bone microenvironment from surrounding cells. Although all these factors play important roles, the bone morphogenetic proteins (BMPs) clearly play a central role in both bone cartilage formation and repair. Recent research into the regulation of the BMP pathway has led to the discovery of a number of small molecular weight compounds as candidate bone anabolic agents. These agents may usher in a new wave of more innovative and versatile treatments for osteoporosis as well as orthopedic and dental indications.
Collapse
|