1
|
Grass DM, Malek G, Taïeb HM, Ittah E, Richard H, Reznikov N, Laverty S. Characterization and quantification of in-vitro equine bone resorption in 3D using μCT and deep learning-aided feature segmentation. Bone 2024; 185:117131. [PMID: 38777311 DOI: 10.1016/j.bone.2024.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
High cyclic strains induce formation of microcracks in bone, triggering targeted bone remodeling, which entails osteoclastic resorption. Racehorse bone is an ideal model for studying the effects of high-intensity loading, as it is subject to focal formation of microcracks and subsequent bone resorption. The volume of resorption in vitro is considered a direct indicator of osteoclast activity but indirect 2D measurements are used more often. Our objective was to develop an accurate, high-throughput method to quantify equine osteoclast resorption volume in μCT 3D images. Here, equine osteoclasts were cultured on equine bone slices and imaged with μCT pre- and postculture. Individual resorption events were then isolated and analyzed in 3D. Modal volume, maximum depth, and aspect ratio of resorption events were calculated. A convolutional neural network (CNN U-Net-like) was subsequently trained to identify resorption events on post-culture μCT images alone, without the need for pre-culture imaging, using archival bone slices with known resorption areas and paired CTX-I biomarker levels in culture media. 3D resorption volume measurements strongly correlated with both the CTX-I levels (p < 0.001) and area measurements (p < 0.001). Our 3D analysis shows that the shapes of resorption events form a continuous spectrum, rather than previously reported pit and trench categories. With more extensive resorption, shapes of increasing complexity appear, although simpler resorption cavity morphologies (small, rounded) remain most common, in acord with the left-hand limit paradigm. Finally, we show that 2D measurements of in vitro osteoclastic resorption are a robust and reliable proxy.
Collapse
Affiliation(s)
- Debora M Grass
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| | - Gwladys Malek
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| | - Hubert M Taïeb
- Department of Bioengineering, Faculty of Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Eran Ittah
- Department of Bioengineering, Faculty of Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Hélène Richard
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| | - Natalie Reznikov
- Department of Bioengineering, Faculty of Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Sheila Laverty
- Comparative Orthopaedic Research Laboratory, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
2
|
Castoldi NM, Pickering E, Sansalone V, Cooper D, Pivonka P. Bone turnover and mineralisation kinetics control trabecular BMDD and apparent bone density: insights from a discrete statistical bone remodelling model. Biomech Model Mechanobiol 2024; 23:893-909. [PMID: 38280951 PMCID: PMC11101591 DOI: 10.1007/s10237-023-01812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/22/2023] [Indexed: 01/29/2024]
Abstract
The mechanical quality of trabecular bone is influenced by its mineral content and spatial distribution, which is controlled by bone remodelling and mineralisation. Mineralisation kinetics occur in two phases: a fast primary mineralisation and a secondary mineralisation that can last from several months to years. Variations in bone turnover and mineralisation kinetics can be observed in the bone mineral density distribution (BMDD). Here, we propose a statistical spatio-temporal bone remodelling model to study the effects of bone turnover (associated with the activation frequency Ac . f ) and mineralisation kinetics (associated with secondary mineralisation T sec ) on BMDD. In this model, individual basic multicellular units (BMUs) are activated discretely on trabecular surfaces that undergo typical bone remodelling periods. Our results highlight that trabecular BMDD is strongly regulated by Ac . f and T sec in a coupled way. Ca wt% increases with lower Ac . f and short T sec . For example, aAc . f = 4 BMU/year/mm3 and T sec = 8 years result in a mean Ca wt% of 25, which is in accordance with Ca wt% values reported in quantitative backscattered electron imaging (qBEI) experiments. However, for lower Ac . f and shorter T sec (from 0.5 to 4 years) one obtains a high Ca wt% and a very narrow skew BMDD to the right. This close link between Ac . f and T sec highlights the importance of considering both characteristics to draw meaningful conclusion about bone quality. Overall, this model represents a new approach to modelling healthy and diseased bone and can aid in developing deeper insights into disease states like osteoporosis.
Collapse
Affiliation(s)
- Natalia M Castoldi
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
- UMR 8208, MSME, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, Créteil, France.
| | - Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Vittorio Sansalone
- UMR 8208, MSME, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, Créteil, France
| | - David Cooper
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
3
|
Martin BL, Reynolds KJ, Fazzalari NL, Bottema MJ. Modelling the Effects of Growth and Remodelling on the Density and Structure of Cancellous Bone. Bull Math Biol 2024; 86:37. [PMID: 38436708 PMCID: PMC10912124 DOI: 10.1007/s11538-024-01267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
A two-stage model is proposed for investigating remodelling characteristics in bone over time and distance to the growth plate. The first stage comprises a partial differential equation (PDE) for bone density as a function of time and distance from the growth plate. This stage clarifies the contributions to changes in bone density due to remodelling and growth processes and tracks the rate at which new bone emanates from the growth plate. The second stage consists of simulating the remodelling process to determine remodelling characteristics. Implementing the second stage requires the rate at which bone moves away from the growth plate computed during the first stage. The second stage is also needed to confirm that remodelling characteristics predicted by the first stage may be explained by a realistic model for remodelling and to compute activation frequency. The model is demonstrated on microCT scans of tibia of juvenile female rats in three experimental groups: sham-operated control, oestrogen deprived, and oestrogen deprived followed by treatment. Model predictions for changes in bone density and remodelling characteristics agree with the literature. In addition, the model provides new insight into the role of treatment on the density of new bone emanating from the growth plate and provides quantitative descriptions of changes in remodelling characteristics beyond what has been possible to ascertain by experimentation alone.
Collapse
Affiliation(s)
- Brianna L Martin
- Marine Spatial Ecology Laboratory, School of the Environment, The University of Queensland, Level 5, Goddard Building, St. Lucia, QLD, 4072, Australia
| | - Karen J Reynolds
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley Campus, 1284 South Rd, Clovelly Park, SA, 5042, Australia
| | - Nicola L Fazzalari
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley Campus, 1284 South Rd, Clovelly Park, SA, 5042, Australia
| | - Murk J Bottema
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley Campus, 1284 South Rd, Clovelly Park, SA, 5042, Australia.
| |
Collapse
|
4
|
The Influence of Ficus deltoidea in Preserving Alveolar Bone in Ovariectomized Rats. Vet Med Int 2020; 2020:8862489. [PMID: 33456747 PMCID: PMC7785368 DOI: 10.1155/2020/8862489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
Ficus deltoidea has been shown to possess antioxidant properties that could prevent the development of chronic inflammatory bone diseases. In this study, the efficacy of F. deltoidea in preventing alveolar bone resorption in osteoporotic rats induced by ovariectomy (OVX) was investigated. Twenty-four female Wistar rats were divided into four groups (n = 6) consisting of sham-operated (SO), ovariectomized control (OVXN), ovariectomized treated with estrogen (OVXP), and ovariectomized treated with F. deltoidea extract (OVXF). At the beginning of the study, two nonovariectomized, healthy rats were sacrificed to serve as baseline (BL). Treatment of the rats commenced two weeks after ovariectomy—the OVXP rats that served as positive control received Premarin® (64.5 μg/kg body weight), while OVXF rats were given F. deltoidea (800 mg/kg body weight); both agents were administered orally for two months. The negative control group of rats (OVXN) and the SO group received deionized water, also administered via oral gavage. At necropsy, morphometric assessment of the interradicular bone of the first molar was carried out using a micro-CT scanner, while quantification of osteoclasts and osteoblasts was performed histologically. The results showed that no statistically significant differences among the groups (p > 0.05) for bone morphometric assessment. However, trabecular thickness in the OVXF group was similar to BL, while trabecular separation and alveolar bone loss height were lower than those of the OVXN group. Histologically, the OVXF group demonstrated a significantly lower number of osteoclasts and a higher number of osteoblasts compared with OVXN (p=0.008 and p=0.019, respectively; p < 0.05). In conclusion, F. deltoidea has the capacity to prevent alveolar bone loss in ovariectomy-induced osteoporosis rats by potentially preserving trabecular bone microarchitecture and to decrease osteoclast and increase osteoblast cell count.
Collapse
|
5
|
Winkler T, Hoenig E, Huber G, Janssen R, Fritsch D, Gildenhaar R, Berger G, Morlock MM, Schilling AF. Osteoclastic Bioresorption of Biomaterials: Two- and Three-Dimensional Imaging and Quantification. Int J Artif Organs 2018. [DOI: 10.1177/039139881003300404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose Bioresorbable materials have been developed in the hope that the body will replace them with newly formed tissue. The first step of this remodeling process in bone is the bioresorption of the material by osteoclasts. The aim of this study was to analyze osteoclastic resorption of biomaterials in vitro using the commonly used two-dimensional methods of light-microscopy (LM) and scanning electron microscopy (SEM) in comparison with infinite focus microscopy (IFM), a recently developed imaging method allowing for three-dimensional surface analysis. Methods Human hematopoietic stem cells were cultivated in the presence of the cytokines M-CSF and RANK-L for 4 weeks directly on dentin and a calcium phosphate cement. Osteoclast development was surveyed with standard techniques. After removal of the cells, resorption was characterized and quantified by LM, SEM and IFM. Results Osteoclast cultures on the biomaterials presented the typical osteoclast-specific markers. On dentin samples LM, SEM as well as IFM allowed for discrimination of resorption. Quantification of the resorbed area showed a linear correlation between the results (LM vs. SEM: r=0.996, p=0.004; SEM vs. IFM: r=0.989, p=0.011; IFM vs. LM: r=0.995). It was not possible to demarcate resorption pits on GB14 using LM or SEM. With IFM, resorption on GB14 could be visualized and quantified two- and three-dimensionally. Conclusions In this paper we introduce IFM as a technology for three-dimensional visualization and quantification of resorption of biomaterials. Better understanding of the bioresorption of biomaterials may help in the design of better materials and might therefore constitute an important step on the avenue to the development of artificial bone.
Collapse
Affiliation(s)
- Thomas Winkler
- Biomechanics Section, Hamburg University of Technology, Hamburg - Germany
| | - Elisa Hoenig
- Biomechanics Section, Hamburg University of Technology, Hamburg - Germany
| | - Gerd Huber
- Biomechanics Section, Hamburg University of Technology, Hamburg - Germany
| | - Rolf Janssen
- Institute Advanced Ceramics, Hamburg University of Technology, Hamburg - Germany
| | - Daniel Fritsch
- Institute Advanced Ceramics, Hamburg University of Technology, Hamburg - Germany
| | - Renate Gildenhaar
- Federal Institute for Materials Research and Testing, Berlin - Germany
| | - Georg Berger
- Federal Institute for Materials Research and Testing, Berlin - Germany
| | - Michael M. Morlock
- Biomechanics Section, Hamburg University of Technology, Hamburg - Germany
| | - Arndt F. Schilling
- Biomechanics Section, Hamburg University of Technology, Hamburg - Germany
| |
Collapse
|
6
|
Carriero A, Pereira A, Wilson A, Castagno S, Javaheri B, Pitsillides A, Marenzana M, Shefelbine S. Spatial relationship between bone formation and mechanical stimulus within cortical bone: Combining 3D fluorochrome mapping and poroelastic finite element modelling. Bone Rep 2018; 8:72-80. [PMID: 29904646 PMCID: PMC5997173 DOI: 10.1016/j.bonr.2018.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bone is a dynamic tissue and adapts its architecture in response to biological and mechanical factors. Here we investigate how cortical bone formation is spatially controlled by the local mechanical environment in the murine tibia axial loading model (C57BL/6). We obtained 3D locations of new bone formation by performing ‘slice and view’ 3D fluorochrome mapping of the entire bone and compared these sites with the regions of high fluid velocity or strain energy density estimated using a finite element model, validated with ex-vivo bone surface strain map acquired ex-vivo using digital image correlation. For the comparison, 2D maps of the average bone formation and peak mechanical stimulus on the tibial endosteal and periosteal surface across the entire cortical surface were created. Results showed that bone formed on the periosteal and endosteal surface in regions of high fluid flow. Peak strain energy density predicted only the formation of bone periosteally. Understanding how the mechanical stimuli spatially relates with regions of cortical bone formation in response to loading will eventually guide loading regime therapies to maintain or restore bone mass in specific sites in skeletal pathologies. 3D spatial representation of new bone formation after loading is shown by fluorochrome mapping of the entire mouse tibia Regions of new bone formation spatially associate with regions of high strain and fluid mechanical stimulus in a FE model The FE model was validated with the strains on the bone surface determined ex-vivo using digital image correlation Regions of new bone formation co-localize in sites of peak fluid flow, both endosteally and periosteally Peak strain energy density was able to predict only periosteal bone formation
Collapse
Affiliation(s)
- A. Carriero
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
- Corresponding author at: Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - A.F. Pereira
- Department of Bioengineering, Imperial College London, UK
- Graduate School of Biomedical Engineering, University of New South Wales, Australia
| | - A.J. Wilson
- Department of Life Science, Imperial College London, UK
| | - S. Castagno
- Department of Medicine, Imperial College London, UK
| | - B. Javaheri
- Department of Comparative Biomedical Sciences, Royal Veterinary College, UK
| | - A.A. Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, UK
| | - M. Marenzana
- Department of Bioengineering, Imperial College London, UK
| | - S.J. Shefelbine
- Department of Mechanical and Industrial Engineering and Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
7
|
Das Neves Borges P, Vincent TL, Marenzana M. Application of autofluorescence robotic histology for quantitative evaluation of the 3-dimensional morphology of murine articular cartilage. Microsc Res Tech 2017; 80:1351-1360. [PMID: 28963813 PMCID: PMC5725668 DOI: 10.1002/jemt.22948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/04/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
Murine models of osteoarthritis (OA) are increasingly important for understating pathogenesis and for testing new therapeutic approaches. Their translational potential is, however, limited by the reduced size of mouse limbs which requires a much higher resolution to evaluate their articular cartilage compared to clinical imaging tools. In experimental models, this tissue has been predominantly assessed by time-consuming histopathology using standardized semi-quantitative scoring systems. This study aimed to develop a novel imaging method for 3-dimensional (3D) histology of mouse articular cartilage, using a robotic system-termed here "3D histocutter"-which automatically sections tissue samples and serially acquires fluorescence microscopy images of each section. Tibiae dissected from C57Bl/6 mice, either naïve or OA-induced by surgical destabilization of the medial meniscus (DMM), were imaged using the 3D histocutter by exploiting tissue autofluorescence. Accuracy of 3D imaging was validated by ex vivo contrast-enhanced micro-CT and sensitivity to lesion detection compared with conventional histology. Reconstructions of tibiae obtained from 3D histocutter serial sections showed an excellent agreement with contrast-enhanced micro-CT reconstructions. Furthermore, osteoarthritic features, including articular cartilage loss and osteophytes, were also visualized. An in-house developed software allowed to automatically evaluate articular cartilage morphology, eliminating the subjectivity associated to semi-quantitative scoring and considerably increasing analysis throughput. The novelty of this methodology is, not only the increased throughput in imaging and evaluating mouse articular cartilage morphology starting from conventionally embedded samples, but also the ability to add the third dimension to conventional histomorphometry which might be useful to improve disease assessment in the model.
Collapse
Affiliation(s)
| | - Tonia L Vincent
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Massimo Marenzana
- Department of Bioengineering, Imperial College London, London, United Kingdom.,Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| |
Collapse
|
8
|
Minimizing Interpolation Bias and Precision Error in In Vivo µCT-Based Measurements of Bone Structure and Dynamics. Ann Biomed Eng 2016; 44:2518-2528. [PMID: 26786342 DOI: 10.1007/s10439-015-1527-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/08/2015] [Indexed: 01/28/2023]
Abstract
In vivo µCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered µCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75-0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling.
Collapse
|
9
|
Goff MG, Lambers FM, Nguyen TM, Sung J, Rimnac CM, Hernandez CJ. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces. Bone 2015; 79:8-14. [PMID: 26008609 PMCID: PMC4501884 DOI: 10.1016/j.bone.2015.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/29/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
Abstract
Impaired bone toughness is increasingly recognized as a contributor to fragility fractures. At the tissue level, toughness is related to the ability of bone tissue to resist the development of microscopic cracks or other tissue damage. While most of our understanding of microdamage is derived from studies of cortical bone, the majority of fragility fractures occur in regions of the skeleton dominated by cancellous bone. The development of tissue microdamage in cancellous bone may differ from that in cortical bone due to differences in microstructure and tissue ultrastructure. To gain insight into how microdamage accumulates in cancellous bone we determined the changes in number, size and location of microdamage sites following different amounts of cyclic compressive loading. Human vertebral cancellous bone specimens (n=32, 10 male donors, 6 female donors, age 76 ± 8.8, mean ± SD) were subjected to sub-failure cyclic compressive loading and microdamage was evaluated in three-dimensions. Only a few large microdamage sites (the largest 10%) accounted for 70% of all microdamage caused by cyclic loading. The number of large microdamage sites was a better predictor of reductions in Young's modulus caused by cyclic loading than overall damage volume fraction (DV/BV). The majority of microdamage volume (69.12 ± 7.04%) was located more than 30 μm (the average erosion depth) from trabecular surfaces, suggesting that microdamage occurs primarily within interstitial regions of cancellous bone. Additionally, microdamage was less likely to be near resorption cavities than other bone surfaces (p<0.05), challenging the idea that stress risers caused by resorption cavities influence fatigue failure of cancellous bone. Together, these findings suggest that reductions in apparent level mechanical performance during fatigue loading are the result of only a few large microdamage sites and that microdamage accumulation in fatigue is likely dominated by heterogeneity in tissue material properties rather than stress concentrations caused by micro-scale geometry.
Collapse
Affiliation(s)
- M G Goff
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - F M Lambers
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - T M Nguyen
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - J Sung
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - C M Rimnac
- Departments of Mechanical and Aerospace Engineering and Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - C J Hernandez
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Hospital for Special Surgery, New York City, NY, USA.
| |
Collapse
|
10
|
Lambers FM, Bouman AR, Tkachenko EV, Keaveny TM, Hernandez CJ. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone. J Biomech 2015; 47:3605-12. [PMID: 25458150 DOI: 10.1016/j.jbiomech.2014.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/16/2014] [Accepted: 10/05/2014] [Indexed: 11/26/2022]
Abstract
The amount of microdamage in bone tissue impairs mechanical performance and may act as a stimulus for bone remodeling. Here we determine how loading mode (tension vs. compression) and microstructure (trabecular microarchitecture, local trabecular thickness, and presence of resorption cavities) influence the number and volume of microdamage sites generated in cancellous bone following a single overload. Twenty paired cylindrical specimens of human vertebral cancellous bone from 10 donors (47–78 years) were mechanically loaded to apparent yield in either compression or tension, and imaged in three dimensions for microarchitecture and microdamage (voxel size 0.7×0.7×5.0 μm3). We found that the overall proportion of damaged tissue was greater (p=0.01) for apparent tension loading (3.9±2.4%, mean±SD) than for apparent compression loading (1.9±1.3%). Individual microdamage sites generated in tension were larger in volume (p<0.001) but not more numerous (p=0.64) than sites in compression. For both loading modes, the proportion of damaged tissue varied more across donors than with bone volume fraction, traditional measures of microarchitecture (trabecular thickness, trabecular separation, etc.), apparent Young׳s modulus, or strength. Microdamage tended to occur in regions of greater trabecular thickness but not near observable resorption cavities. Taken together, these findings indicate that, regardless of loading mode, accumulation of microdamage in cancellous bone after monotonic loading to yield is influenced by donor characteristics other than traditional measures of microarchitecture, suggesting a possible role for tissue material properties.
Collapse
|
11
|
de Bakker CMJ, Altman AR, Tseng WJ, Tribble MB, Li C, Chandra A, Qin L, Liu XS. μCT-based, in vivo dynamic bone histomorphometry allows 3D evaluation of the early responses of bone resorption and formation to PTH and alendronate combination therapy. Bone 2015; 73:198-207. [PMID: 25554598 PMCID: PMC4336835 DOI: 10.1016/j.bone.2014.12.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/22/2023]
Abstract
Current osteoporosis treatments improve bone mass by increasing net bone formation: anti-resorptive drugs such as bisphosphonates block osteoclast activity, while anabolic agents such as parathyroid hormone (PTH) increase bone remodeling, with a greater effect on formation. Although these drugs are widely used, their role in modulating formation and resorption is not fully understood, due in part to technical limitations in the ability to longitudinally assess bone remodeling. Importantly, it is not known whether or not PTH-induced bone formation is independent of resorption, resulting in controversy over the effectiveness of combination therapies that use both PTH and an anti-resorptive. In this study, we developed a μCT-based, in vivo dynamic bone histomorphometry technique for rat tibiae, and applied this method to longitudinally track changes in bone resorption and formation as a result of treatment with alendronate (ALN), PTH, or combination therapy of both PTH and ALN (PTH+ALN). Correlations between our μCT-based measures of bone formation and measures of bone formation based on calcein-labeled histology (r=0.72-0.83) confirm the accuracy of this method. Bone remodeling parameters measured through μCT-based in vivo dynamic bone histomorphometry indicate an increased rate of bone formation in rats treated with PTH and PTH+ALN, together with a decrease in bone resorption measures in rats treated with ALN and PTH+ALN. These results were further supported by traditional histology-based measurements, suggesting that PTH was able to induce bone formation while bone resorption was suppressed.
Collapse
Affiliation(s)
- Chantal M J de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Allison R Altman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mary Beth Tribble
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Connie Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Abhishek Chandra
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Vanderoost J, Lenthe GHV. From histology to micro-CT: Measuring and modeling resorption cavities and their relation to bone competence. World J Radiol 2014; 6:643-56. [PMID: 25276308 PMCID: PMC4176782 DOI: 10.4329/wjr.v6.i9.643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/22/2014] [Accepted: 07/25/2014] [Indexed: 02/06/2023] Open
Abstract
The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure. Osteoclasts are one of the three main bone cell types that play a crucial role in the bone remodelling cycle. At the microstructural level, osteoclasts create bone deficits by eroding resorption cavities. Understanding how these cavities impair the mechanical quality of the bone is not only relevant in quantifying the impact of resorption cavities in healthy bone and normal aging, but maybe even more so in quantifying their role in metabolic bone diseases. Metabolic bone diseases and their treatment are both known to affect the bone remodelling cycle; hence, the bone mechanical competence can and will be affected. However, the current knowledge of the precise dimensions of these cavities and their effect on bone competence is rather limited. This is not surprising considering the difficulties in deriving three-dimensional (3D) properties from two-dimensional (2D) histological sections. The measurement difficulties are reflected in the evaluation of how resorption cavities affect bone competence. Although detailed 3D models are generally being used to quantify the mechanical impact of the cavities, the representation of the cavities themselves has basically been limited to simplified shapes and averaged cavity properties. Qualitatively, these models indicate that cavity size and location are important, and that the effect of cavities is larger than can be expected from simple bone loss. In summary, the dimensions of osteoclast resorption cavities were until recently estimated from 2D measures; hence, a careful interpretation of resorption cavity dimensions is necessary. More effort needs to go into correctly quantifying resorption cavities using modern 3D imaging techniques like micro-computed tomography (micro-CT) and synchrotron radiation CT. Osteoclast resorption cavities affect bone competence. The structure-function relationships have been analysed using computational models that, on one hand, provide rather detailed information on trabecular bone structure, but on the other incorporate rather crude assumptions on cavity dimensions. The use of high-resolution representations and parametric descriptions could be potential routes to improve the quantitative fidelity of these models.
Collapse
|
13
|
Matheny JB, Slyfield CR, Tkachenko EV, Lin I, Ehlert KM, Tomlinson RE, Wilson DL, Hernandez CJ. Anti-resorptive agents reduce the size of resorption cavities: a three-dimensional dynamic bone histomorphometry study. Bone 2013; 57:277-83. [PMID: 23988275 PMCID: PMC3818704 DOI: 10.1016/j.bone.2013.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/26/2013] [Accepted: 08/20/2013] [Indexed: 12/11/2022]
Abstract
Alterations in resorption cavities and bone remodeling events during anti-resorptive treatment are believed to contribute to reductions in fracture risk. Here, we examine changes in the size of individual remodeling events associated with treatment with a selective estrogen receptor modulator (raloxifene) or a bisphosphonate (risedronate). Adult female rats (6months of age) were submitted to ovariectomy (n=17) or sham surgery (SHAM, n=5). One month after surgery, the ovariectomized animals were separated into three groups: untreated (OVX, n=5), raloxifene treated (OVX+Ral, n=6) and risedronate treated (OVX+Ris, n=6). At 10months of age, the lumbar vertebrae were submitted to three-dimensional dynamic bone histomorphometry to examine the size (depth, breadth and volume) of individual resorption cavities and formation events. Maximum resorption cavity depth did not differ between the SHAM (23.66±1.87μm, mean±SD) and OVX (22.88±3.69μm) groups but was smaller in the OVX+Ral (14.96±2.30μm) and OVX+Ris (14.94±2.70μm) groups (p<0.01). Anti-resorptive treatment was associated with reductions in the surface area of resorption cavities and the volume occupied by each resorption cavity (p<0.01 each). The surface area and volume of individual formation events (double-labeled events) in the OVX+Ris group were reduced as compared to other groups (p<0.02). Raloxifene treated animals showed similar amounts of bone remodeling (ES/BS and dLS/BS) compared to sham-operated controls but smaller cavity size (depth, breadth and volume). The current study shows that anti-resorptive agents influence the size of resorption cavities and individual remodeling events and that the effect of anti-resorptives on individual remodeling events may not always be directly related to the degree of suppression of bone remodeling.
Collapse
Affiliation(s)
- J B Matheny
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Easley SK, Chang MT, Shindich D, Hernandez CJ, Keaveny TM. Biomechanical effects of simulated resorption cavities in cancellous bone across a wide range of bone volume fractions. J Bone Miner Res 2012; 27:1927-35. [PMID: 22576976 PMCID: PMC3423528 DOI: 10.1002/jbmr.1657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resorption cavities formed during bone remodeling may act as "stress risers" and impair cancellous bone strength, but biomechanical analyses of the effects of stress risers have been limited. To provide further insight, we assessed the theoretical biomechanical effects of virtually-added resorption cavities in cancellous bone specimens spanning a wide range of bone volume fraction (BV/TV = 0.05-0.36) and across different anatomic sites (hip and spine) and species (human and canine). Micro-CT scans of 40 cubes of cancellous bone were converted into nonlinear finite element models (voxel element size ∼ 20 µm) for strength assessment. In each model, uniform trench-like resorption cavities with nominal dimensions 500 µm (length) × 200 µm (width) × 40 µm (depth), were virtually added either at random locations throughout the specimen, or, preferentially at locations of high tissue-level strain. We found that cancellous bone strength (p < 0.0001) and its relation with BV/TV (p < 0.001) were both altered by the virtual addition of the resorption cavities. When the resorption cavities were added at random locations throughout the specimen, the reduction in strength did not depend on BV/TV or anatomic site or species. When the resorption cavities were instead added preferentially at locations of high tissue-level strain, the effect was accentuated and was greatest in low-BV/TV bone. We conclude that, in theory, uniform-sized resorption cavities can reduce cancellous bone strength over the full range of BV/TV and across species, and the effect is larger if the cavities occur at highly strained locations in low-BV/TV bone.
Collapse
Affiliation(s)
- Sarah K. Easley
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Michael T. Chang
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Dmitriy Shindich
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering and Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Tony M. Keaveny
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
15
|
Goff MG, Slyfield CR, Kummari SR, Tkachenko EV, Fischer SE, Yi YH, Jekir MG, Keaveny TM, Hernandez CJ. Three-dimensional characterization of resorption cavity size and location in human vertebral trabecular bone. Bone 2012; 51:28-37. [PMID: 22507299 PMCID: PMC3371169 DOI: 10.1016/j.bone.2012.03.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/25/2012] [Accepted: 03/27/2012] [Indexed: 01/09/2023]
Abstract
The number and size of resorption cavities in cancellous bone are believed to influence rates of bone loss, local tissue stress and strain and potentially whole bone strength. Traditional two-dimensional approaches to measuring resorption cavities in cancellous bone report the percent of the bone surface covered by cavities or osteoclasts, but cannot measure cavity number or size. Here we use three-dimensional imaging (voxel size 0.7×0.7×5.0 μm) to characterize resorption cavity location, number and size in human vertebral cancellous bone from nine elderly donors (7 male, 2 female, ages 47-80 years). Cavities were 30.10 ± 8.56 μm in maximum depth, 80.60 ± 22.23∗10(3) μm(2) in surface area and 614.16 ± 311.93∗10(3) μm(3) in volume (mean ± SD). The average number of cavities per unit tissue volume (N.Cv/TV) was 1.25 ± 0.77 mm(-3). The ratio of maximum cavity depth to local trabecular thickness was 30.46 ± 7.03% and maximum cavity depth was greater on thicker trabeculae (p<0.05, r(2)=0.14). Half of the resorption cavities were located entirely on nodes (the intersection of two or more trabeculae) within the trabecular structure. Cavities that were not entirely on nodes were predominately on plate-like trabeculae oriented in the cranial-caudal (longitudinal) direction. Cavities on plate-like trabeculae were larger in maximum cavity depth, cavity surface area and cavity volume than cavities on rod-like trabeculae (p<0.05). We conclude from these findings that cavity size and location are related to local trabecular microarchitecture.
Collapse
Affiliation(s)
- M G Goff
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Slyfield CR, Tkachenko EV, Fischer SE, Ehlert KM, Yi IH, Jekir MG, O'Brien RG, Keaveny TM, Hernandez CJ. Mechanical failure begins preferentially near resorption cavities in human vertebral cancellous bone under compression. Bone 2012; 50:1281-7. [PMID: 22426306 PMCID: PMC3352993 DOI: 10.1016/j.bone.2012.02.636] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 02/04/2012] [Accepted: 02/28/2012] [Indexed: 01/09/2023]
Abstract
The amount of bone turnover in the body has been implicated as a factor that can influence fracture risk and bone strength. Here we test the idea that remodeling cavities promote local tissue failure by determining if microscopic tissue damage (microdamage) caused by controlled loading in vitro is more likely to form near resorption cavities. Specimens of human vertebral cancellous bone (L4, 7 male and 2 female, age 70±10, mean±SD) were loaded in compression to the yield point, stained for microscopic tissue damage and submitted to three-dimensional fluorescent imaging using serial milling (image voxel size 0.7×0.7×5.0 μm). We found the resulting damage volume per bone volume (DV/BV) was correlated with percent eroded surface (p<0.01, r(2)=0.65), demonstrating that whole specimen measures of resorption cavities and microdamage are related. Locations of microdamage were more than two times as likely to have a neighboring resorption cavity than randomly selected sites without microdamage (relative risk 2.39, 95% confidence interval of relative risk: 2.09-2.73), indicating a spatial association between resorption cavities and microdamage at the local level. Individual microdamage sites were 48,700 (40,100; 62,700) μm(3) in size (median, 25th and 75th percentiles). That microdamage was associated with resorption cavities when measured at the whole specimen level as well as at the local level provides strong evidence that resorption cavities play a role in mechanical failure processes of cancellous bone and therefore have the potential to influence resistance to clinical fracture.
Collapse
Affiliation(s)
- C R Slyfield
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, Ensrud KE, Cummings SR, Orwoll E, Black DM, Keaveny TM. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res 2012; 27:808-16. [PMID: 22190331 PMCID: PMC3510751 DOI: 10.1002/jbmr.1539] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Vertebral strength, as estimated by finite element analysis of computed tomography (CT) scans, has not yet been compared against areal bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) for prospectively assessing the risk of new clinical vertebral fractures. To do so, we conducted a case-cohort analysis of 306 men aged 65 years and older, which included 63 men who developed new clinically-identified vertebral fractures and 243 men who did not, all observed over an average of 6.5 years. Nonlinear finite element analysis was performed on the baseline CT scans, blinded to fracture status, to estimate L1 vertebral compressive strength and a load-to-strength ratio. Volumetric BMD by quantitative CT and areal BMD by DXA were also evaluated. We found that, for the risk of new clinical vertebral fracture, the age-adjusted hazard ratio per standard deviation change for areal BMD (3.2; 95% confidence interval [CI], 2.0-5.2) was significantly lower (p < 0.005) than for strength (7.2; 95% CI, 3.6-14.1), numerically lower than for volumetric BMD (5.7; 95% CI, 3.1-10.3), and similar for the load-to-strength ratio (3.0; 95% CI, 2.1-4.3). After also adjusting for race, body mass index (BMI), clinical center, and areal BMD, all these hazard ratios remained highly statistically significant, particularly those for strength (8.5; 95% CI, 3.6-20.1) and volumetric BMD (9.4; 95% CI, 4.1-21.6). The area-under-the-curve for areal BMD (AUC = 0.76) was significantly lower than for strength (AUC = 0.83, p = 0.02), volumetric BMD (AUC = 0.82, p = 0.05), and the load-to-strength ratio (AUC = 0.82, p = 0.05). We conclude that, compared to areal BMD by DXA, vertebral compressive strength and volumetric BMD consistently improved vertebral fracture risk assessment in this cohort of elderly men.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Mechanical Engineering, University of California, Berkeley, CA
| | - Arnav Sanyal
- Department of Mechanical Engineering, University of California, Berkeley, CA
| | - Peggy M. Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center, San Francisco, CA
| | - Lisa Palermo
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Michael Jekir
- Department of Mechanical Engineering, University of California, Berkeley, CA
| | - John Christensen
- Department of Mechanical Engineering, University of California, Berkeley, CA
| | - Kristine E. Ensrud
- Veteran’s Affairs Medical Center and University of Minnesota, Minneapolis, MN
| | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center, San Francisco, CA
| | - Eric Orwoll
- Bone and Mineral Unit, Oregon Health & Science University, Portland, OR
| | - Dennis M. Black
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | | | - Tony M. Keaveny
- Department of Mechanical Engineering, University of California, Berkeley, CA
- Department of Bioengineering, University of California, Berkeley, CA
| |
Collapse
|
18
|
Slyfield CR, Tkachenko EV, Wilson DL, Hernandez CJ. Three-dimensional dynamic bone histomorphometry. J Bone Miner Res 2012; 27:486-95. [PMID: 22028195 PMCID: PMC3288521 DOI: 10.1002/jbmr.553] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dynamic bone histomorphometry is the standard method for measuring bone remodeling at the level of individual events. Although dynamic bone histomorphometry is an invaluable tool for understanding osteoporosis and other metabolic bone diseases, the technique's two-dimensional nature requires the use of stereology and prevents measures of individual remodeling event number and size. Here, we used a novel three-dimensional fluorescence imaging technique to achieve measures of individual resorption cavities and formation events. We performed this three-dimensional histomorphometry approach using a common model of postmenopausal osteoporosis, the ovariectomized rat. The three-dimensional images demonstrated the spatial relationship between resorption cavities and formation events consistent with the hemiosteonal model of cancellous bone remodeling. Established ovariectomy was associated with significant increases in the number of resorption cavities per unit bone surface (2.38 ± 0.24 mm⁻² sham surgery versus 3.86 ± 0.35 mm⁻² bilateral ovariectomy [OVX], mean ± SD, p < 0.05) and total volume occupied by cavities per unit bone volume (0.38% ± 0.06% sham versus 1.12% ± 0.18% OVX, p < 0.001), but there was no difference in surface area per resorption cavity, maximum cavity depth, or cavity volume. In addition, we found that established ovariectomy is associated with increased size of bone formation events because of the merging of formation events (23,700 ± 6,890 µm² sham verusus 33,300 ± 7,950 µm² OVX). No differences in mineral apposition rate (determined in 3D) were associated with established ovariectomy. That established estrogen depletion is associated with increased number of remodeling events with only subtle changes in remodeling event size suggests that circulating estrogens may have their primary effect on the origination of new basic multicellular units with relatively little effect on the progression and termination of active remodeling events.
Collapse
Affiliation(s)
- Craig R Slyfield
- Biomedical Mechanics Laboratories, Sibley School of Mechanical and Aerospace Engineering and Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
19
|
Allen MR, Erickson AM, Wang X, Burr DB, Martin RB, Hazelwood SJ. Morphological assessment of basic multicellular unit resorption parameters in dogs shows additional mechanisms of bisphosphonate effects on bone. Calcif Tissue Int 2010; 86:67-71. [PMID: 19953232 PMCID: PMC2885966 DOI: 10.1007/s00223-009-9315-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 10/25/2009] [Indexed: 01/09/2023]
Abstract
Bisphosphonates (BPs) slow bone loss by reducing initiation of new basic multicellular units (BMUs). Whether or not BPs simply prevent osteoclasts from initiating new BMUs that resorb bone or also reduce the amount of bone they resorb at the BMU level is not clear. The goal of this study was to determine the effects of BPs on three morphological parameters of individual BMUs, resorption depth (Rs.De), area (Rs.Ar), and width (Rs.Wi). After 1 year of treatment with vehicle (VEH), alendronate (ALN; 0.10, 0.20, or 1.00 mg/kg/day), or risedronate (RIS; 0.05, 0.10, or 0.50 mg/kg/day), resorption cavity morphology was assessed in vertebral trabecular bone of beagle dogs by histology. Animals treated with ALN or RIS at the doses representing those used to treat postmenopausal osteoporosis (0.20 and 0.10 mg/kg/day, respectively) had significantly lower Rs.Ar (-27%) and Rs.Wi (-17%), with no difference in Rs.De, compared to VEH-treated controls. Low doses of ALN and RIS did not affect any parameters, whereas higher doses resulted in similar changes to those of the clinical dose. There were no significant differences in the resorption cavity measures between RIS and ALN at any of the dose equivalents. These results highlight the importance of examining parameters beyond erosion depth for assessment of resorption parameters. Furthermore, these results suggest that in addition to the well-known effects of BPs on reducing the number of active BMUs, these drugs also reduce the activity of osteoclasts at the individual BMU level at doses at and above those used clinically for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS-5035, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|