1
|
Pan B, Xu L, Weng J, Wang Y, Ji H, Han B, Zhu X, Liu Y. Effects of icariin on alleviating schizophrenia-like symptoms by regulating the miR-144-3p/ATP1B2/mTOR signalling pathway. Neurosci Lett 2022; 791:136918. [DOI: 10.1016/j.neulet.2022.136918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022]
|
2
|
Extracorporeal shockwave relieves endothelial injury and dysfunction in steroid-induced osteonecrosis of the femoral head via miR-135b targeting FOXO1: in vitro and in vivo studies. Aging (Albany NY) 2022; 14:410-429. [PMID: 34996049 PMCID: PMC8791199 DOI: 10.18632/aging.203816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
Injury and dysfunction of endothelial cells (ECs) are closely related to the pathogenesis of steroid-induced osteonecrosis of the femoral head (ONFH), while MicroRNAs (miRNAs) play an essential role in the processes. Extracorporeal shockwave treatment (ESWT) has been used in the non-invasive treatment of various diseases including musculoskeletal and vascular disorders. In particular, ESWT with low energy levels showed a beneficial effect in ischemic tissues. However, there has been no comprehensive assessment of the effect of ESWT and miRNAs on steroid-induced ONFH. In the present study, we investigated the role and mechanism of ESWT and miRNAs both in vitro and in vivo. Using a steroid-induced ONFH rat model, we found that ESWT significantly enhances proliferation and angiogenesis as well as alleviates apoptosis. In two types of ECs, ESWT can promote cell proliferation and migration, enhance angiogenesis, and inhibit apoptosis. Notably, our study demonstrates that miR-135b is downregulated and modulated forkhead box protein O1 (FOXO1) in ECs treated with dexamethasone. Remarkably, both miR-135b knockdown and FOXO1 overexpression reversed the beneficial effect of ESWT on ECs. Additionally, our data suggest that ESWT activates the FOXO1-related pathway to impact proliferation, apoptosis, and angiogenesis. Taken together, this study indicates that ESWT relieves endothelial injury and dysfunction in steroid-induced ONFH via miR-135b targeting FOXO1.
Collapse
|
3
|
Hao Y, Wu Y, Wang S, Wang C, Qu S, Li L, Yu G, Liu Z, Zhao Z, Fan P, Zhang Z, Shi Y. Quantitative proteomics reveal the protective effects of EDS against osteoarthritis via attenuating inflammation and modulating immune response. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113780. [PMID: 33421600 DOI: 10.1016/j.jep.2021.113780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/25/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium brevicornu Maxim, Dioscorea nipponica Makino, and Salvia miltiorrhiza Bunge formula (EDS) are three traditional Chinese medicines commonly combined and used to treat osteoarthritis (OA). However, the mechanism of its therapeutic effect on OA is still unclear. AIM OF THE STUDY The aim of this study was to investigate the potential anti osteoarthritis mechanism of EDS in the treatment of OA rats' model by quantitative proteomics. MATERIALS AND METHODS A papain-induced rat OA model was established, and then EDS was intragastrically administered for 28 days. A label-free quantification proteomics was performed to evaluate the holistic efficacy of EDS against OA and identify the possible protein profiles mechanisms. The expression levels of critical changed proteins were validated by RT-qPCR and Western blotting. The effects of EDS were then assessed by evaluating pathologic changes in the affected knee joint and measuring pressure pain threshold, acoustic reflex threshold, angle of joint curvature. RESULTS Proteomics analysis showed that 62 proteins were significantly upregulated and 208 proteins were downregulated in OA group compared to control group. The changed proteins were involved in activation of humoral immunity response, complement cascade activation, leukocyte mediated immunity, acute inflammatory response, endocytosis regulation, and proteolysis regulation. The EDS treatment partially restored the protein profile changes. The protective effects of EDS on pathologic changes in OA rats' knee joint and pain threshold assessment were consisted with the proteomics results. CONCLUSIONS The results suggest that EDS exerted synergistic therapeutic efficacies to against OA through suppressing inflammation, modulating the immune system, relieving joint pain, and attenuating cartilage degradation.
Collapse
Affiliation(s)
- Ying Hao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China; Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Yang Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | | | - Chungguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Sihao Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Li Li
- Chenland Nutritionals, Inc, Irvine, CA, 92614, USA.
| | - Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zimin Liu
- Chenland Nutritionals, Inc, Irvine, CA, 92614, USA.
| | - Zhen Zhao
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Pengcheng Fan
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, 102206, China.
| | - Zengliang Zhang
- Chenland Nutritionals, Inc, Irvine, CA, 92614, USA; Traditional Chinese Medicine College, Inner Mongolia Medical University, Jinshan Development Zone Hohhot, Inner Mongolia, 010110, China.
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
4
|
Ni M, Sun W, Li Y, Ding L, Lin W, Peng H, Zheng Q, Sun J, Li J, Liu H, Yang Y, Xu L, Zhang G. Sox11 Modified Tendon-Derived Stem Cells Promote the Repair of Osteonecrosis of Femoral Head. Cell Transplant 2021; 30:9636897211053870. [PMID: 34699265 PMCID: PMC8552377 DOI: 10.1177/09636897211053870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/23/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a leading cause of mobility impairment which may lead to a total hip replacement. Recent studies have found tendon derived stem cells (TDSCs) might be an ideal cell source for musculoskeletal tissue regeneration. And our previous study has shown Sox11 could promote osteogenesis of bone marrow-derived MSCs. However, the effect of TDSCs or Sox11 over-expressing TDSCs (TDSCs-Sox11) on bone regeneration in ONFH has not been investigated. In the present study, TDSCs were infected with AAV carrying Sox11 or empty vector. We showed that Sox11 could promote the proliferation and osteogenic differentiation of TDSCs, as well as angiogenesis in vitro. The western blot analysis showed that Sox11 could activate the PI3K/Akt signaling pathway to promote osteogenesis of TDSCs. Finally, using a rabbit model of hormone-induced ONFH, our result demonstrated that local administration of TDSCs or TDSCs overexpressing Sox11 could accelerate bone regeneration in necrotic femoral heads, and TDSCs overexpressing Sox11 showed better effects. TDSCs over-expressing Sox11 might be a promising cell source for stem cell therapy to promote bone regeneration, such as ONFH, fracture, bone defect, and so on.
Collapse
Affiliation(s)
- Ming Ni
- Department of Orthopedics, the First Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
- Contributed equally as first authors
| | - Weiwei Sun
- Department of Anesthesiology, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, P.R. China
- Contributed equally as first authors
| | - Yucong Li
- Department of Orthopedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Lingli Ding
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiping Lin
- Department of Orthopedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Haiwen Peng
- Department of Orthopedics, the First Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Qingyuan Zheng
- Department of Orthopedics, the First Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Jingyang Sun
- Department of Orthopedics, the First Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Juncheng Li
- Department of Orthopedics, the First Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Hao Liu
- Department of Orthopedics, the First Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Yi Yang
- Central Laboratory, Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoqiang Zhang
- Department of Orthopedics, the First Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| |
Collapse
|
5
|
Wang M, Gao H, Li W, Wu B. Icariin and its metabolites regulate lipid metabolism: From effects to molecular mechanisms. Biomed Pharmacother 2020; 131:110675. [PMID: 32861069 DOI: 10.1016/j.biopha.2020.110675] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Icariin has a variety of biological activities, such as lipid-lowering effects, and has attracted widespread attention in recent years. However, it is not clear whether lipid-lowering effect is that multiple metabolites or a particular component plays a major role. It is known that icariin has a variety of metabolites in the body, including icariside I, icariside II, icaritin, desmethylicaritin, and other metabolites. Many of these studies have shown that the metabolites of icariin have a lipid-lowering effect. This paper focuses on the lipid-regulating effects of icariin and its metabolites in vitro and in vivo, and highlights the mechanisms involved. Icariin may have potential in the development of therapeutic strategies to regulate lipid metabolism.
Collapse
Affiliation(s)
- Miao Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - Hongyan Gao
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China; Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, PR China
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, PR China.
| | - Bin Wu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China; Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China.
| |
Collapse
|
6
|
Magnesium and vitamin C supplementation attenuates steroid-associated osteonecrosis in a rat model. Biomaterials 2020; 238:119828. [PMID: 32045781 PMCID: PMC7185815 DOI: 10.1016/j.biomaterials.2020.119828] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/25/2020] [Indexed: 01/15/2023]
Abstract
Magnesium (Mg)-based biometal attracts clinical applications due to its biodegradability and beneficial biological effects on tissue regeneration, especially in orthopaedics, yet the underlying anabolic mechanisms in relevant clinical disorders are lacking. The present study investigated the effect of magnesium (Mg) and vitamin C (VC) supplementation for preventing steroid-associated osteonecrosis (SAON) in a rat experimental model. In SAON rats, 50 mg/kg Mg, or 100 mg/kg VC, or combination, or water control was orally supplemented daily for 2 or 6 weeks respectively. Osteonecrosis was evaluated by histology. Serum Mg, VC, and bone turnover markers were measured. Microfil-perfused samples prepared for angiography and trabecular architecture were evaluated by micro-CT. Primary bone marrow cells were isolated from each group to evaluate their potentials in osteoblastogenesis and osteoclastogenesis. The mechanisms were tested in vitro. Histological evaluation showed SAON lesions in steroid treated groups. Mg and VC supplementation synergistically reduced the apoptosis of osteocytes and osteoclast number, and increased osteoblast surface. VC supplementation significantly increased the bone formation marker PINP, and the combination significantly decreased the bone resorption marker CTX. TNFα expression and oxidative injury were decreased in bone marrow in Mg/VC/combination group. Mg significantly increased the blood perfusion in proximal tibia and decreased the leakage particles in distal tibia 2 weeks after SAON induction. VC significantly elevated the osteoblast differentiation potential of marrow cells and improved the trabecular architecture. The combination supplementation significantly inhibited osteoclast differentiation potential of marrow cells. In vitro study showed promoting osteoblast differentiation effect of VC, and anti-inflammation and promoting angiogenesis effect of Mg with underlying mechanisms. Mg and VC supplementation could synergistically alleviate SAON in rats, indicating great translational potentials of metallic minerals for preventing SAON.
Collapse
|
7
|
Simultaneous determination of multiple components in rat plasma and pharmacokinetic studies at a pharmacodynamic dose of Xian-Ling-Gu-Bao capsule by UPLC-MS/MS. J Pharm Biomed Anal 2020; 177:112836. [DOI: 10.1016/j.jpba.2019.112836] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/08/2019] [Accepted: 08/24/2019] [Indexed: 01/08/2023]
|
8
|
Yougui pills exert osteoprotective effects on rabbit steroid-related osteonecrosis of the femoral head by activating β-catenin. Biomed Pharmacother 2019; 120:109520. [DOI: 10.1016/j.biopha.2019.109520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 11/22/2022] Open
|
9
|
Zheng LZ, Wang JL, Kong L, Huang L, Tian L, Pang QQ, Wang XL, Qin L. Steroid-associated osteonecrosis animal model in rats. J Orthop Translat 2018; 13:13-24. [PMID: 29662787 PMCID: PMC5892381 DOI: 10.1016/j.jot.2018.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Established preclinical disease models are essential for not only studying aetiology and/or pathophysiology of the relevant diseases but more importantly also for testing prevention and/or treatment concept(s). The present study proposed and established a detailed induction and assessment protocol for a unique and cost-effective preclinical steroid-associated osteonecrosis (SAON) in rats with pulsed injections of lipopolysaccharide (LPS) and methylprednisolone (MPS). METHODS Sixteen 24-week-old male Sprague-Dawley rats were used to induce SAON by one intravenous injection of LPS (0.2 mg/kg) and three intraperitoneal injections of MPS (100 mg/kg) with a time interval of 24 hour, and then, MPS (40 mg/kg) was intraperitoneally injected three times a week from week 2 until sacrifice. Additional 12 rats were used as normal controls. Two and six weeks after induction, animals were scanned by metabolic dual energy X-ray absorptiometry for evaluation of tissue composition; serum was collected for bone turnover markers, Microfil perfusion was performed for angiography, the liver was collected for histopathology and bilateral femora and bilateral tibiae were collected for histological examination. RESULTS Three rats died after LPS injection, i.e., with 15.8% (3/19) mortality. Histological evaluation showed 100% incidence of SAON at week 2. Dual energy X-ray absorptiometry showed significantly higher fat percent and lower lean mass in SAON group at week 6. Micro-computed tomography (Micro-CT) showed significant bone degradation at proximal tibia 6 weeks after SAON induction. Angiography illustrated significantly less blood vessels in the proximal tibia and significantly more leakage particles in the distal tibia 2 weeks after SAON induction. Serum amino-terminal propeptide of type I collagen and osteocalcin were significantly lower at both 2 and 6 weeks after SAON induction, and serum carboxy-terminal telopeptide was significantly lower at 6 weeks after SAON induction. Histomorphometry revealed significantly lower osteoblast surface and higher marrow fat fraction and oedema area in SAON group. Hepatic oedema appeared 2 weeks after SAON induction, and lipid accumulation appeared in the liver of SAON rats 6 weeks after SAON induction. CONCLUSION The present study successfully induced SAON in rats with pulsed injection of LPS and MPS, which was well simulating the clinical feature and pathology. Apart from available large animal models, such as bipedal emus or quadrupedal rabbits, our current SAON small model in rats could be a cost-effective preclinical experimental model to study body metabolism, molecular mechanism of SAON and potential drugs developed for prevention or treatment of SAON. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE The present study successfully induced SAON in a small animal model in rats with pulsed injection of LPS and MPS. The evaluation protocols with typical histopathologic ON features and advanced evaluation approaches to identify the metabolic disorders of SAON could be used in future rat SAON studies. The SAON rat model is a suitable and cost-effective animal model to study molecular mechanism of SAON and potential drugs developed for prevention and treatment of SAON.
Collapse
Affiliation(s)
- Li-Zhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jia-Li Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ling Kong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Le Huang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Li Tian
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Qian-Qian Pang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Xin-Luan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| |
Collapse
|
10
|
Hu Y, Li H, Liu K, Zhang Y, Ren L, Fan Z. Protective effects of icariin on human vascular endothelial cells induced by oxidized low-density lipoprotein via modulating caspase-3 and Bcl-2. Mol Med Rep 2018. [PMID: 29532884 DOI: 10.3892/mmr.2018.8717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Icariin belongs to the family of flavonoids that is extracted from Epimedium brevicornum Maxim, and exhibits antioxidative, antitumorigenic, antiosteoporotic, immunoregulatory and antiatherosclerotic properties. To understand the mechanisms underlying the antiatherosclerotic properties of icariin, the present study investigated the effects of icariin on human vascular endothelial cells (HUVECs) following treatment with oxidized low‑density lipoprotein (ox‑LDL). Thus, following pretreatment with icariin at four various concentrations (0, 10, 20 and 40 µM), HUVECs were stimulated with ox‑LDL (100 µg/ml). The viability of cells was evaluated via an MTT assay and flow cytometry was performed to assess apoptosis. Additionally, the protein and mRNA expression levels of apoptosis regulator Bcl‑2 (Bcl‑2) and caspase‑3 were determined by western blotting and reverse transcription‑quantitative polymerase chain reaction. The findings of the present study indicated that icariin prevented injury and apoptosis in HUVECs following ox‑LDL treatment, in particular via the regulation of protein and mRNA expression levels of Bcl-2 and caspase-3.
Collapse
Affiliation(s)
- Yanwu Hu
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haitao Li
- Department of Pharmacy, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Kai Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
11
|
Wang F, Shi L, Zhang Y, Wang K, Pei F, Zhu H, Shi Z, Tao T, Li Z, Zeng P, Wang X, Ji Q, Qin L, Xue Q. A Traditional Herbal Formula Xianlinggubao for Pain Control and Function Improvement in Patients with Knee and Hand Osteoarthritis: A Multicenter, Randomized, Open-Label, Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:1827528. [PMID: 29619064 PMCID: PMC5829359 DOI: 10.1155/2018/1827528] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/10/2017] [Indexed: 12/24/2022]
Abstract
Evidence of efficacy of a traditional herbal formula Xianlinggubao (XLGB) for treatment of osteoarthritis (OA) is limited. The present study was designed to evaluate the efficacy of XLGB in the management of patients with knee and hand OA. This was a multicenter, stratified, open-label, randomized controlled trial conducted at six centers in China. People aged 40 or above, diagnosed with OA of the knee or hand, were randomly assigned to the XLGB treatment group or watchful waiting control group. Main outcome measures were the changes in the numeric pain rating scales (NPRS) and the Western Ontario and McMaster Universities Arthritis Index (WOMAC) or the Australian/Canadian Osteoarthritis Hand Index (AUSCAN) scores, from baseline to 6 months. In total 534 patients (272 to XLGB and 262 to control group) received interventions. Participants in the XLGB group exhibited significant improvement in NPRS (P < 0.001) and WOMAC score (P < 0.001) or AUSCAN score (P < 0.001) compared to control group. Treatment with XLGB at current regime significantly reduced pain and improved function of the knee and hand in patients with OA over a 6-month period, implying that XLGB could be suggested as an alternative treatment for patients with knee or hand OA.
Collapse
Affiliation(s)
- Fei Wang
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Lei Shi
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Yaonan Zhang
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Kunzheng Wang
- Department of Orthopedics, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Fuxing Pei
- Department of Orthopaedics, First University Hospital, West China University of Medical Sciences, Chengdu 610041, China
| | - Hanmin Zhu
- Department of Osteoporosis, The Affiliated Huadong Hospital of Fudan University, Research Unit of Elderly Bone Metabolic Disease of Shanghai Geriatrics Institute, Shanghai 200040, China
| | - Zhanjun Shi
- Department of Orthopaedics, Southern Medical University, Nanfang Hospital, Guangzhou 510515, China
| | - Tianzun Tao
- Second Department of Orthopaedic Surgery, The Affiliated Second Hospital of Harbin Medical University, Harbin 150086, China
| | - Zhihua Li
- Institute of Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Ping Zeng
- Beijing Institute of Geriatric Diseases, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Xiaobing Wang
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Quan Ji
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Ling Qin
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin 200433, Hong Kong
| | - Qingxun Xue
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| |
Collapse
|
12
|
Li ZR, Cheng LM, Wang KZ, Yang NP, Yang SH, He W, Wang YS, Wang ZM, Yang P, Liu XZ, Luo YZ, Sun W, Wang HT, Zheng LZ, Wang XL, Qin L. Herbal Fufang Xian Ling Gu Bao prevents corticosteroid-induced osteonecrosis of the femoral head-A first multicentre, randomised, double-blind, placebo-controlled clinical trial. J Orthop Translat 2017; 12:36-44. [PMID: 29662777 PMCID: PMC5866478 DOI: 10.1016/j.jot.2017.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 02/05/2023] Open
Abstract
Background/Objective This is a multicentre, randomised, double-blind, placebo-controlled clinical trial to investigate the safety and efficacy of Chinese herbal Fufang Xian Ling Gu Bao (XLGB) with antiadipogenic compounds for the prevention of corticosteroid (CS)-induced osteonecrosis of femoral head (ONFH). Methods Patients of both genders, aged between 18 and 65 years, with diseases such as systemic lupus erythematosus, nephrosis, dermatosis and rheumatoid arthritis indicated for CS treatment and who did not show magnetic resonance imaging of ONFH at baseline were recruited into the study and then randomised into either XLGB group (n = 129) with daily oral administration of XLGB or placebo group (n = 146). Results Magnetic resonance imaging revealed a total of 30 ONFH cases at 6 months after CS treatment, with 6.98% (9 of 129 cases) and 14.4% (21 of 146 cases) in the XLGB group and placebo group, respectively, (p < 0.05), i.e., a 2-fold significantly less ONFH identified in the XLGB treatment group. Blood tests suggested that XLGB significantly inhibited the elevation of activated protein C resistance induced by CS treatment. Conclusion This is the first multicentre clinical study to demonstrate that the antiadipogenic compounds–rich herbal Fufang (formula) XLGB is effective in preventing CS-associated ONFH in patients with immune-inflammatory diseases under CS treatment. The translational potential of this article The translation potential of this clinical trial is that the initially officially approved clinical indication for XLGB for treatment of osteoporosis has been now also proven to be effective for a new clinical application.
Collapse
Affiliation(s)
- Zi-Rong Li
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-Ming Cheng
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Kun-Zheng Wang
- Department of Orthopaedics, Second Affiliated Hospital, Xi'an Jiao Tong University, School of Medicine, Xi'an 710004, China
| | - Nan-Ping Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu-Hua Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei He
- Department of Hip Joint Disease, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi-Sheng Wang
- Department of Orthopaedics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhong-Ming Wang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pei Yang
- Department of Orthopaedics, Second Affiliated Hospital, Xi'an Jiao Tong University, School of Medicine, Xi'an 710004, China
| | - Xian-Zhe Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yue-Zhong Luo
- Department of Rheumatology and Immunology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei Sun
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hai-Tao Wang
- Department of Orthopaedics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Li-Zhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xin-Luan Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China.,Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China.,Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
13
|
Lai Y, Cao H, Wang X, Chen S, Zhang M, Wang N, Yao Z, Dai Y, Xie X, Zhang P, Yao X, Qin L. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials 2017; 153:1-13. [PMID: 29096397 DOI: 10.1016/j.biomaterials.2017.10.025] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
Steroid-associated osteonecrosis (SAON) often requires surgical core decompression (CD) in the early stage for removal of necrotic bone to facilitate repair where bone grafts are needed for filling bone defect and avoiding subsequent joint collapse. In this study, we developed a bioactive composite scaffold incorporated with icariin, a unique phytomolecule that can provide structural and mechanical support and facilitate bone regeneration to fill into bone defects after surgical CD in established SAON rabbit model. An innovative low-temperature 3D printing technology was used to fabricate the poly (lactic-co-glycolic acid)/β-calcium phosphate/icariin (PLGA/TCP/Icariin, PTI) scaffold. The cytocompatibility of the PTI scaffold was tested in vitro, and the osteogenesis properties of PTI scaffolds were assessed in vivo in the SAON rabbit models. Our results showed that the fabricated PTI scaffold had a well-designed biomimic structure that was precisely printed to provide increased mechanical support and stable icariin release from the scaffold for bone regeneration. Furthermore, our in vivo study indicated that the PTI scaffold could enhanced the mechanical properties of new bone tissues and improved angiogenesis within the implanted region in SAON rabbit model than those of PLGA/TCP (PT) scaffold. The underlying osteoblastic mechanism was investigated using MC3T3-E1 cells in vitro and revealed that icariin could facilitate MC3T3-E1 cells ingrowth into the PTI scaffold and regulate osteoblastic differentiation. The PTI scaffold exhibited superior biodegradability, biocompatibility, and osteogenic capability compared with those of PT scaffold. In summary, the PTI composite scaffold which incorporated bioactive phyto-compounds is a promising potential strategy for bone tissue engineering and regeneration in patients with challenging SAON.
Collapse
Affiliation(s)
- Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Huijuan Cao
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Shenzhen Bioactive Materials Engineering Lab for Medicine, Shenzhen 518055, PR China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - Shukui Chen
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Ming Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Nan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhihong Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xinhui Xie
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, PR China; The Department of Orthopedics, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Peng Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Shenzhen Bioactive Materials Engineering Lab for Medicine, Shenzhen 518055, PR China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
14
|
Zhang ZR, Leung WN, Li G, Kong SK, Lu X, Wong YM, Chan CW. Osthole Enhances Osteogenesis in Osteoblasts by Elevating Transcription Factor Osterix via cAMP/CREB Signaling In Vitro and In Vivo. Nutrients 2017; 9:E588. [PMID: 28629115 PMCID: PMC5490567 DOI: 10.3390/nu9060588] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/28/2017] [Accepted: 06/05/2017] [Indexed: 12/24/2022] Open
Abstract
Anabolic anti-osteoporotic agents are desirable for treatment and prevention of osteoporosis and fragility fractures. Osthole is a coumarin derivative extracted from the medicinal herbs Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim.f. Osthole has been reported with osteogenic and anti-osteoporotic properties, whereas the underlying mechanism of its benefit still remains unclear. The objective of the present study was to investigate the osteopromotive action of osthole on mouse osteoblastic MC3T3-E1 cells and on mouse femoral fracture repair, and to explore the interaction between osthole-induced osteopromotive effect and cyclic adenosine monophosphate (cAMP) elevating effect. Osthole treatment promoted osteogenesis in osteoblasts by enhancing alkaline phosphatase (ALP) activity and mineralization. Oral gavage of osthole enhanced fracture repair and increased bone strength. Mechanistic study showed osthole triggered the cAMP/CREB pathway through the elevation of the intracellular cAMP level and activation of the phosphorylation of the cAMP response element-binding protein (CREB). Blockage of cAMP/CREB downstream signals with protein kinase A (PKA) inhibitor KT5720 partially suppressed osthole-mediated osteogenesis by inhibiting the elevation of transcription factor, osterix. In conclusion, osthole shows osteopromotive effect on osteoblasts in vitro and in vivo. Osthole-mediated osteogenesis is related to activation of the cAMP/CREB signaling pathway and downstream osterix expression.
Collapse
Affiliation(s)
- Zhong-Rong Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Wing Nang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Siu Kai Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yin Mei Wong
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Chun Wai Chan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
15
|
Liu H, Xiong Y, Zhu X, Gao H, Yin S, Wang J, Chen G, Wang C, Xiang L, Wang P, Fang J, Zhang R, Yang L. Icariin improves osteoporosis, inhibits the expression of PPARγ, C/EBPα, FABP4 mRNA, N1ICD and jagged1 proteins, and increases Notch2 mRNA in ovariectomized rats. Exp Ther Med 2017; 13:1360-1368. [PMID: 28413478 PMCID: PMC5377361 DOI: 10.3892/etm.2017.4128] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/06/2016] [Indexed: 12/23/2022] Open
Abstract
Icariin (ICA) is a pharmacologically active flavonoid glycoside that shows promise in the treatment and prevention of osteoporosis (OP). However, the mechanisms underlying the anti-osteoporotic effects of ICA remain largely unclear. The present study used quantitative polymerase chain reaction, western blot and immunohistochemical analysis to examine the effects of ICA on several key targets in the Notch signaling pathway in bone tissue in ovariectomized rats. It was observed that ICA has a pronounced beneficial effect on OP rats and inhibits the expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα) and fatty acid-binding protein 4 (FABP4) mRNA. In addition, it was identified that ICA downregulates the expression of notch1 intracellular domain (N1ICD) and Jagged1 proteins in bone tissue, and suppresses the effect of N1ICD on Notch2 mRNA expression. It is proposed that ICA inhibits the differentiation of mesenchymal stem cells into adipocytes by inhibiting the expression of PPARγ, C/EBPα and FABP4 mRNA via the Notch signaling pathway. In addition, it is proposed that ICA inhibits the expression of Notch2 mRNA by suppressing the effect of N1ICD. In conclusion, the results provide further mechanistic evidence for the clinical efficacy of ICA in the treatment of OP.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yingquan Xiong
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaofeng Zhu
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Han Gao
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Sujuan Yin
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jiefang Wang
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Guangming Chen
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Chaopeng Wang
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Lu Xiang
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Panpan Wang
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ji Fang
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ronghua Zhang
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Li Yang
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
16
|
Icariin Attenuates High-cholesterol Diet Induced Atherosclerosis in Rats by Inhibition of Inflammatory Response and p38 MAPK Signaling Pathway. Inflammation 2016; 39:228-236. [PMID: 26307750 DOI: 10.1007/s10753-015-0242-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Icariin is a flavonoid isolated from the traditional Chinese herbal medicine Epimedium brevicornum Maxim and has been reported to be effective for the treatment of a variety of cardiovascular diseases. The aim of the present study was to investigate the effect and mechanism of icariin on atherosclerosis (AS) using a high-cholesterol diet (HCD)-induced rat model. Seventy male Wistar rats were divided into five groups: 20 in the control group, 20 in the AS group, 10 in the simvastatin group, 10 in the low-dose icariin group, and 10 in the high-dose icariin group. A HCD and vitamin D3 were administered to establish AS rat model. The five groups of rats received daily intragastric administration of normal saline, simvastatin, or icariin (30 mg/kg/d, 60 mg/kg/d) for 4 weeks. The levels of blood lipids, superoxide dismutase (SOD), and malonaldehyde (MDA) were measured. The mRNA levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were analyzed by real-time RT-PCR, and the serum levels of IL-6 and TNF-α were measured using ELISA kit. In addition, the expression of phosphorylated p38 (p-p38) MAPK was detected by Western blot analysis. The results indicated that AS rat models were successfully constructed. In the AS group, the levels of blood lipids including total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C), and MDA were significantly increased, while high-density lipoprotein-cholesterol (HDL-C) and SOD were significantly decreased, compared with those in the control group. However, icariin succeeded in improving these biochemical parameters towards the normal values in the control group. In the simvastatin group and the icariin groups, the serum levels of IL-6 and TNF-α and the related tissue mRNA levels, as well as the expression of p-p38 MAPK, were markedly reduced compared with the AS group. In conclusion, the present study indicated that icariin inhibited the HCD-induced dyslipidemia in rats, the mechanisms may be associated with the anti-inflammation, anti-oxidative stress, and downregulation of p-p38 MAPK by icariin.
Collapse
|
17
|
Min H, Xu F, Gu R, Han X, Wang A, Liu K. Potential diagnostic role of diffusion tensor imaging in early-stage osteonecrosis of the femoral head. Exp Ther Med 2016; 12:3347-3352. [PMID: 27882161 DOI: 10.3892/etm.2016.3787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/08/2016] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to explore the potential diagnostic role of diffusion tensor magnetic resonance imaging (DTI) in the early stage of modified corticosteroid-induced osteonecrosis of the femoral head (ONFH). A total of 20 beagles were randomly classified (1:1) into either an experimental group (LM), which were intramuscularly injected with lipopolysaccharide (LPS) and methylprednisolone (MPS) on three consecutive days, or control (CON) group, which were injected with saline. Magnetic resonance imaging (MRI) and DTI were performed at pre-induction and 8 and 12 weeks post-induction. Apparent diffusion coefficient (ADC) values in the range of interest in the femoral head were quantified using DTI. Proximal femora were examined for ONFH at 8 and 12 weeks. The results demonstrated that ONFH developed in four beagles at 8 weeks and in six beagles at 12 weeks, whereas no ONFH was detected in the CON group. No abnormalities were detected by MRI and DTI, and no mortality occurred. In beagles with ONFH in the LM group, the ADC values were 4.7±0.2×10-4 and 4.8±0.3×10-4 mm2/sec at 8 and 12 weeks, respectively, which were significantly increased compared with the CON group (2.5±0.3×10-4 and 2.4±0.3×10-4 mm2, respectively) and the LM group without ONFH (2.6±0.4×10-4 and 2.4±0.3×10-4 mm2, respectively) (P<0.05). The results of the present study indicated that intramuscular injection of LPS and MPS may lead to early-stage ONFH in beagles. As such, the detection of locally elevated ADC values in the femoral head may aid in the early diagnosis of ONFH.
Collapse
Affiliation(s)
- Hongwei Min
- Department of Rehabilitation, Capital Medical University, Beijing 100068, P.R. China; Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing 100068, P.R. China
| | - Feng Xu
- Department of Rehabilitation, Capital Medical University, Beijing 100068, P.R. China; Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing 100068, P.R. China
| | - Rui Gu
- Department of Rehabilitation, Capital Medical University, Beijing 100068, P.R. China; Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing 100068, P.R. China
| | - Xinzuo Han
- Department of Rehabilitation, Capital Medical University, Beijing 100068, P.R. China; Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing 100068, P.R. China
| | - Anqing Wang
- Department of Rehabilitation, Capital Medical University, Beijing 100068, P.R. China; Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing 100068, P.R. China
| | - Kemin Liu
- Department of Rehabilitation, Capital Medical University, Beijing 100068, P.R. China; Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing 100068, P.R. China
| |
Collapse
|
18
|
HU YANWU, LIU KAI, YAN MENGTONG, ZHANG YANG, WANG YADI, REN LIQUN. Icariin inhibits oxidized low-density lipoprotein-induced proliferation of vascular smooth muscle cells by suppressing activation of extracellular signal-regulated kinase 1/2 and expression of proliferating cell nuclear antigen. Mol Med Rep 2016; 13:2899-903. [DOI: 10.3892/mmr.2016.4813] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 01/06/2016] [Indexed: 11/05/2022] Open
|
19
|
Zheng LZ, Cao HJ, Chen SH, Tang T, Fu WM, Huang L, Chow DHK, Wang YX, Griffith JF, He W, Zhou H, Zhao DW, Zhang G, Wang XL, Qin L. Blockage of Src by Specific siRNA as a Novel Therapeutic Strategy to Prevent Destructive Repair in Steroid-Associated Osteonecrosis in Rabbits. J Bone Miner Res 2015; 30:2044-57. [PMID: 25917347 DOI: 10.1002/jbmr.2542] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/15/2022]
Abstract
Vascular hyperpermeability and highly upregulated bone resorption in the destructive repair progress of steroid-associated osteonecrosis (SAON) are associated with a high expression of VEGF and high Src activity (Src is encoded by the cellular sarcoma [c-src] gene). This study was designed to prove our hypothesis that blocking the VEGF-Src signaling pathway by specific Src siRNA is able to prevent destructive repair in a SAON rabbit model. Destructive repair in SAON was induced in rabbits. At 2, 4, and 6 weeks after SAON induction, VEGF, anti-VEGF, Src siRNA, Src siRNA+VEGF, control siRNA, and saline were introduced via intramedullary injection into proximal femora for each group, respectively. Vascularization and permeability were quantified by dynamic contrast-enhanced (DCE) MRI. At week 6 after SAON induction, proximal femurs were dissected for micro-computed tomography (μCT)-based trabecular architecture with finite element analysis (FEA), μCT-based angiography, and histological analysis. Histological evaluation revealed that VEGF enhanced destructive repair, whereas anti-VEGF prevented destructive repair and Src siRNA and Src siRNA+VEGF prevented destructive repair and enhanced reparative osteogenesis. Findings of angiography and histomorphometry were consistent with those determined by DCE MRI. Src siRNA inhibited VEGF-mediated vascular hyperpermeability but preserved VEGF-induced neovascularization. Bone resorption was enhanced in the VEGF group and inhibited in the anti-VEGF, Src siRNA, Src siRNA+VEGF groups as determined by both 3D μCT and 2D histomorphometry. FEA showed higher estimated failure load in the Src siRNA and Src siRNA+VEGF groups when compared to the vehicle control group. Blockage of VEGF-Src signaling pathway by specific Src siRNA was able to prevent steroid-associated destructive repair while improving reconstructive repair in SAON, which might become a novel therapeutic strategy.
Collapse
Affiliation(s)
- Li-zhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hui-juan Cao
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Shi-hui Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Tao Tang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wei-min Fu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Orthopaedics, Zhongshan Hospital of Dalian University, Dalian, PR China
| | - Le Huang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yi-xiang Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - James Francis Griffith
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wei He
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, PR China
| | - Hong Zhou
- Bone Research Program, ANZAC (Australian and New Zealand Army Corps.) Research Institute, University of Sydney, Sydney, Australia
| | - De-wei Zhao
- Department of Orthopaedics, Zhongshan Hospital of Dalian University, Dalian, PR China
| | - Ge Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xin-luan Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| |
Collapse
|
20
|
Review of various treatment options and potential therapies for osteonecrosis of the femoral head. J Orthop Translat 2015; 4:57-70. [PMID: 30035066 PMCID: PMC5987013 DOI: 10.1016/j.jot.2015.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/05/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022] Open
Abstract
Size and location of the lesion, subchondral collapse occurrence, and articular cartilage involvement are general disease progression criteria for direct osteonecrosis of the femoral head (ONFH) classifications. Treatment options for ONFH are usually based on individual factors and lesion characteristics. Although spontaneous repair of ONFH occurs in some cases, untreated ONFH is unlikely to escape the fate of subchondral collapse and usually ends up with total hip arthroplasty. Operations to preserve the femoral head, e.g., core decompression and bone grafting, are usually recommended in younger patients. They are helpful to relieve pain and improve function in the affected femoral head without subchondral collapse, however, poor prognosis after surgical procedures remains the major problem for ONFH. Pharmacological and physical therapies only work in the early stage of ONFH and have also been recommended as a supplement or prevention treatment for osteonecrosis. Following advances in basic science, many new insights focus on bone tissue engineering to optimize therapies and facilitate prognosis of ONFH. In this review, disease classifications, current treatment options, potential therapies, and the relevant translational barriers are reviewed in the context of clinical application and preclinical exploration, which would provide guidance for preferable treatment options and translation into novel therapies.
Collapse
|
21
|
Hu Y, Liu K, Yan M, Zhang Y, Wang Y, Ren L. Effects and mechanisms of icariin on atherosclerosis. Int J Clin Exp Med 2015; 8:3585-3589. [PMID: 26064253 PMCID: PMC4443087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/27/2015] [Indexed: 06/04/2023]
Abstract
PURPOSE Icariin, a flavonoid isolated from the traditional Chinese herbal medicine Epimedium brevicornum Maxim, has been shown to process anti-inflammatory, antioxidative actions and anti-atherosclerosis activity in vivo and in vitro. The purpose of this study was to investigate the effects and mechanisms of icariin on atherosclerosis by human umbilical vein endothelial cells (HUVECs). METHODS The effects of icariin on the activity of HUVECs induced by oxidized low-density lipoprotein (ox-LDL) were detected by MTT assay. Then we studied the effects of icariin on the adhesion of monocyte with HUVECs induced by ox-LDL. The secretion of E-selectin, intercellular adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) by HUVECs were measured by enzyme-linked immunosorbent assay (ELISA) method. Finally the mRNA levels of ICAM-1, VCAM-1, E-selectin of HUVECs were analyzed by real time RT-PCR. RESULTS MTT result indicated that icariin (10, 20, 40 μmol/L) could inhibit HUVECs injury induced by ox-LDL in a concentration-dependent manner (P < 0.05). The adhesion of monocyte with HUVECs induced by ox-LDL was inhibited by icariin in a concentration-dependent manner (P < 0.05). The levels of ICAM-1, VCAM-1, E-selectin of icariin groups were significantly decreased in a concentration-dependent manner compared with ox-LDL-simulated group (P < 0.05). The mRNA expressions of ICAM-1, VCAM-1, E-selectin of icariin groups were also downregulated significantly compared with ox-LDL-simulated group (P < 0.05). CONCLUSIONS Icariin can prevent atherosclerotic lesion. Its mechanism may be that it can defend against the oxidation damage to HUVECs, inhibit the adhesion of monocyte to HUVECs, and reduce the secretion and expression of adhesion molecules including ICAM-1, VCAM-1, E-selectin.
Collapse
Affiliation(s)
- Yanwu Hu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University Changchun 130021, Jilin, China
| | - Kai Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University Changchun 130021, Jilin, China
| | - Mengtong Yan
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University Changchun 130021, Jilin, China
| | - Yang Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University Changchun 130021, Jilin, China
| | - Yadi Wang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University Changchun 130021, Jilin, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University Changchun 130021, Jilin, China
| |
Collapse
|
22
|
He YX, Liu J, Guo B, Wang YX, Pan X, Li D, Tang T, Chen Y, Peng S, Bian Z, Liang Z, Zhang BT, Lu A, Zhang G. Src inhibitor reduces permeability without disturbing vascularization and prevents bone destruction in steroid-associated osteonecrotic lesions in rabbits. Sci Rep 2015; 5:8856. [PMID: 25748225 PMCID: PMC4352921 DOI: 10.1038/srep08856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/02/2015] [Indexed: 11/09/2022] Open
Abstract
To examine the therapeutic effect of Src inhibitor on the VEGF mediating vascular hyperpermeability and bone destruction within steroid-associated osteonecrotic lesions in rabbits. Rabbits with high risk for progress to destructive repair in steroid-associated osteonecrosis were selected according to our published protocol. The selected rabbits were systemically administrated with either Anti-VEGF antibody (Anti-VEGF Group) or Src inhibitor (Src-Inhibition Group) or VEGF (VEGF-Supplement Group) or a combination of VEGF and Src inhibitor (Supplement &Inhibition Group) or control vehicle (Control Group) for 4 weeks. At 0, 2 and 4 weeks after administration, in vivo dynamic MRI, micro-CT based-angiography, histomorphometry and immunoblotting were employed to evaluate the vascular and skeletal events in different groups. The incidence of the destructive repair in the Anti-VEGF Group, Src-Inhibition Group and Supplement &Inhibition Group was all significantly lower than that in the Control Group. The angiogenesis was promoted in VEGF-Supplement Group, Src-Inhibition Group and Supplement &Inhibition Group, while the hyperpermeability was inhibited in Anti-VEGF Group, Src-Inhibition Group and Supplement &Inhibition Group. The trabecular structure was improved in Src-Inhibition Group and Supplement &Inhibition Group. Src inhibitor could reduce permeability without disturbing vascularization and prevent destructive repair in steroid-associated osteonecrosis.
Collapse
Affiliation(s)
- Yi-Xin He
- 1] Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China [2] Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong SAR, China [3] Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong SAR, China [4] Institute of Integrated Bioinformedicine &Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China [5] Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone &Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China [6] Hong Kong Baptist University - Northwestern Polytechnical University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Shenzhen, China
| | - Jin Liu
- 1] Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China [2] Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong SAR, China [3] Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong SAR, China [4] Institute of Integrated Bioinformedicine &Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China [5] Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone &Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China
| | - Baosheng Guo
- 1] Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China [2] Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong SAR, China [3] Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong SAR, China [4] Institute of Integrated Bioinformedicine &Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China [5] Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone &Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China [6] Hong Kong Baptist University - Northwestern Polytechnical University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Shenzhen, China
| | - Yi-Xiang Wang
- Department of Diagnostic Radiology and Organ Imaging, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaohua Pan
- 1] Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China [2] Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong SAR, China [3] Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong SAR, China [4] Institute of Integrated Bioinformedicine &Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China [5] Department of Orthopedics, Second Hospital of Medical College of Ji Nan University, Shenzhen People's Hospital, 518020 Shenzhen, China
| | - Defang Li
- 1] Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China [2] Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong SAR, China [3] Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong SAR, China [4] Institute of Integrated Bioinformedicine &Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China [5] Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone &Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China [6] Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Tang
- 1] Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China [2] Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong SAR, China [3] Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong SAR, China [4] Institute of Integrated Bioinformedicine &Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China [5] Department of Obstetrics &Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Chen
- Department of Orthopaedics and Traumatology, BaoAn Hospital affiliated to Southern Medical University &Shenzhen 8th People Hospital, Shenzhen, PR China
| | - Songlin Peng
- Department of Orthopedics, Second Hospital of Medical College of Ji Nan University, Shenzhen People's Hospital, 518020 Shenzhen, China
| | - Zhaoxiang Bian
- 1] Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China [2] Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong SAR, China [3] Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong SAR, China [4] Institute of Integrated Bioinformedicine &Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China [5] Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone &Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China
| | - Zicai Liang
- Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone &Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aiping Lu
- 1] Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China [2] Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong SAR, China [3] Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong SAR, China [4] Institute of Integrated Bioinformedicine &Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China [5] Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone &Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China [6] Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ge Zhang
- 1] Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China [2] Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong SAR, China [3] Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong SAR, China [4] Institute of Integrated Bioinformedicine &Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China [5] Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone &Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China [6] Hong Kong Baptist University - Northwestern Polytechnical University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Shenzhen, China
| |
Collapse
|
23
|
Xie XH, Wang XL, Yang HL, Zhao DW, Qin L. Steroid-associated osteonecrosis: Epidemiology, pathophysiology, animal model, prevention, and potential treatments (an overview). J Orthop Translat 2015; 3:58-70. [PMID: 30035041 PMCID: PMC5982361 DOI: 10.1016/j.jot.2014.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/30/2014] [Accepted: 12/23/2014] [Indexed: 02/08/2023] Open
Abstract
Steroid-associated osteonecrosis (SAON) is a common orthopaedic problem caused by administration of corticosteroids prescribed for many nonorthopaedic medical conditions. We summarised different pathophysiologies of SAON which have adverse effects on multiple systems such as bone marrow stem cells (BMSCs) pool, bone matrix, cell apoptosis, lipid metabolism, and angiogenesis. Different animal models were introduced to mimic the pathophysiology of SAON and for testing the efficacy of both prevention and treatment effects of various chemical drugs, biological, and physical therapies. According to the classification of SAON, several prevention and treatment methods are applied at the different stages of SAON. For the current period, Chinese herbs may also have the potential to prevent the occurrence of SAON. In the future, genetic analysis might also be helpful to effectively predict the development of ON and provide information for personalised prevention and treatment of patients with SAON.
Collapse
Affiliation(s)
- Xin-Hui Xie
- The Department of Orthopedics, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.,Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,The Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin-Luan Wang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Translational Medicine Research and Development Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui-Lin Yang
- The Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - De-Wei Zhao
- Department of Orthopedics, Zhongshan Hospital of Dalian University, Dalian, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Translational Medicine Research and Development Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
24
|
Peng S, Zhang G, Zhang BT, Guo B, He Y, Bakker AJ, Pan X, Zhen W, Hung L, Qin L, Leung WN. The beneficial effect of icaritin on osteoporotic bone is dependent on the treatment initiation timing in adult ovariectomized rats. Bone 2013; 55:230-40. [PMID: 23486180 DOI: 10.1016/j.bone.2013.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND Epimedium-derived flavonoids (EFs) have a potential to treat established osteoporosis in postmenopausal women. However, one of the main disadvantages of the compound is the high volume and dosage during long-term administration period. Meanwhile, the beneficial effect of EFs on osteoporotic bone depends greatly on the intervention timing. Whether icaritin (ICT), an active molecular compound from EFs, can exert beneficial effect on osteoporotic bone and whether the beneficial effect is also dependent on the intervention timing remain unknown. OBJECTIVE The objective of this study was to evaluate the effect of the early and late ICT treatment on bone turnover markers, trabecular architecture, bone remodeling, biomechanics, colony formation of bone marrow stromal cells and osteoblast, adipocyte and osteoclast-related gene expression in adult ovariectomized rats. METHODS Eighty 9-month-old female rats (n=8/group) were sham-operated (Sham) or ovariectomized (OVX). The OVX rats were subjected to ICT treatment initiation at 1 month (early treatment) and 3 months (late treatment) post-operation, respectively. The vehicle-treated Sham and OVX rats starting at month 1 and month 3 post-operation served as the corresponding controls (Sham and OVX controls) for early and late ICT treatment, respectively. Those Sham and OVX rats sacrificed immediately before early and late ICT treatment served as the pretreatment baseline controls. Both ICT and vehicle treatments lasted for 2 months. The bone turnover markers, trabecular architecture, bone remodeling and bone biomechanical properties were analyzed with biochemistry, microCT, histomorphometry and mechanical testing, respectively. The population of bone marrow stromal cells (BMSCs) and osteoblasts were evaluated with colony formation assays, respectively. The expression levels of osteoblast, adipocyte and osteoclast-related genes in bone marrow were assessed by real-time polymerase chain reaction (PCR), respectively. RESULTS At the tissue level, early ICT treatment remarkably restored the trabecular bone mass, trabecular architecture and bone biomechanical properties towards pretreatment Sham levels, and significantly increased bone formation from pretreatment OVX level and markedly inhibited bone resorption towards pretreatment Sham level, whereas late ICT treatment failed to have any effect. At the cellular and molecular level, early ICT treatment significantly increased the number of osteoblastic colonies and the level of osteoblast-related gene expression compared to pretreatment OVX levels and remarkably decreased adipocyte and osteoclast-related gene expression towards pretreatment Sham levels. Late ICT treatment failed to have beneficial effect on any of these parameters. CONCLUSION ICT can exert anabolic and anti-resorptive effect on osteoporotic bone. The beneficial effect of ICT treatment is dependent on the intervention timing in established osteoporosis induced by estrogen depletion.
Collapse
Affiliation(s)
- Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, Jinan University Second College of Medicine, Shenzhen, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang XL, Wang N, Zheng LZ, Xie XH, Yao D, Liu MY, Yao ZH, Dai Y, Zhang G, Yao XS, Qin L. Phytoestrogenic molecule desmethylicaritin suppressed adipogenesis via Wnt/β-catenin signaling pathway. Eur J Pharmacol 2013; 714:254-60. [PMID: 23792141 PMCID: PMC7094326 DOI: 10.1016/j.ejphar.2013.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 06/03/2013] [Accepted: 06/08/2013] [Indexed: 11/18/2022]
Abstract
Epimedium flavonoids inhibit extravascular lipid deposition during prevention of steroid-associated osteonecrosis. Desmethylicaritin is a bioactive metabolite of Epimedium flavonoids in serum. As it is well known that estrogen inhibits aidpogenesis, so we hypothesized that desmethylicaritin as a phytoestrogen might have the potential to inhibit lipid deposition. This study was designed to investigate the effect of desmethylicaritin on adipogenesis and its underlying mechanism in vitro. Adipogenesis was assessed by Oil Red O staining in 3T3-L1 preadipocytes. Bromodeoxyuridine was used to test the clonal expansion. Further, the mRNA level and protein expression of adipgenic and related factors were detected by qRT-PCR and western blot, respectively. The nuclear location of β-catenin was identified using immunofluoresence assay. Our results showed that desmethylicaritin suppressed the adipogenesis in 3T3-L1 cells in a dose-dependent manner. In addition, desmethylicaritin inhibited clonal expansion during adipogenesis. Desmethylicaritin did not affect CCAAT/enhancer binding protein δ and β mRNA expression, but decreased the mRNA expression of CCAAT/enhancer binding protein α, peroxisome proliferator-activated receptor γ, adipocyte lipid-binding protein and lipoprotein lipase. Desmethylicaritin up-regulated the mRNA expression of Wnt10b that was however down-regulated after adipogenic induction. Desmethylicaritin increased the protein expression of β-catenin both in the cytoplasm and nuclei and immunofluorescence results confirmed that desmethylicaritin increased nuclear translocation of β-catenin. Above findings implied that desmethylicaritin was able to inhibit adipogenesis and Wnt/β-catenin signaling pathway was regulated by desmethylicaritin in the process of suppression of adipogenesis. Above findings supported desmethylicaritin as a novel phytochemical agent for potential prevention of disorders involving lipid metabolism.
Collapse
Affiliation(s)
- Xin-Luan Wang
- Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sheng H, Sheng CJ, Cheng XY, Zhang G, Lee KM, Leung KS, Qu S, Qin L. Pathomorphological changes of bone marrow adipocytes in process of steroid-associated osteonecrosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:1046-1050. [PMID: 23696921 PMCID: PMC3657356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/28/2013] [Indexed: 06/02/2023]
Abstract
OBJECTIVE The role of extravascular fat deposition in pathogenesis of steroid-associated osteonecrosis (ON) still remains unclear. This study aimed to explore the pathomorphological changes of bone marrow adipocytes over time in a rabbit ON model. METHODS Thirty-two adult rabbits were divided into control group (n=16) and steroid group (n=16). Rabbits in the steroid group were injected with venous lipopolysaccharide once and intramuscular methylprednisolone trice to induce ON. Rabbits in the control group were treated with normal saline of equal volume. 2 weeks (early stage; n=8) and 4 weeks (late stage; n=8) after the last steroid injection, animals were sacrificed, and bilateral femora were harvested. The density, diameter and area of bone marrow adipocytes were determined by histomorphometry, and ON was evaluated histopathologically. RESULTS The adipocyte density in steroid group increased by 67.1% and 54.4% at week 2 and week 4, respectively, when compared with control group, but there was no significant difference between week 2 and week 4. The adipocyte diameter in the steroid group at week 4 was significantly larger than that in the control group, but the adipocyte diameter in the steroid group at week 2 was slightly smaller than that in the control group. The adipocyte area in the steroid group increased by 44% and 83.4% at week 2 and week 4, respectively, when compared with the control group, and the adipocyte area in the steroid group at week 4 was markedly larger than that at week 2. In the control group, there were a largest number of adipocytes with 40-50 μm in diameter. When compared with the control group, most of increased adipocytes in the steroid group at week 2 were 30-40 μm in diameter, and those at week 4 were 50-60 μm in diameter. In the steroid group, histopathological examination showed ON was found in 25% (2/8) of rabbits at week 2 and 87.5% (7/8) of rabbits at week 4. CONCLUSION In the process of ON, extravascular fat deposition is characterized by increased small adipocytes at the early stage and hypertrophy of adipocytes at the late stage.
Collapse
Affiliation(s)
- Hui Sheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Chun-Jun Sheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Xiao-Yun Cheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ge Zhang
- Department of Orthopedics and Traumatology, The Chinese University of Hong KongHong Kong SAR, China
| | - Kwong-Man Lee
- Department of Orthopedics and Traumatology, The Chinese University of Hong KongHong Kong SAR, China
| | - Kwok-Sui Leung
- Department of Orthopedics and Traumatology, The Chinese University of Hong KongHong Kong SAR, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ling Qin
- Department of Orthopedics and Traumatology, The Chinese University of Hong KongHong Kong SAR, China
| |
Collapse
|
27
|
Chen SH, Lei M, Xie XH, Zheng LZ, Yao D, Wang XL, Li W, Zhao Z, Kong A, Xiao DM, Wang DP, Pan XH, Wang YX, Qin L. PLGA/TCP composite scaffold incorporating bioactive phytomolecule icaritin for enhancement of bone defect repair in rabbits. Acta Biomater 2013; 9:6711-22. [PMID: 23376238 DOI: 10.1016/j.actbio.2013.01.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/18/2022]
Abstract
Bone defect repair is challenging in orthopaedic clinics. For treatment of large bone defects, bone grafting remains the method of choice for the majority of surgeons, as it fills spaces and provides support to enhance biological bone repair. As therapeutic agents are desirable for enhancing bone healing, this study was designed to develop such a bioactive composite scaffold (PLGA/TCP/ICT) made of polylactide-co-glycolide (PLGA) and tricalcium phosphate (TCP) as a basic carrier, incorporating a phytomolecule icaritin (ICT), i.e., a novel osteogenic exogenous growth factor. PLGA/TCP/ICT scaffolds were fabricated as PLGA/TCP (control group) and PLGA/TCP in tandem with low/mid/high-dose ICT (LICT/MICT/HICT groups, respectively). To evaluate the in vivo osteogenic and angiogenic potentials of these bioactive scaffolds with slow release of osteogenic ICT, the authors established a 12 mm ulnar bone defect model in rabbits. X-ray and high-resolution peripheral quantitative computed tomography results at weeks 2, 4 and 8 post-surgery showed more newly formed bone within bone defects implanted with PLGA/TCP/ICT scaffolds, especially PLGA/TCP/MICT scaffold. Histological results at weeks 4 and 8 also demonstrated more newly mineralized bone in PLGA/TCP/ICT groups, especially in the PLGA/TCP/MICT group, with correspondingly more new vessel ingrowth. These findings may form a good foundation for potential clinical validation of this innovative bioactive scaffold incorporated with the proper amount of osteopromotive phytomolecule ICT as a ready product for clinical applications.
Collapse
Affiliation(s)
- S-H Chen
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xiao-Hong D, Chang-Qin X, Jian-Hua H, Wen-Jiang Z, Bing S. Icariin delays homocysteine-induced endothelial cellular senescence involving activation of the PI3K/AKT-eNOS signaling pathway. PHARMACEUTICAL BIOLOGY 2013; 51:433-440. [PMID: 23336586 DOI: 10.3109/13880209.2012.738332] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Homocysteine-induced endothelial cellular senescence may contribute to some cardiovascular disorders. Icariin (ICA), a flavonoid derived from Epimedium sagittatum Maxim. (Berberidaceae), has been reported to increase production of nitric oxide (NO) and reduce reactive oxygen species (ROS) levels in human umbilical vein endothelial cells (HUVECs). OBJECTIVE To observe the effects of ICA on homocysteine-induced senescence and the underlying mechanisms in HUVECs. MATERIALS AND METHODS ICA at concentrations of 0.1, 1, and 5 μM was added into homocysteine pretreated HUVECs. Cellular senescence was assayed by senescence-associated β-galactosidase (SA-β-gal) staining and cumulative population doublings (CPDs). ICA (5 μM) was given orally to homocysteine-treated rats, luminal surface of aortic artery of rats was subjected to SA-β-gal staining. Protein expression was measured by western blot. RESULTS Homocysteine significantly increased cellular senescence both in vitro and in vivo. After treatment by ICA, the percentage of SA-β-gal-positive cells, and the ROS level significantly decreased. The CPDs were partially restored. ICA also significantly reduced the mean density of SA-β-gal staining in vivo. We found that NO production and phosphorylation of AKT, ERK, and endothelial NO synthase (eNOS) were elevated by ICA in HUVECs. Furthermore, the increased level of NO production was fully abolished by the phosphatidylinositol-3-kinase (PI3K) inhibitor wortmannin. The mitogen-activated protein kinase (MEK) inhibitor PD98059, which can inhibit phosphorylation of ERK, did not show this ability. DISCUSSION AND CONCLUSION Our results indicate that ICA delays homocyteine-induced endothelial senescence in vitro and in vivo. Activation of PI3K/Akt-eNOS-dependent signaling pathway may be responsible for this efficacy of ICA.
Collapse
Affiliation(s)
- Duan Xiao-Hong
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
29
|
Sheng H, Rui XF, Sheng CJ, Li WJ, Cheng XY, Jhummon NP, Yu YC, Qu S, Zhang G, Qin L. A novel semisynthetic molecule icaritin stimulates osteogenic differentiation and inhibits adipogenesis of mesenchymal stem cells. Int J Med Sci 2013; 10:782-9. [PMID: 23630444 PMCID: PMC3638303 DOI: 10.7150/ijms.6084] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 04/10/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND We previously reported that the constitutional flavonoid glycosides derived from herb Epimedium (EF, composed of seven flavonoid compounds with common nuclear stem) exerted beneficial effects on the bone, including promoting bone formation and inhibiting bone marrow fat deposition. Recent in vivo study showed that Icaritin was a common metabolite of these constitutional flavonoid glycosides, indicating that Icaritin is a bioactive compound. The present study was designed to investigate whether Icaritin could promote osteogenic differentiation and suppress adipogenic differentiation of marrow mesenchymal stem cells (MSCs). METHODS Primary MSCs were harvested from adult mice and exposed to Icaritin to evaluate whether it could promote osteogenesis and suppress adipogenesis using the following assays: determination of alkaline phosphatase (ALP) activity and mineralization; mRNA expression of osteogenic differentiation marker Runx2; osteocalcin and bone sialoprotein (BSP) by RT-PCR; quantification of adipocyte-like cells by Oil Red O staining assay and mRNA expression for adipogenic differentiation markers peroxisome proliferator-activated receptor gamma (PPARγ); adipocyte fatty acid binding protein (aP2) and lipoprotein lipase (LPL) by RT-PCR. For the underlying mechanism, glycogen synthase kinase-3beta (GSK3β) and β-catenin were also explored by western blotting. RESULTS Icaritin promoted osteogenic differentiation and maturation of MSCs as indicated by increased mRNA expression for Runx2, osteocalcin and BSP, and enhanced ALP activity and mineralization; Icaritin inhibited adipogenic differentiation, as indicated by decreased mRNA expression for PPARγ, LPL, aP2, and suppressed formation of adipocyte-like cells; Icaritin inactivated GSK3β and suppressed PPARγ expression when promoting osteogenesis and suppressing adipogenesis of MSCs. CONCLUSION This was the first study demonstrating that the novel semisynthetic molecule Icaritin could stimulate osteogenic differentiation and inhibit adipogenesis of MSCs, which was associated with the suppression of GSK3β and PPARγ.
Collapse
Affiliation(s)
- Hui Sheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Xie XH, Wang XL, Zhang G, He YX, Leng Y, Tang TT, Pan X, Qin L. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. J Tissue Eng Regen Med 2012; 9:961-72. [DOI: 10.1002/term.1679] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 10/14/2012] [Accepted: 11/10/2012] [Indexed: 02/01/2023]
Affiliation(s)
- Xin-Hui Xie
- Department of Orthopaedics and Traumatology; The Chinese University of Hong Kong; People's Republic of China
- Department of Orthopaedics; First Affiliated Hospital of Soochow University; Suzhou People's Republic of China
| | - Xin-Luan Wang
- Department of Orthopaedics and Traumatology; The Chinese University of Hong Kong; People's Republic of China
- Translational Medicine Research and Development Centre, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology; Chinese Academy of Sciences; Shenzhen People's Republic of China
| | - Ge Zhang
- Department of Orthopaedics and Traumatology; The Chinese University of Hong Kong; People's Republic of China
| | - Yi-Xin He
- Department of Orthopaedics and Traumatology; The Chinese University of Hong Kong; People's Republic of China
| | - Yang Leng
- Department of Mechanical Engineering; Hong Kong University of Science and Technology; People's Republic of China
| | - Ting-Ting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai People's Republic of China
| | - Xiaohua Pan
- Department of Orthopaedics, Shenzhen People's Hospital, Second Clinical Medical College; Ji'nan University; Shenzhen China
| | - Ling Qin
- Department of Orthopaedics and Traumatology; The Chinese University of Hong Kong; People's Republic of China
- Translational Medicine Research and Development Centre, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology; Chinese Academy of Sciences; Shenzhen People's Republic of China
| |
Collapse
|
31
|
Xie XH, Wang XL, He YX, Liu Z, Sheng H, Zhang G, Qin L. Promotion of bone repair by implantation of cryopreserved bone marrow-derived mononuclear cells in a rabbit model of steroid-associated osteonecrosis. ACTA ACUST UNITED AC 2012; 64:1562-71. [PMID: 22544527 DOI: 10.1002/art.34525] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Cytotherapy is an insufficient method for promoting bone repair in steroid-associated osteonecrosis (SAON), and this has been attributed to impairment of the bioactivity of bone marrow-derived stem cells (BMSCs) after pulsed administration of steroids. Cryopreserved autologous bone marrow-derived mononuclear cells (BMMNCs), which contain BMSCs, might maintain their bioactivity in vitro. This study sought to investigate the effects of cryopreserved BMMNCs, before steroid administration, on the enhancement of bone repair in an established rabbit model of SAON. METHODS For in vitro study, bone marrow was harvested 4 weeks before SAON induction from the iliac crests of rabbits (n = 10) to isolate fresh BMMNCs, and the BMMNCs were then cryopreserved for 8 weeks. Both the fresh and the cryopreserved BMMNCs were evaluated for their bioactivity and osteogenic differentiation capacity. In addition, BMMNCs were isolated 2 weeks after SAON induction and subjected to the same evaluations. For in vivo study, cryopreserved BMMNCs were implanted into the bone tunnel during core decompression of the femur (n = 12 rabbits) after the induction of SAON, and tissue regeneration was evaluated by micro-computed tomography and histologic analyses at 12 weeks postoperation. RESULTS In vitro, there were no significant differences in the bioactivity or ability to undergo osteogenic differentiation between fresh BMMNCs and cryopreserved BMMNCs, but after SAON induction, both features were decreased significantly. In vivo, the bone mineral density, ratio of bone volume to total volume of bone, and volume and diameter of neovascularization within the bone tunnel were significantly higher in the BMMNC-treated group compared to the nontreated control group at 12 weeks postoperation. CONCLUSION Cryopreserved BMMNCs maintained their bioactivity and promoted bone regeneration and neovascularization within the bone tunnel after core decompression in this rabbit model of SAON.
Collapse
Affiliation(s)
- Xin-Hui Xie
- The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Sun MH, Leung KS, Zheng YP, Huang YP, Wang LK, Qin L, Leung AHC, Chow SKH, Cheung WH. Three-dimensional high frequency power Doppler ultrasonography for the assessment of microvasculature during fracture healing in a rat model. J Orthop Res 2012; 30:137-43. [PMID: 21698663 DOI: 10.1002/jor.21490] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 06/02/2011] [Indexed: 02/04/2023]
Abstract
We aimed to establish a novel approach with 3D high frequency power Doppler ultrasonography (3D-HF-PDU) to assess microvasculature at the fracture site in rat femurs by comparing with microCT-based microangiography. Twenty-four 9-month-old ovariectomized (OVX) osteoporotic rats and age-matched sham-ovariectomized (Sham) rats were used for establishing closed fracture models on right femora. At 2, 4, and 8 weeks post-operatively, four rats in each group underwent in vivo 3D-HF-PDU scanning for evaluation of vascularization and blood flow at the fracture site. Then the fractured femora were harvested for ex vivo microangiography, and neovasculatures within the callus were reconstructed for vascular volume analysis. Correlation between the vascular volumes of the two methodologies was examined. Both 3D-HF-PDU and microangiography showed a decline of vascular volume at the fracture site from 2 to 8 weeks and a significantly larger volume in the Sham group than the OVX group. A significant linear positive correlation (r = 0.87, p < 0.001) was detected between the volumes measured by the two methodologies. Osteoporotic rats had a diminished angiogenic response and lower blood perfusion than Shams. We believe 3D-HF-PDU is feasible and reproducible for in vivo assessment of microvasculature during femoral fracture healing in rats.
Collapse
Affiliation(s)
- Ming-Hui Sun
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
A rat model of early stage osteonecrosis induced by glucocorticoids. J Orthop Surg Res 2011; 6:62. [PMID: 22189040 PMCID: PMC3284440 DOI: 10.1186/1749-799x-6-62] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 12/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucocorticoid (GC)-induced osteonecrosis (ON) is an important complication of medical therapy. The exact pathomechanisms of ON has not been clearly elucidated. There is a need for a reproducible animal model that better approximates the clinical scenario. METHODS To determine the genetic susceptibility of rats to develop GC-induced femoral head ON, we evaluated 5 different inbred strains of rats (Spontaneous Hypertensive Rat, Wistar Kyoto, Wistar Furth, SASCO Fisher and Lewis). Prednisone pellets (dosage of 1.82-2.56 mg/kg/day) were implanted subcutaneously for 90. After 90 days, the femurs were resected and examined histologically and radiographically. Pathological and histological examination was performed. Hematoxylin and eosin (H & E) staining was used to delineate the femoral head osteonecrosis lesions as well as abnormalities of articular cartilage and growth plate. RESULTS The greatest differences in H & E staining were seen in the Wistar Kyoto and Wistar Furth groups. In these groups 4 out of 5 and 3 out of 5, respectively, steroid-induced rats revealed growth plate disruption with acellular areas. The TUNEL apoptosis staining assay for apoptosis revealed that 4 out of 5 of Wistar Kyoto rats, 5 out of 5 of Wistar Furth, 2 out of 4 of surviving Lewis and 2 out of 2 of the surviving spontaneous hypertensive rats had apoptotic osteocytes in trabeculae, whereas none of the Fisher rats showed apoptotic osteocytes. CONCLUSIONS We postulate that Wistar Kyoto, Wistar Furth and spontaneous hypertensive rats may be strains of rats more susceptible to develop ON of the femoral head while Fisher rats were the most resistant.
Collapse
|
34
|
Metabolism of Epimedium-derived Flavonoid Glycosides in Intestinal Flora of Rabbits and Its Inhibition by Gluconolactone. Chin J Nat Med 2011; 9. [PMCID: PMC7128601 DOI: 10.3724/sp.j.1009.2011.00461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Aim The metabolism of Epimedium-derived flavonoid glycosides (EF, with icariin as the main component) in rabbit intestinal flora and its inhibition by gluconolactone were investigated in this paper to help reveal the metabolic pathway of EF in rabbits and to identify the in vivo bioactive components of EF in the prevention of steroid-associated osteonecrosis. Methods EF were incubated at 37 °C anaerobically with rabbit intestinal flora, and then water-saturated ethyl acetate was used for sample extraction at different time points. Furthermore, gluconolactone was added at different concentrations (8, 12 and 16 mg·mL−1) to study its inhibition of the metabolism of EF in rabbit intestinal flora. The separation was performed on a ODS column by gradient elution with acetonitrile-water (including 0.1% formic acid respectively) as mobile phase at detection wavelength of 335 nm. Results EF were metabolized to icariside II in 2 h, and then to icaritin when incubated for 8 h; gluconolactone showed the inhibition of EF metabolism in rabbit intestinal flora in a concentration-dependent manner. Conclusion EF were found to be metabolized rapidly by hydrolysis of rabbit intestinal flora to produce icariside II and icaritin; and the total inhibition was achieved by gluconolactone at a concentration of 16 mg·mL−1.
Collapse
|
35
|
Du J, Wei YJ, Peng C, Ran X, Zhang H, Jiang YP, Rahman K, Qin LP. Establishment of a luciferase assay-based screening system for detecting estrogen receptor agonists in plant extracts. Bone 2011; 49:572-9. [PMID: 21664503 DOI: 10.1016/j.bone.2011.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 04/07/2011] [Accepted: 05/26/2011] [Indexed: 11/30/2022]
Abstract
In order to effectively treat osteoporosis and other bone-loss disorders, small compounds that could induce bone formation are needed. The present study attempted to establish a screening system for detecting estrogenic activity of compounds, which probably have anti-osteoporosis effects. For this purpose, we established osteoblastic-like MG63 cells stably transfected with the PGL3 reporter gene driven by a promoter consisting of three estrogen response elements (EREs). Using this system, we screened numerous plant extracts, and found several which displayed bioactivity. We conclude that the MG63 cells with estrogen-specific reporter plasmids (MG63-pERE) are useful for high-throughput screening of estrogen receptor agonists from plants which may have favorable potency and could be developed into novel anti-osteoporosis drugs.
Collapse
Affiliation(s)
- Jian Du
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang X, Zhen L, Zhang G, Wong MS, Qin L, Yao X. Osteogenic effects of flavonoid aglycones from an osteoprotective fraction of Drynaria fortunei--an in vitro efficacy study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:868-72. [PMID: 21377852 DOI: 10.1016/j.phymed.2011.01.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/17/2010] [Accepted: 01/23/2011] [Indexed: 05/23/2023]
Abstract
Drynaria fortunei (Kunze) J. Sm. is a traditional Chinese herb used for the treatment of osteoporosis and other bone metabolic disorders. Previous studies demonstrated that "small polar active fraction in Drynaria fortunei (SDF)"exerted osteoprotective effects in ovariectomized (OVX) mice. This study aims to investigate the constituents in SDF and systemically evaluate their osteogenic effects in vitro. Five flavonoid aglycones, naringenin, kurarinone, kushennol F, xanthogalenol, and sophoraflavanone G were identified in SDF. All the compounds did not show effects on proliferation of osteoblastic UMR 106 cells at the concentrations of 0.1-1000 nM, but significantly increased the ALP activity of the cells at most of the concentrations from 10 nm to 1000 nM. Xanthogalenol at the concentration of 100 nM significantly increased concentration of acid-solubilized calcium. ICI 182,780, antagonist of estrogen receptor (ER), diminished the effect of kushennol F on ALP activity and the effect of xanthogalenol on acid-solubilized calcium. In conclusion, flavonoid aglycones in SDF could promote differentiation and mineralization of osteoblastic UMR 106 cells in vitro, which was explained by activation of ER signaling pathway. This study provides scientific evidences for the conduction of in vivo experiments to confirm potential effects of flavonoid aglycones on preventing OVX-induced osteoporosis.
Collapse
Affiliation(s)
- Xinluan Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
37
|
Experimental animal models of osteonecrosis. Rheumatol Int 2011; 31:983-94. [PMID: 21340568 DOI: 10.1007/s00296-011-1819-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/30/2011] [Indexed: 02/07/2023]
Abstract
Osteonecrosis (ON) or avascular necrosis (AVN) is a common bone metabolic disorder, mostly affecting femoral head. Although many biological, biophysical, and surgical methods have been tested to preserve the femoral head with ON, none has been proven fully satisfactory. It lacks consensus on an optimal approach for treatment. This is due, at least in part, to the lack of ability to systematically compare treatment efficacy using an ideal animal model that mimics full-range osteonecrosis of femoral head (ONFH) in humans with high incidence of joint collapse accompanied by reparative reaction adjacent to the necrotic bone in a reproducible and accessible way. A number of preclinical animal ON models have been established for testing potential efficacy of various modalities developed for prevention and treatment of ON before introduction into clinics for potential applications. This paper describes a number of different methods for creating animal experimental ON models. Advantages and disadvantages of such models are also discussed as reference for future research in battle against this important medical condition.
Collapse
|
38
|
Wei H, Zili L, Yuanlu C, Biao Y, Cheng L, Xiaoxia W, Yang L, Xing W. Effect of icariin on bone formation during distraction osteogenesis in the rabbit mandible. Int J Oral Maxillofac Surg 2010; 40:413-8. [PMID: 21084174 DOI: 10.1016/j.ijom.2010.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 10/21/2009] [Accepted: 10/14/2010] [Indexed: 11/26/2022]
Abstract
The aim of this study was to evaluate the effect of icariin on bone formation during mandibular distraction. 40 Rabbits were randomly divided into experimental and control groups. Mandibular distraction was performed 5 days after unilateral mandibular osteotomy using a custom-made external distractor at a rate of 0.5mm/12h for 10 days. From the first day of distraction, icariin (2.5mg/kg · day) was orally administered to the experimental group and placebo to the controls. 10 Rabbits were killed at the end of weeks 2 and 4 of the consolidation phase. The distracted hemimandible was harvested and newly formed bone was evaluated by soft radiography, histology and bone histomorphometry. Regenerated bone was evaluated for bone mineral density by dual-energy X-ray absorptiometry. The experimental group had fewer radiolucent areas on soft radiography. Bone mineral density of regenerated bone was higher in the experimental than in the control group at 2 and 4 weeks. At 4 weeks, the experimental group had greater volumes of new bone, higher trabecular number, and less trabecular separation than the controls. Oral administration of icariin could promote bone formation during mandibular distraction osteogenesis and might be a promising method for shortening the course of distraction osteogenesis.
Collapse
Affiliation(s)
- H Wei
- Center of Orthognathic Surgery, Peking University School of Stomatology, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Xie XH, Wang XL, Zhang G, He YX, Wang XH, Liu Z, He K, Peng J, Leng Y, Qin L. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Biomed Mater 2010; 5:054109. [DOI: 10.1088/1748-6041/5/5/054109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Zhang G, Sheng H, He YX, Xie XH, Wang YX, Lee KM, Yeung KW, Li ZR, He W, Griffith JF, Leung KS, Qin L. Continuous occurrence of both insufficient neovascularization and elevated vascular permeability in rabbit proximal femur during inadequate repair of steroid-associated osteonecrotic lesions. ACTA ACUST UNITED AC 2009; 60:2966-77. [DOI: 10.1002/art.24847] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Wong SP, Shen P, Lee L, Li J, Yong E. Pharmacokinetics of prenylflavonoids and correlations with the dynamics of estrogen action in sera following ingestion of a standardized Epimedium extract. J Pharm Biomed Anal 2009; 50:216-23. [DOI: 10.1016/j.jpba.2009.04.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/25/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
|
42
|
Constitutional flavonoids derived from Epimedium dose-dependently reduce incidence of steroid-associated osteonecrosis not via direct action by themselves on potential cellular targets. PLoS One 2009; 4:e6419. [PMID: 19641620 PMCID: PMC2713419 DOI: 10.1371/journal.pone.0006419] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/15/2009] [Indexed: 12/02/2022] Open
Abstract
Intravascular-thrombosis and extravascular-lipid-deposit are the two key pathogenic events considered to interrupt intraosseous blood supply during development of steroid-associated osteonecrosis (ON). However, there are no clinically employed agents capable of simultaneously targeting these two key pathogenic events. The present experimental study demonstrated that constitutional flavonoid glycosides derived from herb Epimedium (EF, composed of seven flavonoid compounds with common stem nuclear) exerted dose-dependent effect on inhibition of both thrombosis and lipid-deposition and accordingly reducing incidence of steroid-associated ON in rabbits, which was not via direct action by themselves rather by their common metabolite on potential cellular targets involved in the two pathogenic pathways. The underlying mechanism could be explained by counteracting endothelium injury and excessive adipogenesis. These findings encourage designing clinical trials to investigate potential of EF in prevention of steroid-associated ON.
Collapse
|
43
|
Sheng H, Zhang G, Wang YX, Yeung DKW, Griffith JF, Leung KS, Qin L. Functional perfusion MRI predicts later occurrence of steroid-associated osteonecrosis: an experimental study in rabbits. J Orthop Res 2009; 27:742-7. [PMID: 19026010 DOI: 10.1002/jor.20765] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ischemia is the defined pathway leading to steroid-associated osteonecrosis (ON). Early detection of ischemic condition may help predict later ON occurrence. Bone marrow perfusion function evaluation by perfusion magnetic resonance imaging (MRI) may be a unique modality for this application. Twenty-five adult male New Zealand white rabbits were used in this study. Lipopolysaccharide (LPS) and methylprednisolone (MPS) were administrated for ON induction based on a published protocol. T1-weighted and fat suppression T2-weighted MR imaging (conventional MRI) were performed for ON lesion detection based on the abnormal signal in the proximal femora at week 0 as the baseline (before LPS injection), and week 1 and week 2 after MPS injection. At the same time, the blood perfusion function in the proximal femora was measured by perfusion MRI. Maximum enhancement (ME)--an index of MRI perfusion function was analyzed. After MRI scanning, the proximal femora were prepared histopathologically for ON lesion analysis. The rabbit with bilateral histopathological ON lesions was defined as an ON+ rabbit and included in the ON+ group evaluated at week 1 and week 2, respectively, and the rabbit without ON lesions in bilateral femora was classified into the ON- group. For the underlying mechanism of perfusion change, the extravascular marrow fat cells were measured and the intravascular endothelium inflammation injury indicator of tissue factor (TF) expression and thrombus formation were detected. In ON+ group, ME in perfusion MRI showed a significant decrease at week 1 and week 2 as compared with the baseline (p < 0.01). There was a more than 50% decrease in ME at week 1 in ON+ group; whereas there were no detectable ON lesions by conventional MRI at week 1, though 93% (14/15) rabbits could be detected at week 2 in ON+ group. In ON- group, ME showed a slight decrease at week 1 (less than 30%), and nearly recovered to normal at week 2 as compared with the baseline. Histological results showed a much larger average marrow fat area and more severe marrow blood sinusoids compression from surrounding crowded fat cells, and stronger positive TF expression in marrow endothelium and more thrombus formation in ON+ rabbits than ON- rabbits. This study demonstrated that functional perfusion MRI could predict development of steroid-associated ON. Our experimental data suggested that perfusion MRI might be a sensitive noninvasive modality for monitoring steroid-associated ON in patients.
Collapse
Affiliation(s)
- Hui Sheng
- Musculoskeletal Research Laboratory of the Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhang G, Qin L, Sheng H, Wang XL, Wang YX, Yeung DKW, Griffith JF, Yao XS, Xie XH, Li ZR, Lee KM, Leung KS. A novel semisynthesized small molecule icaritin reduces incidence of steroid-associated osteonecrosis with inhibition of both thrombosis and lipid-deposition in a dose-dependent manner. Bone 2009; 44:345-56. [PMID: 19015051 PMCID: PMC7185883 DOI: 10.1016/j.bone.2008.10.035] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 09/07/2008] [Accepted: 10/03/2008] [Indexed: 11/22/2022]
Abstract
BACKGROUND Intravascular-thrombosis and extravascular-lipid-deposition are the two key pathogenic events considered to interrupt intraosseous blood supply during steroid-associated osteonecrosis (ON) development. However, there are no reported candidate agents capable of simultaneously targeting these two key pathogenic events. The authors' published experimental studies have shown that Epimedium-derived flavonoids possess an anti-ON effect. Further, the authors have recently identified a small molecule Icaritin as an intestinal metabolite of Epimedium-derived flavonoids. OBJECTIVE The present study was to evaluate the prevention effect of the available semisynthesized small molecule Icaritin on steroid-associated ON development in a rabbit model. METHODS After receiving an established inductive protocol for inducing steroid-associated ON, eighty-four male 28-week-old New-Zealand white rabbits were divided into the following three daily oral administration groups, including low dose Icaritin group (L-ICT; n=28; 5 mg x kg(-1) x day(-1)), high dose Icaritin group (H-ICT; n=28; 10 mg x kg(-1) x day(-1)), and control vehicle group (CON; n=28). Before and after induction, dynamic contrast-enhanced MRI was performed on proximal femur for intra-osseous perfusion function index. Meanwhile, blood samples were examined for coagulation, fibrinolysis, lipid-transportation, endothelium injury, oxidative stress, and hepatocyte injury index, while marrow samples were quantified for adipogenic potential index of mesenchymal stem cell by in vitro culture and proliferator-activated receptor-gamma (PPARgamma) protein expression by western blot. At baseline, week 1 and 2 post-induction, 4, 8 and 16 rabbits in each group were sacrificed, respectively. After sacrifice, femora were dissected for micro-CT-based micro-angiography, followed by histological examination of ON lesion, intravascular thrombosis, extravascular fat-cell and vascular endothelial growth factor (VEGF) localized expression. RESULTS The ON incidence in the L-ICT and H-ICT groups was both significantly lower than that in the CON group (p<0.05 for both). The ON incidence in the H-ICT group was significantly lower than that in the L-ICT group (p<0.05). A significant decrease in the vascularization index and a significant increase in the permeability index seen in the CON group was attenuated in the L-ICT group and almost prevented in the H-ICT group at week 1 post-induction. Reduced perfusion to vessel-like structural units was more rarely found in the H-ICT group than in the L-ICT group. Regarding intravascular thrombosis, a significant increase in the thrombotic vessel count, endothelium injury index, coagulation index, and a significant decrease in both the fibrinolysis and oxidative stress index in the CON group were attenuated in the L-ICT group and prevented in the H-ICT group. For extravascular lipid-deposition, a significant increase in the fat cell area fraction, adipogenic potential index, PPARgamma expression and lipid-transportation index in the CON group was attenuated in the L-ICT group and prevented in the H-ICT group. Increased immunoreactivity of VEGF in the CON group was attenuated in the L-ICT group and prevented in the H-ICT group. Regarding safety, the hepatocyte injury index did not show significant change from baseline in any group. CONCLUSION Icaritin, a novel semisynthesized small molecule with osteoprotective potential, exerts dose-dependent effect on reducing incidence of steroid-associated ON with inhibition of both intravascular thrombosis and extravascular lipid-deposition. Suppression of the up-regulated PPARgamma expression for extravascular adipogenesis of mesenchymal stem cells and protection from activated oxidative stress for intravascular endothelium injury were found to be involved in the underlying mechanisms.
Collapse
Affiliation(s)
- Ge Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, the Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhou XZ, Zhang G, Dong QR, Chan CW, Liu CF, Qin L. Low-dose X-irradiation promotes mineralization of fracture callus in a rat model. Arch Orthop Trauma Surg 2009; 129:125-32. [PMID: 18427819 DOI: 10.1007/s00402-008-0634-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Indexed: 12/15/2022]
Abstract
OBJECTIVES This study investigated the hypothesized beneficial effect of low-dose irradiation (LDI) on fracture callus mineralization in a rat model. METHODS Seventy-two male Sprague-Dawley rats were averagely randomized into LDI group (rats treated with LDI) and SHAM group (rats treated with sham irradiation). Right after either LDI or sham irradiation, a standardized closed fracture on the right femur was established. At 2, 3 and 4 weeks postfracture, 12 rats in each group were euthanized. Fracture callus was assessed by using radiography and MicroCT for callus bridging, peripheral quantitative computed tomography (pQCT) for quantifying bone mineral content (BMC) and cross sectional area (CSA), confocal laser scanning microscopy for measuring area fraction of fluorescence labeling (AFFL) and four-point bending test for examining mechanical properties. RESULTS The CSA and AFFL were found to be 22 and 33% smaller in the LDI group compared to the SHAM group at 2 weeks (P<0.05 for both), whereas the BMC and AFFL were 15 and 34% higher in the LDI group at 3 weeks (P<0.05 for both). The changing patterns were consistent with the findings in 3-D MicroCT reconstructions. The mechanical parameters (Max-Load, Stiffness and Energy) were also 18, 30 and 24% higher in the LDI group than in the SHAM group at 3 weeks (P<0.05 for all). At 4 weeks, there was no difference found for all assessments between the two groups. CONCLUSION The results indicated LDI promoted mineralization at the stage of hard callus formation in a rat fracture model.
Collapse
Affiliation(s)
- Xiao Zhong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital, Suzhou University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
46
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2008; 15:284-299. [PMID: 18438178 DOI: 10.1097/med.0b013e3283040e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Wang XL, Wang NL, Zhang Y, Gao H, Pang WY, Wong MS, Zhang G, Qin L, Yao XS. Effects of Eleven Flavonoids from the Osteoprotective Fraction of Drynaria fortunei (KUNZE) J. SM. on Osteoblastic Proliferation Using an Osteoblast-Like Cell Line. Chem Pharm Bull (Tokyo) 2008; 56:46-51. [DOI: 10.1248/cpb.56.46] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xin-Luan Wang
- School of Chinese Materia Medica, Shenyang Pharmaceutical University
| | - Nai-Li Wang
- School of Chinese Materia Medica, Shenyang Pharmaceutical University
- Key Lab for New Drugs Research of Traditional Chinese Medicine, Shenzhen Research Institute of Tsinghua University
| | - Yan Zhang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology
| | - Hao Gao
- Key Lab for New Drugs Research of Traditional Chinese Medicine, Shenzhen Research Institute of Tsinghua University
| | - Wai-Yin Pang
- Central Laboratory, Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University
| | - Man-Sau Wong
- Central Laboratory, Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University
| | - Ge Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Chinese University of Hong Kong
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Chinese University of Hong Kong
| | - Xin-Sheng Yao
- School of Chinese Materia Medica, Shenyang Pharmaceutical University
| |
Collapse
|
48
|
Sheng HH, Zhang GG, Cheung WHW, Chan CWC, Wang YXY, Lee KMK, Wang HFH, Leung KSK, Qin LL. Elevated adipogenesis of marrow mesenchymal stem cells during early steroid-associated osteonecrosis development. J Orthop Surg Res 2007; 2:15. [PMID: 17937789 PMCID: PMC2146995 DOI: 10.1186/1749-799x-2-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 10/15/2007] [Indexed: 12/18/2022] Open
Abstract
Background Increased bone marrow lipid deposition in steroid-associated osteonecrosis (ON) implies that abnormalities in fat metabolism play an important role in ON development. The increase in lipid deposition might be explained by elevated adipogenesis of marrow mesenchymal stem cells (MSCs). However, it remains unclear whether there is a close association between elevated adipogenesis and steroid-associated ON development. Objective The present study was designed to test the hypothesis that there might be a close association between elevated adipogenesis and steroid-associated ON development. Methods ON rabbit model was induced based on our established protocol. Dynamic-MRI was employed for local intra-osseous perfusion evaluation in bilateral femora. Two weeks after induction, bone marrow was harvested for evaluating the ability of adipogenic differentiation of marrow MSCs at both cellular and mRNA level involving adipogenesis-related gene peroxisome proliferator-activated receptor gamma2 (PPARγ2). The bilateral femora were dissected for examining marrow lipid deposition by quantifying fat cell number, fat cell size, lipid deposition area and ON lesions. For investigating association among adipogenesis, lipid deposition and perfusion function with regard to ON occurrence, the rabbits were divided into ON+ (with at least one ON lesion) group and ON- (without ON lesion) group. For investigating association among adipogenesis, lipid deposition and perfusion function with regard to ON extension, the ON+ rabbits were further divided into sub-single-lesion group (SON group: with one ON lesion) and sub-multiple-lesion group (MON group: with more than one ON lesion). Results Local intra-osseous perfusion index was found lower in either ON+ or MON group when compared to either ON- or SON group, whereas the marrow fat cells number and area were much larger in either ON+ or MON group as compared with ON- and SON group. The adipogenic differentiation ability of MSCs and PPARγ2 expression in either ON+ or MON group were elevated significantly as compared with either ON- or SON group. Conclusion These findings support our hypothesis that there is a close association between elevated adipogenesis and steroid-associated osteonecrosis development.
Collapse
Affiliation(s)
- Hui H Sheng
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|