1
|
Cardier JE, Diaz-Solano D, Wittig O, Sierra G, Pulido J, Moreno R, Fuentes S, Leal F. Osteogenic organoid for bone regeneration: Healing of bone defect in congenital pseudoarthrosis of the tibia. Int J Artif Organs 2024; 47:107-114. [PMID: 38182554 DOI: 10.1177/03913988231220844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
BACKGROUND Congenital pseudoarthrosis of the tibia (CPT) is an uncommon disease associated with failure to achieve bone union and recurrent fractures. There is evidence showing that CPT is associated with decreased osteogenesis. Based on the capacity of mesenchymal stromal cells (MSCs) to induce osteogenesis, we develop an osteogenic organoid (OstO) constituted by these cells, and other components of the bone niche, for inducing bone formation in a child diagnosed with CPT. AIM To evaluate the capacity of an OstO to induce bone formation in a patient with CPT. METHODS The OstO was fabricated with allogeneic bone marrow MSCs from a healthy donor, collagen microbeads (CM) and PRP clot. The CM and PRP function as extracellular matrix and scaffolds for MSC. The OstO was placed at the site of non-union. Internal and external fixation was placed in the tibia. Radiological evaluation was performed after MSCs transplantation. RESULTS After 4 months of MSCs transplantation, radiographic imaging showed evidence of osteogenesis at the site of CPT lesion. The tibia showed bone consolidation and complete healing of the non-union CPT lesion after 6 months. Functional improvement was observed after 1 year of MSC transplantation. CONCLUSIONS The OstO is a bone-like niche which promote osteogenesis in patients with failure in bone formation, such as CPT. To our knowledge, these results provide the first evidence showing CPT healing induced by an OstO constituted by allogeneic MSCs. Future studies incorporating a larger number of patients may confirm these results.
Collapse
Affiliation(s)
- Jose E Cardier
- Unidad de Terapia Celular-Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Dylana Diaz-Solano
- Unidad de Terapia Celular-Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Olga Wittig
- Unidad de Terapia Celular-Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Giuseppe Sierra
- Servicio de Traumatología, Hospital Pediátrico Niño Jesús, Yaracuy, Venezuela
| | - Jose Pulido
- Servicio de Traumatología, Hospital Dr. Plácido Rodríguez Rivero, Yaracuy, Venezuela
| | - Rita Moreno
- Servicio de Traumatología, Hospital Dr. Plácido Rodríguez Rivero, Yaracuy, Venezuela
| | - Soraima Fuentes
- Servicio de Traumatología, Hospital Pediátrico Niño Jesús, Yaracuy, Venezuela
| | - Fredy Leal
- Servicio de Traumatología, Hospital Pediátrico Niño Jesús, Yaracuy, Venezuela
| |
Collapse
|
2
|
Klein C, Gindraux F, Masquelet AC, Mentaverri R, Gouron R. Questions about Using the Induced Membrane Technique to Manage Cases of Congenital Tibial Pseudarthrosis. Cells 2023; 12:1918. [PMID: 37508581 PMCID: PMC10378057 DOI: 10.3390/cells12141918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The induced membrane technique is an innovative approach for repairing critical bone defects and has been applied recently in patients with congenital pseudarthrosis of the tibia (CPT). CPT is frequently associated with neurofibromatosis type 1 (NF1). Here, we briefly describe the clinical results of the induced membrane technique in NF1-deficient patients with CPT and in an animal model of CPT. Furthermore, we discuss the hypotheses used to explain inconsistent outcomes for the induced membrane technique in CPT-especially when associated with NF1.
Collapse
Affiliation(s)
- Céline Klein
- Department of Paediatric Orthopaedic Surgery, Amiens University Hospital, Jules Verne University of Picardie, F-80054 Amiens, France
- MP3CV-EA7517, CURS-Amiens University Medical Center, Jules Verne University of Picardie, F-80025 Amiens, France
- Service D'orthopédie et Traumatologie Pédiatrique, CHU Amiens-Picardie, F-80054 Amiens CEDEX 1, France
| | - Florelle Gindraux
- CHU Besançon, Service de Chirurgie Orthopédique, Traumatologique et Plastique, F-25000 Besançon, France
- Laboratoire de Nanomédecine, Imagerie, Université de Franche-Comté, Thérapeutique EA 4662 (LNIT), F-25000 Besançon, France
| | | | - Romuald Mentaverri
- MP3CV-EA7517, CURS-Amiens University Medical Center, Jules Verne University of Picardie, F-80025 Amiens, France
- CHU Besançon, Service de Chirurgie Orthopédique, Traumatologique et Plastique, F-25000 Besançon, France
- Laboratoire de Nanomédecine, Imagerie, Université de Franche-Comté, Thérapeutique EA 4662 (LNIT), F-25000 Besançon, France
- Hôpital Saint Antoine, Sorbonne Université, F-75006 Paris, France
- Department of Biochemistry and Endocrine Biology, Amiens University Medical Center, Jules Verne University of Picardie, F-80025 Amiens, France
| | - Richard Gouron
- Department of Paediatric Orthopaedic Surgery, Amiens University Hospital, Jules Verne University of Picardie, F-80054 Amiens, France
| |
Collapse
|
3
|
Liu Y, Qin ZQ, Zheng Y, Wu J, Yang G, Tan Q, Zhu G, Liu K, Mei H. New insights into pathogenesis of congenital pseudarthrosis of tibia in children using periosteum proteomics analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9374. [PMID: 35933588 DOI: 10.1002/rcm.9374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE The exact etiology and pathogenesis of congenital pseudarthrosis of tibia (CPT) are not clear. Quantitative proteomics analysis plays a vital role in disease pathology research. Tandem mass tag (TMT)-based proteomics techniques were employed to identify and analyze the differentially expressed proteins (DEP) in the tibia periosteum tissues of CPT patients. METHODS The samples were divided into three groups: CPT with NF1 group, CPT without NF1 group (non-NF1-CPT), and control group (patients with open tibial fracture). A fold change ≥1.5 or ≤0.66 and P-value <0.05 were used as the thresholds to screen DEPs. Subsequently, bioinformatics resources such as online tools DAVID and String were used to generate gene ontology (GO) annotation, KEGG pathways enrichment, and protein-protein interaction (PPI) network for these DEPs. RESULTS The results show that a total of 347 proteins were differentially expressed in NF1-CPT groups, 212 of which were upregulated and 135 were downregulated. There were more DEPs in non-NF1-CPT groups; we identified 467 DEPs, including 281 upregulated and 186 downregulated. Among them, NF1-CPT groups and non-NF1-CPT groups shared 231 DEPs, and the remaining 230 DEPs showed the same expression trend in the two disease groups, with 117 upregulated and 113 downregulated. In particular, 116 proteins were altered only in NF1-CPT groups (94 were upregulated and 22 were downregulated), whereas 236 proteins were altered only in non-NF1-CPT groups (164 were upregulated and 72 were downregulated). Finally, compared with non-NF1-CPT groups, 47 proteins changed 1.5-fold and P-value < 0.05 in NF1-CPT groups. CONCLUSIONS To sum up, we found that common DEPS in periosteum of NF1-CPT and non-NF1-CPT groups are mainly involved in cell matrix assembly, cell adhesion, AKT-PI3K signal pathway activation, and vascular agglutination, which indicate that these are the pathological characteristics of CPT. The osteogenic ability is weak, the osteoclastic ability is strong, the vascular lumen is narrow, the invasive growth and the proliferation of fibroblasts are enhanced in CPT patients.
Collapse
Affiliation(s)
- Yaoxi Liu
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| | - Zhen Qi Qin
- Medical School, Fuyang Normal University, Fuyang, China
| | - Yu Zheng
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| | - Jiangyan Wu
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| | - Ge Yang
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| | - Qian Tan
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| | - Guanghui Zhu
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| | - Kun Liu
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| | - Haibo Mei
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| |
Collapse
|
4
|
Case series of congenital pseudarthrosis of the tibia unfulfilling neurofibromatosis type 1 diagnosis: 21% with somatic NF1 haploinsufficiency in the periosteum. Hum Genet 2022; 141:1371-1383. [DOI: 10.1007/s00439-021-02429-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
|
5
|
Li Y, Zhu M, Lin X, Li J, Yuan Z, Liu Y, Xu H. Autophagy is involved in neurofibromatosis type I gene-modulated osteogenic differentiation in human bone mesenchymal stem cells. Exp Ther Med 2021; 22:1262. [PMID: 34603530 PMCID: PMC8453340 DOI: 10.3892/etm.2021.10697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
Neurofibromatosis type I (NF1) is an autosomal dominant genetic disease that is caused by mutations in the NF1 gene. Various studies have previously demonstrated that the mTOR complex 1 signaling pathway is essential for the NF1-modulated osteogenic differentiation of bone mesenchymal stem cells (BMSCs). Additionally, the mTOR signaling pathway plays a notable role in autophagy. The present study hypothesized that NF1 could modulate the osteogenic differentiation of BMSCs by regulating the autophagic activities of BMSCs. In the present study, human BMSCs were cultured in an osteogenic induction medium. The expression of the NF1 gene was either knocked down or overexpressed by transfection with a specific small interfering RNA (siRNA) targeting NF1 or the pcDNA3.0 NF1-overexpression plasmid, respectively. Autophagic activities of BMSCs (Beclin-1, P62, LC3B I, and LC3B II) were determined using western blotting, electron microscopy, acridine orange (AO) staining and autophagic flux/lysosomal detection by fluorescence microscopy. In addition, the autophagy activator rapamycin (RAPA) and inhibitor 3-methyladenine (3-MA) were used to investigate the effects of autophagy on NF1-modulated osteogenic differentiation in BMSCs. Inhibiting NF1 with siRNA significantly decreased the expression levels of autophagy markers Beclin-1 and LC3B-II, in addition to osteogenic differentiation markers osterix, runt-related transcription factor 2 and alkaline phosphatase. By contrast, overexpressing NF1 with pcDNA3.0 significantly increased their levels. Transmission electron microscopy, AO staining and autophagic flux/lysosomal detection assays revealed that the extent of autophagosome formation was significantly decreased in the NF1-siRNA group but significantly increased in the NF1-pcDNA3.0 group when compared with the NC-siRNA and pcDNA3.0 groups, respectively. In addition, the activity of the PI3K/AKT/mTOR pathway [phosphorylated (p)-PI3K, p-AKT, p-mTOR and p-p70S6 kinase] was significantly upregulated in the NF1-siRNA group compared with the NC-siRNA group, and significantly inhibited in the NF1-pcDNA3.0 group, compared with the pcDNA3.0 group. The knockdown effects of NF1-siRNA on the autophagy and osteogenic differentiation of BMSCs were reversed by the autophagy activator RAPA, while the overexpression effects of NF1-pcDNA3.0 on the autophagy and osteogenic differentiation of BMSCs were reversed by the autophagy inhibitor 3-MA. In conclusion, results from the present study suggest at the involvement of autophagy in the NF1-modulated osteogenic differentiation of BMSCs. Furthermore, NF1 may partially regulate the autophagic activity of BMSCs through the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yiqiang Li
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Mingwei Zhu
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Xuemei Lin
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Jingchun Li
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Zhe Yuan
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Yanhan Liu
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Hongwen Xu
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| |
Collapse
|
6
|
Maranduba CP, Souza GT, do Carmo AMR, de Campos JMS, Raposo NRB, de Olivera Santos M, da Costa Maranduba CM, de Sá Silva F. Effects of resveratrol on the proliferation and osteogenic differentiation of deciduous dental pulp stem cells from neurofibromatosis type 1 patient. Childs Nerv Syst 2021; 37:1095-1101. [PMID: 33216171 DOI: 10.1007/s00381-020-04968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE We aimed at verifying whether resveratrol can decrease cell proliferation and change osteogenic differentiation of cells obtained from patients with type 1 neurofibromatosis (NF1). METHODS Deciduous dental pulp derived stem cells were isolated from NF1 patient and healthy volunteer. These cells were subjected to increasing concentrations of resveratrol and evaluated for proliferation and mineralization of osteogenic differentiation. RESULTS The results showed that resveratrol reduced the difference in proliferation between CNT and NF1 cells in a dose-dependent manner and this property was more prominent in affected cells than in healthy cells. Resveratrol showed no statistically significant changes in mineralization in osteogenic differentiation of NF1 cells, at low doses tested. CONCLUSIONS In conclusion, in a dose-dependent manner, resveratrol displays interesting properties that could be applied in a possible treatment aimed at decreasing cellular proliferation in neurofibromatosis. Furthermore, it is selective concerning healthy cells and not affecting cell differentiation. Further research to cell selectivity, differentiation to other tissue types, and cell cytotoxicity are needed.
Collapse
Affiliation(s)
- Claudinéia Pereira Maranduba
- Laboratory of Human Genetics and Cell Therapy, Biology Department, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Gustavo Torres Souza
- Laboratory of Human Genetics and Cell Therapy, Biology Department, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | | | - José Marcelo Sallabert de Campos
- Laboratory of Genetics, Biology Department, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Nádia Rezende Barbosa Raposo
- Center of Research and Innovation in Health Sciences (NUPICS), Federal University of Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Marcelo de Olivera Santos
- Basic Life Sciences Department, Federal University of Juiz de Fora, Governador Valadares, 35020-670, Brazil
| | - Carlos Magno da Costa Maranduba
- Laboratory of Genetics, Biology Department, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, 36036-900, Brazil.
| | - Fernando de Sá Silva
- Basic Life Sciences Department, Federal University of Juiz de Fora, Governador Valadares, 35020-670, Brazil
| |
Collapse
|
7
|
Yang G, Yu H, Liu Y, Ye W, Zhu G, Yan A, Tan Q, Mei H. Serum-derived exosomes from neurofibromatosis type 1 congenital tibial pseudarthrosis impaired bone by promoting osteoclastogenesis and inhibiting osteogenesis. Exp Biol Med (Maywood) 2021; 246:130-141. [PMID: 33023333 PMCID: PMC7871115 DOI: 10.1177/1535370220962737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment of congenital pseudarthrosis of the tibia (CPT) still is full of challenges in pediatric orthopedist. Serum-derived exosomes (SDEs) have been proven to be participated in bone remodeling. However, the molecular changes in SDEs of CPT children and their pathologies have not been elucidated. In this study, SDEs were isolated and purified from CPT patients (CPT-SDEs) associated with neurofibromatosis type 1 (NF1) and normal children (Norm-SDEs). Then we obtained the proteomics profile of SDEs by combining liquid chromatography-tandem mass spectrometry (LC-MS/MS) and tandem mass tag label-based quantitation. In vitro, the efficacy of SDEs on osteoblastic differentiation of MC3T3-E1 cells and osteoclastogenesis ability of RAW264.7 cells were evaluated by quantitative real-time PCR (qRT-PCR) and cytochemical staining. In vivo, we used micro-CT to assess cortical bone mass and trabecular microstructures to reflect the influence of SDEs on bone remodeling after injection into the tail vein of rats. Based on proteomics analysis, 410 differentially expressed proteins, including 289 downregulated proteins and 121 upregulated proteins, were identified in the CPT-SDEs. These proteins have multiple biological functions associated with cellular metabolic processes, catalytic activity, and protein binding, which are important for cell differentiation and proliferation. In vitro, CPT-SDEs decreased the osteogenic differentiation of MC3T3-E1 cells and promoted the osteoclastogenesis of RAW264.7 cells. Injection of CPT-SDEs into the tail vein for two months resulted in bone loss in rats, as indicated by the decrease in trabecular and cortical bone mass. Our findings demonstrated the differences in proteins in SDEs between normal and CPT children with NF1. These differentially expressed proteins in CPT-SDEs contributed to deteriorating trabecular bone microstructures by inhibiting bone formation and stimulating bone resorption.
Collapse
Affiliation(s)
- Ge Yang
- Pediatric orthopedic lab, Department of Orthopedic Surgery, the Hunan Children's Hospital, Hunan 410000, PR China
| | - Hui Yu
- Department of Orthopedic and Trauma Surgery, University Hospital Bonn, Bonn 39062, Germany
| | - Yaoxi Liu
- Pediatric orthopedic lab, Department of Orthopedic Surgery, the Hunan Children's Hospital, Hunan 410000, PR China
| | - Weihua Ye
- Pediatric orthopedic lab, Department of Orthopedic Surgery, the Hunan Children's Hospital, Hunan 410000, PR China
| | - Guanghui Zhu
- Pediatric orthopedic lab, Department of Orthopedic Surgery, the Hunan Children's Hospital, Hunan 410000, PR China
| | - An Yan
- Pediatric orthopedic lab, Department of Orthopedic Surgery, the Hunan Children's Hospital, Hunan 410000, PR China
| | - Qian Tan
- Pediatric orthopedic lab, Department of Orthopedic Surgery, the Hunan Children's Hospital, Hunan 410000, PR China
| | - Haibo Mei
- Pediatric orthopedic lab, Department of Orthopedic Surgery, the Hunan Children's Hospital, Hunan 410000, PR China
| |
Collapse
|
8
|
Neurofibromatosis type 1: New developments in genetics and treatment. J Am Acad Dermatol 2020; 84:1667-1676. [PMID: 32771543 DOI: 10.1016/j.jaad.2020.07.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Neurofibromatosis type 1 is the most common neurocutaneous syndrome, with a frequency of 1 in 2500 persons. Diagnosis is paramount in the pretumor stage to provide proper anticipatory guidance for a number of neoplasms, both benign and malignant. Loss-of-function mutations in the NF1 gene result in truncated and nonfunctional production of neurofibromin, a tumor suppressor protein involved in downregulating the RAS signaling pathway. New therapeutic and preventive options include tyrosine kinase inhibitors, mTOR inhibitors, interferons, and radiofrequency therapy. This review summarizes recent updates in genetics, mutation analysis assays, and treatment options targeting aberrant genetic pathways. We also propose modified diagnostic criteria and provide an algorithm for surveillance of patients with neurofibromatosis type 1.
Collapse
|
9
|
Popkov D, Popkov A, Dučić S, Lazović M, Lascombes P. Combined technique with hydroxyapatite coated intramedullary nails in treatment of anterolateral bowing of congenital pseudarthrosis of tibia. J Orthop 2020; 19:189-193. [PMID: 32025131 DOI: 10.1016/j.jor.2019.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/03/2019] [Indexed: 11/30/2022] Open
Abstract
Purpose The goal of this study is to evaluate the treatment outcomes of anterolateral bowing and residual deformities of distal tibia in patients with CPT using circular external fixation and hydroxyapatite coated flexible intramedullary nailing without excision of affected part of tibia. Patients and methods Six patients (4 boys and 2 girls, mean age 12.4 ± 4.1 years) were included in the study. Mean follow-up is 2.1 years. In 4 patients with early onset of disease initial surgical treatment (at age of 5-8 years) was dysplastic zone or pseudarthrosis resection with proximal metaphyseal osteotomy for bone transport. Children with unbroken bowed tibia (2 cases of type II according to Crawford classification) had no previous surgery. Neurofibromatosis type I was diagnosed in 4 cases. Surgical technique for residual deformity correction consisted of percutaneous osteotomy, application of circular external frame and composite hydroxyapatite-coated intramedullary nailing. Results Mean external fixation time was 95.3 ± 17.5 days. All patients never get fractured after frame removal. At the present time, they are considered to be healed, in 2.1 years, in average, without fractures or deformity recurrence. Mean lower limb length discrepancy varied from 2 to 10 mm at the latest follow-up control. After realignment procedure, patients didn't require additional surgery but one. Intramedullary nails were removed in two years after deformity correction for individual reason. Conclusion Correction of anterolateral bowing or residual deformity in children with CPT is indicated. Association of external fixation with intramedullary nailing/rodding left in situ after frame removal ensure stability and accuracy of deformity correction. Biological methods of stimulation of bone formation in dysplastic zone are obligatory to ensure bone union. Intramedullary nailing with composite hydroxyapatite-coated surface provides mechanical and biological advantages in patients with CPT.
Collapse
Affiliation(s)
- Dmitry Popkov
- Clinic of Neuroorthopaedics and Systemic Diseases of the Russian Ilizarov Scientific Centre for Restorative Traumatology and Orthopaedics, 6, M. Ulyanova Street, 640014, Kurgan, Russian Federation
| | - Arnold Popkov
- Clinic of Neuroorthopaedics and Systemic Diseases of the Russian Ilizarov Scientific Centre for Restorative Traumatology and Orthopaedics, 6, M. Ulyanova Street, 640014, Kurgan, Russian Federation
| | - Siniša Dučić
- Orthopaedic Department, Children's University Hospital, Tiršova 10, Belgrade, Serbia
| | - Mikan Lazović
- Orthopaedic Department, Children's University Hospital, Tiršova 10, Belgrade, Serbia
| | - Pierre Lascombes
- Division of Paediatric Orthopaedics, Hôpitaux Universitaires de Genève, Rue Willy Donzé 6, CH - 1211, Geneva, 14, Switzerland
| |
Collapse
|
10
|
Zhu G, Zheng Y, Liu Y, Yan A, Hu Z, Yang Y, Xiang S, Li L, Chen W, Peng Y, Zhong N, Mei H. Identification and characterization of NF1 and non-NF1 congenital pseudarthrosis of the tibia based on germline NF1 variants: genetic and clinical analysis of 75 patients. Orphanet J Rare Dis 2019; 14:221. [PMID: 31533797 PMCID: PMC6751843 DOI: 10.1186/s13023-019-1196-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Congenital pseudarthrosis of the tibia (CPT) is a rare disease. Some patients present neurofibromatosis type 1 (NF1), while some others do not manifest NF1 (non-NF1). The etiology of CPT, particularly non-NF1 CPT, is not well understood. Here we screened germline variants of 75 CPT cases, including 55 NF1 and 20 non-NF1. Clinical data were classified and analyzed based on NF1 gene variations to investigate the genotype-phenotype relations of the two types of patients. Results Using whole-exome sequencing and Multiplex Ligation-Dependent Probe Amplification, 44 out of 55 NF1 CPT patients (80.0%) were identified as carrying pathogenic variants of the NF1 gene. Twenty-five variants were novel; 53.5% of variants were de novo, and a higher proportion of their carriers presented bone fractures compared to inherited variant carriers. No NF1 pathogenic variants were found in all 20 non-NF1 patients. Clinical features comparing NF1 CPT to non-NF1 CPT did not show significant differences in bowing or fracture onset, lateralization, tissue pathogenical results, abnormality of the proximal tibial epiphysis, and follow-up tibial union after surgery. A considerably higher proportion of non-NF1 patients have cystic lesion (Crawford type III) and used braces after surgery. Conclusions We analyzed a large cohort of non-NF1 and NF1 CPT patients and provided a new perspective for genotype-phenotype features related to germline NF1 variants. Non-NF1 CPT in general had similar clinical features of the tibia as NF1 CPT. Germline NF1 pathogenic variants could differentiate NF1 from non-NF1 CPT but could not explain the CPT heterogeneity of NF1 patients. Our results suggested that non-NF1 CPT was probably not caused by germline NF1 pathogenic variants. In addition to NF1, other genetic variants could also contribute to CPT pathogenesis. Our findings would facilitate the interpretation of NF1 pathogenic variants in CPT genetic counseling. Supplementary information The online version of this article (10.1186/s13023-019-1196-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guanghui Zhu
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The Pediatric Academy of the University of South China, 86# Ziyuan Road, Changsha, Hunan Province, 410007, People's Republic of China
| | - Yu Zheng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China.,Center for Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan Province, People's Republic of China
| | - Yaoxi Liu
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The Pediatric Academy of the University of South China, 86# Ziyuan Road, Changsha, Hunan Province, 410007, People's Republic of China
| | - An Yan
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The Pediatric Academy of the University of South China, 86# Ziyuan Road, Changsha, Hunan Province, 410007, People's Republic of China
| | - Zhengmao Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan Province, People's Republic of China
| | - Yongjia Yang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Shiting Xiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Liping Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Weijian Chen
- Pathology Department, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Yu Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Nanbert Zhong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China. .,New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Haibo Mei
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The Pediatric Academy of the University of South China, 86# Ziyuan Road, Changsha, Hunan Province, 410007, People's Republic of China.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Congenital pseudoarthrosis of the tibia and fibula are rare conditions that share common treatment strategies. The purpose of this review is to provide an overview of the recent developments in treatments for both conditions. RECENT FINDINGS Recent literature has focused on the use of BMP and on gait analysis as a tool for measuring long-term functional outcomes. Recent study has indicated rhBMP-2 may shorten the time to initial healing of pseudoarthroses, but not guarantee bony union. Children with initial fractures before the age of four have been shown to have long-term gait outcomes that may be ultimately comparable to children with prostheses. Both congenital pseudoarthrosis of the tibia and fibula are challenging conditions to treat, which require comprehensive approaches to account for both the biological and mechanical components of the conditions.
Collapse
Affiliation(s)
- Katherine A Eisenberg
- Department of Orthopedic Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Carley B Vuillermin
- Department of Orthopedic Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA, USA.
| |
Collapse
|
12
|
Brekelmans C, Hollants S, De Groote C, Sohier N, Maréchal M, Geris L, Luyten FP, Ginckels L, Sciot R, de Ravel T, De Smet L, Lammens J, Legius E, Brems H. Neurofibromatosis type 1-related pseudarthrosis: Beyond the pseudarthrosis site. Hum Mutat 2019; 40:1760-1767. [PMID: 31066482 DOI: 10.1002/humu.23783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/23/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder affecting approximately 1 in 2,000 newborns. Up to 5% of NF1 patients suffer from pseudarthrosis of a long bone (NF1-PA). Current treatments are often unsatisfactory, potentially leading to amputation. To gain more insight into the pathogenesis we cultured cells from PA tissue and normal-appearing periosteum of the affected bone for NF1 mutation analysis. PA cells were available from 13 individuals with NF1. Biallelic NF1 inactivation was identified in all investigated PA cells obtained during the first surgery. Three of five cases sampled during a later intervention showed biallelic NF1 inactivation. Also, in three individuals, we examined periosteum-derived cells from normal-appearing periosteum proximal and distal to the PA. We identified the same biallelic NF1 inactivation in the periosteal cells outside the PA region. These results indicate that NF1 inactivation is required but not sufficient for the development of NF1-PA. We observed that late-onset NF1-PA occurs and is not always preceded by congenital bowing. Furthermore, the failure to identify biallelic inactivation in two of five later interventions and one reintervention with a known somatic mutation indicates that NF1-PA can persist after the removal of most NF1 negative cells.
Collapse
Affiliation(s)
- Carlijn Brekelmans
- Department of Human Genetics, KU Leuven-University of Leuven, Leuven, Belgium
| | - Silke Hollants
- Clinical Department of Human Genetics, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Caroline De Groote
- Clinical Department of Human Genetics, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Natalie Sohier
- Clinical Department of Human Genetics, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Marina Maréchal
- Department of Development and Regeneration, Prometheus LRD Division of Skeletal Tissue Engineering, KU Leuven-University of Leuven, Leuven, Belgium
| | - Liesbet Geris
- Department of Mechanical Engineering, Prometheus LRD Division of Skeletal Tissue Engineering, KU Leuven-University of Leuven, Leuven, Belgium.,GIGA In Silico Medicine, University of Liège, Liège, Belgium
| | - Frank P Luyten
- Department of Development and Regeneration, Prometheus LRD Division of Skeletal Tissue Engineering, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Rheumatology, KU Leuven-University Hospitals Leuven, Leuven, Belgium
| | - Lieve Ginckels
- Department of Orthopaedic Surgery, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Raf Sciot
- Department of Imaging and Pathology, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Pathology, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Thomy de Ravel
- Department of Human Genetics, KU Leuven-University of Leuven, Leuven, Belgium.,Clinical Department of Human Genetics, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Luc De Smet
- Department of Orthopaedic Surgery, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
| | - Johan Lammens
- Department of Development and Regeneration, Prometheus LRD Division of Skeletal Tissue Engineering, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Orthopaedic Surgery, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Eric Legius
- Department of Human Genetics, KU Leuven-University of Leuven, Leuven, Belgium.,Clinical Department of Human Genetics, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Hilde Brems
- Department of Human Genetics, KU Leuven-University of Leuven, Leuven, Belgium.,Clinical Department of Human Genetics, KU Leuven-University of Leuven, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Li Y, Li J, Zhou Q, Liu Y, Chen W, Xu H. mTORC1 signaling is essential for neurofibromatosis type I gene modulated osteogenic differentiation of BMSCs. J Cell Biochem 2018; 120:2886-2896. [DOI: 10.1002/jcb.26626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/19/2017] [Indexed: 12/23/2022]
Affiliation(s)
- YiQiang Li
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - JingChun Li
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - QingHe Zhou
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - Yuanzhong Liu
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - WeiDong Chen
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - HongWen Xu
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| |
Collapse
|
14
|
Almeida PN, Barboza DDN, Luna EB, Correia MCDM, Dias RB, Siquara de Sousa AC, Duarte MEL, Rossi MID, Cunha KS. Increased extracellular matrix deposition during chondrogenic differentiation of dental pulp stem cells from individuals with neurofibromatosis type 1: an in vitro 2D and 3D study. Orphanet J Rare Dis 2018; 13:98. [PMID: 29941005 PMCID: PMC6020206 DOI: 10.1186/s13023-018-0843-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
Background Neurofibromatosis 1 (NF1) presents a wide range of clinical manifestations, including bone alterations. Studies that seek to understand cellular and molecular mechanisms underlying NF1 orthopedic problems are of great importance to better understand the pathogenesis and the development of new therapies. Dental pulp stem cells (DPSCs) are being used as an in vitro model for several diseases and appear as a suitable model for NF1. The aim of this study was to evaluate in vitro chondrogenic differentiation of DPSCs from individuals with NF1 using two-dimensional (2D) and three-dimensional (3D) cultures. Results To fulfill the criteria of the International Society for Cellular Therapy, DPSCs were characterized by surface antigen expression and by their multipotentiality, being induced to differentiate towards adipogenic, osteogenic, and chondrogenic lineages in 2D cultures. Both DPSCs from individuals with NF1 (NF1 DPSCs) and control cultures were positive for CD90, CD105, CD146 and negative for CD13, CD14, CD45 and CD271, and successfully differentiated after the protocols. Chondrogenic differentiation was evaluated in 2D and in 3D (pellet) cultures, which were further evaluated by optical microscopy and transmission electron microscopy (TEM). 2D cultures showed greater extracellular matrix deposition in NF1 DPSCs comparing with controls during chondrogenic differentiation. In semithin sections, control pellets hadhomogenous-sized intra and extracelullar matrix vesicles, whereas NF1 cultures had matrix vesicles of different sizes. TEM analysis showed higher amount of collagen fibers in NF1 cultures compared with control cultures. Conclusion NF1 DPSCs presented increased extracellular matrix deposition during chondrogenic differentiation, which could be related to skeletal changes in individuals with NF1. Electronic supplementary material The online version of this article (10.1186/s13023-018-0843-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paula Nascimento Almeida
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.,Neurofibromatosis National Center (Centro Nacional de Neurofibromatose), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deuilton do Nascimento Barboza
- Oral and Maxillofacial Surgery, Antônio Pedro University Hospital, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Eloá Borges Luna
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.,Neurofibromatosis National Center (Centro Nacional de Neurofibromatose), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rhayra Braga Dias
- National Institute of Traumatology and Orthopedics (Instituto Nacional de Traumatologia e Ortopedia), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Eugenia Leite Duarte
- National Institute of Traumatology and Orthopedics (Instituto Nacional de Traumatologia e Ortopedia), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Isabel Doria Rossi
- Institute of Biomedical Sciences, and Clementino Fraga Filho University Hospital, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karin Soares Cunha
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil. .,Neurofibromatosis National Center (Centro Nacional de Neurofibromatose), Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Ulusal SD, Gürkan H, Atlı E, Özal SA, Çiftdemir M, Tozkır H, Karal Y, Güçlü H, Eker D, Görker I. Genetic Analyses of the NF1 Gene in Turkish Neurofibromatosis Type I Patients and Definition of three Novel Variants. Balkan J Med Genet 2017; 20:13-20. [PMID: 28924536 PMCID: PMC5596817 DOI: 10.1515/bjmg-2017-0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neurofibromatosis Type I (NF1) is a multi systemic autosomal dominant neurocutaneous disorder predisposing patients to have benign and/or malignant lesions predominantly of the skin, nervous system and bone. Loss of function mutations or deletions of the NF1 gene is responsible for NF1 disease. Involvement of various pathogenic variants, the size of the gene and presence of pseudogenes makes it difficult to analyze. We aimed to report the results of 2 years of multiplex ligation-dependent probe amplification (MLPA) and next generation sequencing (NGS) for genetic diagnosis of NF1 applied at our genetic diagnosis center. The MLPA, semiconductor sequencing and Sanger sequencing were performed in genomic DNA samples from 24 unrelated patients and their affected family members referred to our center suspected of having NF1. In total, three novel and 12 known pathogenic variants and a whole gene deletion were determined. We suggest that next generation sequencing is a practical tool for genetic analysis of NF1. Deletion/duplication analysis with MLPA may also be helpful for patients clinically diagnosed to carry NF1 but do not have a detectable mutation in NGS.
Collapse
Affiliation(s)
- S D Ulusal
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| | - H Gürkan
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| | - E Atlı
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| | - S A Özal
- Department of Opthalmology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - M Çiftdemir
- Department of Orthopedics and Traumatology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - H Tozkır
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Y Karal
- Department of Pediatric Neurology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - H Güçlü
- Department of Opthalmology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - D Eker
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| | - I Görker
- Department of Child and Adolescent Psychiatry, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
16
|
Hatton MJ, Ly T, Noor S, Gollogly JG. Delayed presentation of congenital tibial pseudarthrosis and neurofibromatosis: a difficult union. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.0801.269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Background: A new case of congenital pseudarthrosis of the tibia (CPT) presents yearly to CSC, but treatment is prolonged, and not always successful.
Objective: To study the outcomes of treatment, and to determine whether a relationship with neurofibromatosis (NF) was of significance.
Methods: A review of the medical records at our centre revealed 11 cases of CPT, 5 of which were associated with neurofibromatosis.
Results: Most patients had multiple operations for their case of CPT, which did finally lead to union in 6 out of 6 cases with no NF, but in only 1 case out of 5 when NF was present.
Conclusion: Late presentation and severe deformity can be overcome, and union can be achieved, but NF has a deleterious effect on obtaining union.
Collapse
Affiliation(s)
- Maxim J. Hatton
- Children’s Surgical Centre, Kien Kleang National Rehabilitation Centre, Phnom Penh, Cambodia
| | - Tho Ly
- Children’s Surgical Centre, Kien Kleang National Rehabilitation Centre, Phnom Penh, Cambodia
| | - Saqib Noor
- Children’s Surgical Centre, Kien Kleang National Rehabilitation Centre, Phnom Penh, Cambodia
| | | |
Collapse
|
17
|
Ghadakzadeh S, Kannu P, Whetstone H, Howard A, Alman BA. β‐Catenin modulation in neurofibromatosis type 1 bone repair: therapeutic implications. FASEB J 2016; 30:3227-37. [DOI: 10.1096/fj.201500190rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/31/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Saber Ghadakzadeh
- Division of Developmental and Stem Cell BiologyUniversity of Toronto Toronto Ontario Canada
- Institute of Medical ScienceUniversity of Toronto Toronto Ontario Canada
| | - Peter Kannu
- Division of Developmental and Stem Cell BiologyUniversity of Toronto Toronto Ontario Canada
- Institute of Medical ScienceUniversity of Toronto Toronto Ontario Canada
- Bone Health CentreHospital for Sick Children Toronto Ontario Canada
| | - Heather Whetstone
- Division of Developmental and Stem Cell BiologyUniversity of Toronto Toronto Ontario Canada
| | - Andrew Howard
- Bone Health CentreHospital for Sick Children Toronto Ontario Canada
- Division of Orthopaedic SurgeryHospital for Sick Children Toronto Ontario Canada
| | - Benjamin A. Alman
- Division of Developmental and Stem Cell BiologyUniversity of Toronto Toronto Ontario Canada
- Institute of Medical ScienceUniversity of Toronto Toronto Ontario Canada
- Department of Orthopaedic SurgeryDuke University Durham North Carolina USA
| |
Collapse
|
18
|
Capturing the wide variety of impaired fracture healing phenotypes in Neurofibromatosis Type 1 with eight key factors: a computational study. Sci Rep 2016; 7:20010. [PMID: 26822862 PMCID: PMC4731811 DOI: 10.1038/srep20010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 11/27/2015] [Indexed: 02/07/2023] Open
Abstract
Congenital pseudarthrosis of the tibia (CPT) is a rare disease which normally presents itself during early childhood by anterolateral bowing of the tibia and spontaneous tibial fractures. Although the exact etiology of CPT is highly debated, 40–80% of CPT patients are carriers of a mutation in the Neurofibromatosis Type 1 (NF1) gene, which can potentially result in an altered phenotype of the skeletal cells and impaired bone healing. In this study we use a computational model of bone regeneration to examine the effect of the Nf1 mutation on bone fracture healing by altering the parameter values of eight key factors which describe the aberrant cellular behaviour of Nf1 haploinsufficient and Nf1 bi-allelically inactivated cells. We show that the computational model is able to predict the formation of a hamartoma as well as a wide variety of CPT phenotypes through different combinations of altered parameter values. A sensitivity analysis by “Design of Experiments” identified the impaired endochondral ossification process and increased infiltration of fibroblastic cells as key contributors to the degree of severity of CPT. Hence, the computational model results have added credibility to the experimental hypothesis of a genetic cause (i.e. Nf1 mutation) for CPT.
Collapse
|
19
|
Diaz-Solano D, Wittig O, Mota JD, Cardier JE. Isolation and Characterization of Multipotential Mesenchymal Stromal Cells from Congenital Pseudoarthrosis of the Tibia: Case Report. Anat Rec (Hoboken) 2015; 298:1804-14. [PMID: 26194170 DOI: 10.1002/ar.23198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/01/2015] [Accepted: 06/01/2015] [Indexed: 01/27/2023]
Abstract
Congenital pseudoarthrosis of the tibia (CPT) is an uncommon disease whose etiology and pathogenesis is unknown. Several evidences suggest that decreased osteogenic capacities, impaired local vascularization, and microenvironment alterations may play a role in the pathogenesis of CPT. Additionally, it is not clear if the pathogenesis of this disease is related to the absence of cells with osteogenic capacity of differentiation. In this work, a two-year-old patient diagnosed with CPT underwent an orthopedic surgery to promote bone union in a pseudoarthrosis lesion. Tissue from CPT lesion was excised, and histological evaluation and tissue culture were performed. Histologic analysis of the soft CPT lesion showed the presence of highly cellular fibrous tissue, vascularization, and abundant extracellular matrix. Fusiform cells of mesenchymal appearance were observed but osteoblasts, osteoclasts, chondrocytes, and adipose cells were not found. There was no evidence of osteogenesis. CPT tissue cultured as explants showed, after one month of culture, evidence of osteogenesis, chondrogenesis, and adipogenesis. Cells isolated from explants of CPT tissue showed a fibroblast-like morphology and expressed the mesenchymal stromal cell (MSC) markers: CD105, CD73, and CD90 (CPT-MSC). Functional analysis showed that CPT-MSC differentiate, in vitro, into osteogenic, chondrogenic, and adipocytic cells. CPT-MSC expressed osteocalcin and agrecan. CPT-MSC produced collagen in the presence of ascorbic acid. MSC from BM of normal individuals were used as control. In summary, our results indicate that CPT tissue contains MSC with osteogenic capacity of differentiation. It is possible that CPT microenvironment may contribute to impair the osteogenic capacity of differentiation of CPT-MSC.
Collapse
Affiliation(s)
- Dylana Diaz-Solano
- Unidad de Terapia Celular-Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela
| | - Olga Wittig
- Unidad de Terapia Celular-Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela
| | - Jose D Mota
- Instituto de Anatomopatología, Universidad Central de Venezuela, Caracas, 1080, Venezuela
| | - Jose E Cardier
- Unidad de Terapia Celular-Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela
| |
Collapse
|
20
|
Sant DW, Margraf RL, Stevenson DA, Grossmann AH, Viskochil DH, Hanson H, Everitt MD, Rios JJ, Elefteriou F, Hennessey T, Mao R. Evaluation of somatic mutations in tibial pseudarthrosis samples in neurofibromatosis type 1. J Med Genet 2015; 52:256-61. [PMID: 25612910 DOI: 10.1136/jmedgenet-2014-102815] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Tibial pseudarthrosis is associated with neurofibromatosis type 1 (NF1) and there is wide clinical variability of the tibial dysplasia in NF1, suggesting the possibility of genetic modifiers. Double inactivation of NF1 is postulated to be necessary for the development of tibial pseudarthrosis, but tissue or cell of origin of the 'second hit' mutation remains unclear. METHODS Exome sequencing of different sections of surgically resected NF1 tibial pseudarthrosis tissue was performed and compared to germline (peripheral blood). RESULTS A germline NF1 splice site mutation (c.61-2A>T, p.L21 M68del) was identified from DNA extracted from peripheral blood. Exome sequencing of DNA extracted from tissue removed during surgery of the tibial pseudarthrosis showed a somatic mutation of NF1 (c.3574G>T, p.E1192*) in the normal germline allele. Further analysis of different regions of the tibial pseudarthrosis sample showed enrichment of the somatic mutation in the soft tissue within the pseudarthrosis site and absence of the somatic mutation in cortical bone. In addition, a germline variant in PTPN11 (c.1658C>T, p.T553M), a gene involved in the RAS signal transduction pathway was identified, although the clinical significance is unknown. CONCLUSIONS Given that the NF1 somatic mutation was primarily detected in the proliferative soft tissue at the pseudarthrosis site, it is likely that the second hit occurred in mesenchymal progenitors from the periosteum. These results are consistent with a defect of differentiation, which may explain why the mutation is found in proliferative cells and not within cortical bone tissue, as the latter by definition contains mostly mature differentiated osteoblasts and osteocytes.
Collapse
Affiliation(s)
- David W Sant
- ARUP Laboratories, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA
| | - Rebecca L Margraf
- ARUP Laboratories, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA
| | - David A Stevenson
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, California, USA Departments of Pediatrics, Division of Medical Genetics, University of Utah, School of Medicine, Salt Lake City, Utah, USA Shriners Hospital for Children Salt Lake City, Salt Lake City, Utah, USA
| | - Allie H Grossmann
- ARUP Laboratories, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | - David H Viskochil
- Departments of Pediatrics, Division of Medical Genetics, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | - Heather Hanson
- Departments of Pediatrics, Division of Medical Genetics, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | - Melanie D Everitt
- Departments of Pediatrics, Division of Medical Genetics, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | - Jonathan J Rios
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA Eugene McDermott Center for Human Growth and Development and UT Southwestern Medical Center, Dallas, Texas, USA Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Florent Elefteriou
- Vanderbilt Center for Bone Biology; Vanderbilt University Medical Center, Nashville, Tennessee, USA Departments of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA Departments of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Theresa Hennessey
- Shriners Hospital for Children Salt Lake City, Salt Lake City, Utah, USA
| | - Rong Mao
- ARUP Laboratories, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
21
|
de la Croix Ndong J, Stevens DM, Vignaux G, Uppuganti S, Perrien DS, Yang X, Nyman JS, Harth E, Elefteriou F. Combined MEK inhibition and BMP2 treatment promotes osteoblast differentiation and bone healing in Nf1Osx -/- mice. J Bone Miner Res 2015; 30:55-63. [PMID: 25043591 PMCID: PMC4280331 DOI: 10.1002/jbmr.2316] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/19/2014] [Accepted: 07/08/2014] [Indexed: 12/24/2022]
Abstract
Neurofibromatosis type I (NF1) is an autosomal dominant disease with an incidence of 1/3000, caused by mutations in the NF1 gene, which encodes the RAS/GTPase-activating protein neurofibromin. Non-bone union after fracture (pseudarthrosis) in children with NF1 remains a challenging orthopedic condition to treat. Recent progress in understanding the biology of neurofibromin suggested that NF1 pseudarthrosis stems primarily from defects in the bone mesenchymal lineage and hypersensitivity of hematopoietic cells to TGFβ. However, clinically relevant pharmacological approaches to augment bone union in these patients remain limited. In this study, we report the generation of a novel conditional mutant mouse line used to model NF1 pseudoarthrosis, in which Nf1 can be ablated in an inducible fashion in osteoprogenitors of postnatal mice, thus circumventing the dwarfism associated with previous mouse models where Nf1 is ablated in embryonic mesenchymal cell lineages. An ex vivo-based cell culture approach based on the use of Nf1(flox/flox) bone marrow stromal cells showed that loss of Nf1 impairs osteoprogenitor cell differentiation in a cell-autonomous manner, independent of developmental growth plate-derived or paracrine/hormonal influences. In addition, in vitro gene expression and differentiation assays indicated that chronic ERK activation in Nf1-deficient osteoprogenitors blunts the pro-osteogenic property of BMP2, based on the observation that only combination treatment with BMP2 and MEK inhibition promoted the differentiation of Nf1-deficient osteoprogenitors. The in vivo preclinical relevance of these findings was confirmed by the improved bone healing and callus strength observed in Nf1osx (-/-) mice receiving Trametinib (a MEK inhibitor) and BMP2 released locally at the fracture site via a novel nanoparticle and polyglycidol-based delivery method. Collectively, these results provide novel evidence for a cell-autonomous role of neurofibromin in osteoprogenitor cells and insights about a novel targeted approach for the treatment of NF1 pseudoarthrosis.
Collapse
Affiliation(s)
- Jean de la Croix Ndong
- Vanderbilt Center for Bone Biology
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David M. Stevens
- Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Guillaume Vignaux
- Vanderbilt Center for Bone Biology
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sasidhar Uppuganti
- Vanderbilt Center for Bone Biology
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel S. Perrien
- Vanderbilt Center for Bone Biology
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xiangli Yang
- Vanderbilt Center for Bone Biology
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S. Nyman
- Vanderbilt Center for Bone Biology
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Eva Harth
- Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Florent Elefteriou
- Vanderbilt Center for Bone Biology
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
22
|
Proposing the use of dental pulp stem cells as a suitable biological model of neurofibromatosis type 1. Childs Nerv Syst 2015; 31:7-13. [PMID: 25480698 DOI: 10.1007/s00381-014-2599-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 11/24/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE This study aims to propose the dental pulp stem cells (DPSCs) as a model for studying two features related to neurofibromatosis type 1 (NF1), i.e. augmented proliferative capacity and altered osteogenic differentiation. METHODS We isolated a DPSC from the pulp of deciduous teeth of a 6-year-old NF1 patient and two other healthy children of similar age. Cell proliferation was assayed by counting with a haemocytometer after successive cell re-plating. In order to compare osteogenic differentiation, we used osteoblast-differentiating medium and quantified alizarin stain, which relates to degree of calcification, and evaluated the expression of osteoblastic markers by reverse transcription polymerase chain reaction (RT-PCR). RESULTS The DPSCs isolated from the NF1 patient displayed a greater rate of proliferation when compared to the control cells. Osteogenic differentiation occurred as expected for both NF1 and control, which concerned cell morphology and expression of osteoblast marker genes ALP, BMP2, BMP4, OCN and SPP1. However, alizarin staining denoted a markedly lower calcification level in the cells from the NF1-diagnosed child, considering that less calcium deposits were visualized under light microscopy and a smaller amount of alizarin could be quantified by spectrophotometry after extraction from the stained cells. CONCLUSION DPSCs seem to be useful as a model for studying NF1 and predicting prognosis of patients, since their in vitro behaviour seems to mimic at least two features of this disorder: higher tendency to develop bone abnormalities and neoplastic cell proliferation.
Collapse
|
23
|
de la Croix Ndong J, Makowski AJ, Uppuganti S, Vignaux G, Ono K, Perrien DS, Joubert S, Baglio SR, Granchi D, Stevenson DA, Rios JJ, Nyman JS, Elefteriou F. Asfotase-α improves bone growth, mineralization and strength in mouse models of neurofibromatosis type-1. Nat Med 2014; 20:904-10. [PMID: 24997609 PMCID: PMC4126855 DOI: 10.1038/nm.3583] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/01/2014] [Indexed: 12/20/2022]
Abstract
Mineralization of the skeleton depends on the balance between levels of
pyrophosphate (PPi), an inhibitor of hydroxyapatite formation, and phosphate generated
from PPi breakdown by alkaline phosphatase (ALP). We report here that ablation of
Nf1, encoding the RAS/GTPase–activating protein neurofibromin,
in bone–forming cells leads to supraphysiologic PPi accumulation, caused by a
chronic ERK–dependent increase in genes promoting PPi synthesis and extracellular
transport, namely Enpp1 and Ank. It also prevents
BMP2–induced osteoprogenitor differentiation and, consequently, expression of ALP
and PPi breakdown, further contributing to PPi accumulation. The short stature, impaired
bone mineralization and strength in mice lacking Nf1 in
osteochondroprogenitors or osteoblasts could be corrected by enzyme therapy aimed at
reducing PPi concentration. These results establish neurofibromin as an essential
regulator of bone mineralization, suggest that altered PPi homeostasis contributes to the
skeletal dysplasiae associated with neurofibromatosis type-1 (NF1), and that some of the
NF1 skeletal conditions might be preventable pharmacologically.
Collapse
Affiliation(s)
- Jean de la Croix Ndong
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexander J Makowski
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA. [3] Department of Orthopaedic Surgery &Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [4] Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Sasidhar Uppuganti
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Orthopaedic Surgery &Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Guillaume Vignaux
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Koichiro Ono
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [3] Department of Orthopaedics, Nohon Koukan Hospital, Kawasaki, Kanagawa, Japan
| | - Daniel S Perrien
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Orthopaedic Surgery &Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [3] Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA. [4] Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Serena R Baglio
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Donatella Granchi
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - David A Stevenson
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Jonathan J Rios
- 1] Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA. [2] Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA. [3] Eugene McDermott Center for Human Growth &Development, UT Southwestern Medical Center, Dallas, Texas, USA. [4] Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffry S Nyman
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA. [3] Department of Orthopaedic Surgery &Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [4] Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Florent Elefteriou
- 1] Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [3] Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [4] Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Approaches to treating NF1 tibial pseudarthrosis: consensus from the Children's Tumor Foundation NF1 Bone Abnormalities Consortium. J Pediatr Orthop 2013; 33:269-75. [PMID: 23482262 DOI: 10.1097/bpo.0b013e31828121b8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neurofibromatosis 1 (NF1) is an autosomal dominant disorder with various skeletal abnormalities occurring as part of a complex phenotype. Tibial dysplasia, which typically presents as anterolateral bowing of the leg with subsequent fracture and nonunion (pseudarthrosis), is a serious but infrequent osseous manifestation of NF1. Over the past several years, results from clinical and experimental studies have advanced our knowledge of the role of NF1 in bone. On the basis of current knowledge, we propose a number of concepts to consider as a theoretical approach to the optimal management of tibial pseudarthrosis. METHODS A literature review for both clinical treatment and preclinical models for tibial dysplasia in NF1 was performed. Concepts were discussed and developed by experts who participated in the Children's Tumor Foundation sponsored International Bone Abnormalities Consortium meeting in 2011. RESULTS Concepts for a theoretical approach to treating tibial pseudarthrosis include: bone fixation appropriate to achieve stability in any given case; debridement of the "fibrous pseudarthrosis tissue" between the bone segments associated with the pseudarthrosis; creating a healthy vascular bed for bone repair; promoting osteogenesis; controlling overactive bone resorption (catabolism); prevention of recurrence of the "fibrous pseudarthrosis tissue"; and achievement of long-term bone health to prevent recurrence. CONCLUSIONS Clinical trials are needed to assess effectiveness of the wide variation of surgical and pharmacologic approaches currently in practice for the treatment of tibial pseudarthrosis in NF1. LEVEL OF EVIDENCE Level V, expert opinion.
Collapse
|
25
|
Giuliani N, Lisignoli G, Magnani M, Racano C, Bolzoni M, Dalla Palma B, Spolzino A, Manferdini C, Abati C, Toscani D, Facchini A, Aversa F. New insights into osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells and their potential clinical applications for bone regeneration in pediatric orthopaedics. Stem Cells Int 2013; 2013:312501. [PMID: 23766767 PMCID: PMC3676919 DOI: 10.1155/2013/312501] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/08/2013] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are pluripotent adult stem cells capable of being differentiated into osteoblasts, adipocytes, and chondrocytes. The osteogenic differentiation of hMSCs is regulated either by systemic hormones or by local growth factors able to induce specific intracellular signal pathways that modify the expression and activity of several transcription factors. Runt-related transcription factor 2 (Runx2) and Wnt signaling-related molecules are the major factors critically involved in the osteogenic differentiation process by hMSCs, and SRY-related high-mobility-group (HMG) box transcription factor 9 (SOX9) is involved in the chondrogenic one. hMSCs have generated a great interest in the field of regenerative medicine, particularly in bone regeneration. In this paper, we focused our attention on the molecular mechanisms involved in osteogenic and chondrogenic differentiation of hMSC, and the potential clinical use of hMSCs in osteoarticular pediatric disease characterized by fracture nonunion and pseudarthrosis.
Collapse
Affiliation(s)
- Nicola Giuliani
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Gina Lisignoli
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Marina Magnani
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Costantina Racano
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Marina Bolzoni
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Benedetta Dalla Palma
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Angelica Spolzino
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Cristina Manferdini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Caterina Abati
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Denise Toscani
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Andrea Facchini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Franco Aversa
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
26
|
George-Abraham JK, Martin LJ, Kalkwarf HJ, Rieley MB, Stevenson DA, Viskochil DH, Hopkin RJ, Stevens AM, Hanson H, Schorry EK. Fractures in children with neurofibromatosis type 1 from two NF clinics. Am J Med Genet A 2013; 161A:921-6. [PMID: 23529831 DOI: 10.1002/ajmg.a.35541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 06/01/2012] [Indexed: 01/01/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with osseous abnormalities occurring in up to one-third of patients. Several studies have documented osteopenia in both children and adults with NF1; however, the significance of lower bone mineral density (BMD) in relationship to fracture incidence is not well elucidated in NF1, particularly in children. We undertook a retrospective study to determine prevalence and location of fractures in children and adolescents with NF1, ages 5-20 years, using a standardized questionnaire. We surveyed 256 individuals with NF1 from two multidisciplinary NF centers and 178 controls without NF1 of similar ages and sex. Participants with known long bone dysplasia (LBD) were analyzed separately. Data collected included numbers and location of fractures, dietary calcium intake, and physical activity levels. There was no difference in prevalence of ever having a fracture between the NF1 group without LBD (22%) and the control group (25%); median number of fractures also did not differ. There were significant differences in fracture location with a higher frequency of fractures of the lower extremities in NF1 individuals without LBD compared to controls. Both NF1 cohorts had lower rates of physical activity than controls (P < 0.0001). Our data demonstrate that the likelihood of having had a fracture is not higher in young NF1 individuals without LBD in comparison to healthy controls. The lower physical activity level may have a "protective effect" for those with NF1, thus keeping their fracture incidence lower than expected for their relative degree of osteopenia.
Collapse
Affiliation(s)
- Jaya K George-Abraham
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee SM, Choi IH, Lee DY, Lee HR, Park MS, Yoo WJ, Chung CY, Cho TJ. Is double inactivation of the Nf1 gene responsible for the development of congenital pseudarthrosis of the tibia associated with NF1? J Orthop Res 2012; 30:1535-40. [PMID: 22488919 DOI: 10.1002/jor.22121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 03/19/2012] [Indexed: 02/04/2023]
Abstract
The pathogenic mechanism responsible for congenital pseudarthrosis of the tibia (CPT) is not well understood although the possibility of double inactivation of the neurofibromatosis type 1 (Nf1) gene has been suggested. In the present study, loss of heterozygosity was investigated in fibrous hamartoma tissues harvested from 16 patients with CPT associated with NF1 using four genetic markers that span the Nf1 gene. Based on the assumption that a single cell with double inactivation of Nf1 would undergo clonal growth and cause fibrous hamartoma, we investigated clonality in fibrous hamartoma tissues by analyzing X-chromosome inactivation patterns in 11 female patients. Loss of Nf1 heterozygosity in fibrous hamartoma tissues was observed at one or two genetic markers in 4 out of the 16 patients tested. In clonality assays, 3 of 11 patients showed a clonal growth pattern, 5 a non-clonal pattern, and 3 were non-informative. These findings support that double inactivation of the Nf1 gene and subsequent clonal growth could be a pathogenic feature of the fibrous hamartoma tissue at least in some of the CPT but might not be essential requirements of CPT development.
Collapse
Affiliation(s)
- Sang Min Lee
- Department of Orthopaedic Surgery, Eulji University College of Medicine, 1306 Dunsan-dong, Seo-gu, Daejeon, 302-799, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Alanne MH, Siljamäki E, Peltonen S, Väänänen K, Windle JJ, Parada LF, Määttä JA, Peltonen J. Phenotypic characterization of transgenic mice harboring Nf1+/− or Nf1−/− osteoclasts in otherwise Nf1+/+ background. J Cell Biochem 2012; 113:2136-46. [DOI: 10.1002/jcb.24088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Heervä E, Peltonen S, Svedström E, Aro HT, Väänänen K, Peltonen J. Osteoclasts derived from patients with neurofibromatosis 1 (NF1) display insensitivity to bisphosphonates in vitro. Bone 2012; 50:798-803. [PMID: 22226973 DOI: 10.1016/j.bone.2011.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/16/2011] [Indexed: 12/15/2022]
Abstract
A total of 20 patients with neurofibromatosis 1 (NF1) were screened for NF1-related osteoporosis, and blood samples were collected for isolation of peripheral blood osteoclast progenitors. Patients with NF1 had higher levels of serum bone turnover markers (CTX and PINP) compared to controls. In addition, persons with high bone resorption in vitro on average had high levels of serum CTX. Of the 20 patients with NF1, 15 had low bone mineral density (osteopenia/osteoporosis), but these 15 patients did not have marked risk factors for low bone mineral density. Thus, we recommend screening for osteoporosis to all adult patients with NF1. Our aim was also to characterize the effects of bisphosphonates on NF1 osteoclasts in vitro. NF1 osteoclasts and osteoclasts from healthy controls in vitro were treated with zoledronic acid, alendronate and clodronate. These bisphosphonates caused a marked reduction in the number of normal control osteoclasts in vitro, while only a slight change was observed in the number of NF1 osteoclasts. Ras-inhibitor FTS counteracted this NF1-related insensitivity to zoledronic acid, suggesting that Ras may play a role in this phenomenon.
Collapse
Affiliation(s)
- Eetu Heervä
- University of Turku, Department of Cell Biology and Anatomy, Turku 20520, Finland
| | | | | | | | | | | |
Collapse
|
30
|
Granchi D, Devescovi V, Baglio SR, Magnani M, Donzelli O, Baldini N. A regenerative approach for bone repair in congenital pseudarthrosis of the tibia associated or not associated with type 1 neurofibromatosis: correlation between laboratory findings and clinical outcome. Cytotherapy 2012; 14:306-14. [DOI: 10.3109/14653249.2011.627916] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Abstract
Congenital pseudarthrosis of the tibia (CPT) is an uncommon disease with various clinical presentations ranging from simple anterolateral tibial angulation to complete non-union with extensive bone defects. Classifications of radiographic findings include atrophic or hypertrophic pseudarthosis as well as cystic or dystrophic lesions. Although the relationship between CPT and type 1 neurofibromatosis is well known, the exact pathogenesis still remains unclear. The fibrous soft tissue found in the pseudarthosis and the abnormal periosteum are certainly a key to the pathology, possibly due to decreased osteogenic capacities and impaired local vascularization. Treatment of CPT is still challenging in pediatric orthopedics because of bone union difficulties, persistant angulation, joint stiffness and sometimes severe limb length discrepancy sequellae. Numerous treatments based on biological and/or mechanical concepts, surgical or not, have been reported with variable success rates. Vascularized fibular grafts and the Ilizarov technique have greatly transformed the prognosis of CPT. Despite these steps forward, repeated surgical procedures are often necessary to obtain bone union and the risk of amputation is never entirely eliminated. The effectiveness of new treatments (bone morphogenetic protein, bone marrow stromal cell grafts, pulsed electromagnetic fields, induced membrane technique…) still requires to be confirmed. Combining these new techniques with existing treatments may improve the final prognosis of CPT, which nevertheless remains poor.
Collapse
|
32
|
Schindeler A, Birke O, Yu NYC, Morse A, Ruys A, Baldock PA, Little DG. Distal tibial fracture repair in a neurofibromatosis type 1-deficient mouse treated with recombinant bone morphogenetic protein and a bisphosphonate. ACTA ACUST UNITED AC 2011; 93:1134-9. [PMID: 21768643 DOI: 10.1302/0301-620x.93b8.25940] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Congenital pseudarthrosis of the tibia is an uncommon manifestation of neurofibromatosis type 1 (NF1), but one that remains difficult to treat due to anabolic deficiency and catabolic excess. Bone grafting and more recently recombinant human bone morphogenetic proteins (rhBMPs) have been identified as pro-anabolic stimuli with the potential to improve the outcome after surgery. As an additional pharmaceutical intervention, we describe the combined use of rhBMP-2 and the bisphosphonate zoledronic acid in a mouse model of NF1-deficient fracture repair. Fractures were generated in the distal tibiae of neurofibromatosis type 1-deficient (Nf1(+/-)) mice and control mice. Fractures were open and featured periosteal stripping. All mice received 10 μg rhBMP-2 delivered in a carboxymethylcellulose carrier around the fracture as an anabolic stimulus. Bisphosphonate-treated mice also received five doses of 0.02 mg/kg zoledronic acid given by intraperitoneal injection. When only rhBMP but no zoledronic acid was used to promote repair, 75% of fractures in Nf1(+/-) mice remained ununited at three weeks compared with 7% of controls (p < 0.001). Systemic post-operative administration of zoledronic acid halved the rate of ununited fractures to 37.5% (p < 0.07). These data support the concept that preventing bone loss in combination with anabolic stimulation may improve the outcome following surgical treatment for children with congenital pseudarthosis of the tibia and NF1.
Collapse
Affiliation(s)
- A Schindeler
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, 212 Hawkesbury Road, Westmead, New South Wales 2145, Australia.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lee DY, Cho TJ, Lee HR, Lee K, Moon HJ, Park MS, Yoo WJ, Chung CY, Choi IH. Disturbed osteoblastic differentiation of fibrous hamartoma cell from congenital pseudarthrosis of the tibia associated with neurofibromatosis type I. Clin Orthop Surg 2011; 3:230-7. [PMID: 21909471 PMCID: PMC3162204 DOI: 10.4055/cios.2011.3.3.230] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/02/2011] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Fibrous hamartoma is the key pathology of congenital pseudarthrosis of the tibia (CPT), which was shown to have low osteogenicity and high osteoclastogenicity. This study further investigated the mechanism of impaired osteoblastic differentiation of fibrous hamartoma cells. METHODS Fibroblast-like cells were obtained from enzymatically dissociated fibrous hamartomas of 11 patients with CPT associated with neurofibromatosis type I (NF1). Periosteal cells were also obtained from the distal tibial periosteum of 3 patients without CPT or NF1 as control. The mRNA levels of Wnt ligands and their canonical receptors, such as Lrp5 and β-catenin, were assayed using reverse transcriptase PCR (RT-PCR). Changes in mRNA expression of osteoblast marker genes by rhBMP2 treatment were assayed using quantitative real time RT-PCR. Changes in mRNA expression of transcription factors specifically involved in osteoblastic differentiation by rhBMP2 treatment was also assayed using quantitative real-time RT-PCR. RESULTS Wnt1 and Wnt3a mRNA expression was lower in fibrous hamartoma than in tibial periosteal cells, but their canonical receptors did not show significant difference. Response of osteoblastic marker gene expression to rhBMP2 treatment showed patient-to-patient variability. Col1a1 mRNA expression was up-regulated in most fibrous hamartoma tissues, osteocalcin was up-regulated in a small number of patients, and ALP expression was down-regulated in most fibrous hamartoma tissues. Changes in mRNA expression of the transcription factors in response to rhBMP2 also showed factor-to-factor and patient-to-patient variability. Dlx5 was consistently up-regulated by rhBMP2 treatment in all fibrous hamartoma tissues tested. Msx2 expression was down-regulated by rhBMP2 in most cases but by lesser extent than control tissue. Runx2 expression was up-regulated in 8 out of 18 fibrous hamartoma tissues tested. Osterix expression was up-regulated in 2 and down-regulated in 3 fibrous hamartoma tissues. CONCLUSIONS Congenital pseudarthrosis of the tibia appears to be caused by fibrous hamartoma originating from aberrant growth of Nf1 haploinsufficient periosteal cells, which failed in terminal osteoblastic differentiation and arrested at a certain stage of this process. This pathomechanism of CPT should be targeted in the development of novel therapeutic biologic intervention.
Collapse
Affiliation(s)
- Dong Yeon Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Martínez Valle EM, Gacto Sánchez P, Jiménez Barros FJ, Sicilia Castro D, Gómez Cía T, Ana P. Fifteen years’ follow-up on the use of vascularized fibular graft for the treatment of congenital pseudoarthrosis of the tibia: experience in Virgen del Rocio’s Hospital and review of the literature. EUROPEAN JOURNAL OF PLASTIC SURGERY 2011. [DOI: 10.1007/s00238-011-0569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Heervä E, Peltonen S, Pirttiniemi P, Happonen RP, Visnapuu V, Peltonen J. Short mandible, maxilla and cranial base are common in patients with neurofibromatosis 1. Eur J Oral Sci 2011; 119:121-7. [PMID: 21410551 DOI: 10.1111/j.1600-0722.2011.00811.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal-dominant neuro-cutaneous-skeletal syndrome. Neurofibromatosis type 1 is one of the Rasopathies, and at the cellular level NF1 results in a hyperactive Ras pathway. In the current investigation, our aim was to study lateral skull X-rays (cephalograms) to assess NF1-related craniofacial morphology. A total of 85 Finnish patients with NF1, including four patients with plexiform neurofibroma of the 5th cranial nerve, and their age- and gender-matched controls, were enrolled in the study. The results showed that patients with NF1 typically had a short mandible, maxilla, and cranial base compared with healthy controls, irrespective of age, but the results were statistically significant only in adults. The length of the mandible, the maxilla and the cranial base correlated with the height of patients under 19 yr of age, but this correlation was absent in adult patients. Thus, a tall adult patient with NF1 may have short jaws and a short cranial base. In conclusion, the NF1 gene apparently influences the growth of craniofacial bones, thus contributing to the craniofacial morphology in NF1.
Collapse
Affiliation(s)
- Eetu Heervä
- Department of Cell Biology and Anatomy, University of Turku, Kiinamyllynkatu, Finland
| | | | | | | | | | | |
Collapse
|
36
|
Heervä E, Alanne MH, Peltonen S, Kuorilehto T, Hentunen T, Väänänen K, Peltonen J. Osteoclasts in neurofibromatosis type 1 display enhanced resorption capacity, aberrant morphology, and resistance to serum deprivation. Bone 2010; 47:583-90. [PMID: 20541045 DOI: 10.1016/j.bone.2010.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/27/2010] [Accepted: 06/01/2010] [Indexed: 11/24/2022]
Abstract
Neurofibromatosis 1 syndrome (NF1) presents with skeletal involvement suggesting that altered bone dynamics is associated with NF1. Histological analysis of three cases of NF1-related pseudarthrosis revealed numerous osteoclasts in contact with adjacent bone, and within the pseudarthrosis tissue itself. These findings prompted us to evaluate the differentiation and resorption capacity of NF1-osteoclast like cells (OLCs) in vitro. Osteoclast progenitors were isolated from peripheral blood of 17 patients with NF1 and allowed to differentiate into OLCs on bone slices. The following differences were found between NF1 and control samples: samples from NF1 patients resulted in a higher number of resorbing OLCs; NF1 OLCs were larger in size; their nuclei were more numerous; actin rings were more frequent; and the resorption pits in NF1 samples were more numerous and larger. Bone resorption markers revealed that the resorption activity in NF1 OLC cultures was approximately two times higher than in controls. Following deprivation from serum, the number of NF1 OLCs remained essentially the same during 24h, whereas the number of control OLCs was dramatically reduced during the same time. Three patients had NF1-related lytic bone lesions, and their in vitro results differed from those of other patients. Our results demonstrate that OLCs derived from blood of patients with NF1 display elevated resorption activity under conditions isolated from microenvironment operative in vivo. Thus, increased osteoclast activity may be a phenotypic property of the NF1 syndrome, and at least in part explain selected skeletal findings in NF1, such as osteoporosis/osteopenia.
Collapse
Affiliation(s)
- Eetu Heervä
- University of Turku, Department of Cell Biology and Anatomy, Kiinamyllynkatu 10, Turku 20520, Finland
| | | | | | | | | | | | | |
Collapse
|
37
|
Tikkanen J, Leskelä HV, Lehtonen ST, Vähäsarja V, Melkko J, Ahvenjärvi L, Pääkkö E, Väänänen K, Lehenkari P. Attempt to treat congenital pseudarthrosis of the tibia with mesenchymal stromal cell transplantation. Cytotherapy 2010; 12:593-604. [DOI: 10.3109/14653249.2010.487898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Granchi D, Devescovi V, Baglìo SR, Leonardi E, Donzelli O, Magnani M, Stilli S, Giunti A, Baldini N. Biological basis for the use of autologous bone marrow stromal cells in the treatment of congenital pseudarthrosis of the tibia. Bone 2010; 46:780-8. [PMID: 19900596 DOI: 10.1016/j.bone.2009.10.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 10/26/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
Abstract
The study was designed to establish the biological basis for the use of autologous bone-marrow stromal cells (MSC) in order to improve the curing opportunities of congenital pseudarthrosis of the tibia (CPT). The investigation was planned by taking into account that the pathophysiology of bone healing mainly depends on the osteogenic potential of the resident cells, although several factors play a crucial role in restoring the normal bone structure. Bone marrow samples were collected from the lesion site (P) and the iliac crest (IC) of 7 patients affected by CPT and type 1 neurofibromatosis (NF1+) and 6 patients affected by CPT without NF1 (NF1-). Four patients without CPT served as control group. Biochemical, functional and molecular assays showed that the ability to generate bone-forming cells was higher in IC-MSC than in P-MSC, but lower in CPT patients than in control group. We evaluated whether host factors, such as autologous serum and the microenvironment surrounding the pseudarthrosis lesion, could impair the osteogenic differentiation of IC-MSC. Autologous serum was less effective than FBS in promoting the IC-MSC differentiation, but the damage was more evident in NF1- than in NF1+ patients. Additionally, the supernatant of osteoblast cultures obtained from bone fragments close to the lesion site favoured the differentiation of IC-MSC in NF1- patients. In summary, our results suggest that MSC transplantation could be a promising strategy for the therapy of CPT. Further studies are warranted to confirm the clinical effectiveness in comparison to standard surgical treatment.
Collapse
Affiliation(s)
- Donatella Granchi
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopaedic Institute, Bologna, Italy. donatella.granchi.@ior.it
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fauth C, Kehrer-Sawatzki H, Zatkova A, Machherndl-Spandl S, Messiaen L, Amann G, Hainfellner JA, Wimmer K. Two sporadic spinal neurofibromatosis patients with malignant peripheral nerve sheath tumour. Eur J Med Genet 2009; 52:409-14. [PMID: 19665063 DOI: 10.1016/j.ejmg.2009.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 08/01/2009] [Indexed: 11/19/2022]
Abstract
We analyzed two unrelated male patients in whom neurofibromatosis type 1 (NF1) was not suspected until they presented with malignant peripheral nerve sheath tumours (MPNSTs) in their thirties and forties, respectively. Patient A presented with progressive peroneus paresis due to a rapidly growing MPNST in the thigh. MRI examination revealed multiple symmetrical spinal neurofibromas in this patient as well as in patient B who presented at the age of 42 with paraparesis and an MPNST at spinal level L4. Dermal features in both patients were strikingly mild, therefore both patients were considered belonging to the NF1-subform of spinal neurofibromatosis (SNF). The novel NF1 mutations identified, i.e. splice mutation, c.7675+1G > A, in patient A and two alterations, p.Cys1016Arg and p.2711delVal, located in trans in patient B support the notion that the phenotype of SNF may be related to mutations with possible residual functionality. The MPNSTs of both patients showed LOH affecting chromosome 17 including the NF1 locus. Furthermore, a truncating TP53 mutation was identified in the tumour of patient A. Both alterations are frequent findings in NF1-associated MPNSTs. To our knowledge these are the first MPNST patients with the clinical phenotype of SNF. The clinical course observed in these two patients suggests that nodular plexiform neurofibromas and spinal-nerve-root neurofibromas which may be asymptomatic for a long time and, hence, unrecognized in SNF patients bear the risk for malignant transformation.
Collapse
Affiliation(s)
- C Fauth
- Clinical Genetics Section, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|