1
|
Giri S, Allen KJH, Prabaharan CB, Ramirez JB, Fiore L, Uppalapati M, Dadachova E. Initial insights into the interaction of antibodies radiolabeled with Lutetium-177 and Actinium-225 with tumor microenvironment in experimental human and canine osteosarcoma. Nucl Med Biol 2024; 134-135:108917. [PMID: 38718557 DOI: 10.1016/j.nucmedbio.2024.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Osteosarcoma (OS) is a prevalent primary bone cancer affecting both humans and canines. This study describes initial insights into the interaction of the human monoclonal antibody IF3 to an insulin-like growth factor 2 receptor (IGF2R) radiolabeled with either alpha-emitting Actinium-225 (225Ac) or beta-emitting Lutetium-177 (177Lu) radionuclides with the OS cells and tumor microenvironment (TME) in experimental human and canine OS. BASIC PROCEDURES SCID mice bearing canine Gracie or human OS-33 OS tumors were treated with 177Lu- or 225Ac-labeled IF3 antibody, sacrificed at 24, 72 or 168 h post-treatment and their tumors were analyzed by immunohistochemistry (IHC) for the presence of OS cells, various elements of TME as well as for the double DNA strand breaks with γH2AX and caspase 3 assays. MAIN FINDINGS IHC revealed a reduction in IGF2R-positive OS cells and OS stem cell populations post therapy with 225Ac- and 177Lu-labeled IF3 antibody. Notably, radiolabeled IF3 antibody effectively diminished pro-tumorigenic M2 macrophages, highlighting its therapeutic promise. The study also unveiled varied responses of natural killer (NK) cells and M1 macrophages, shedding light on the intricate TME interplay. Time-dependent increase in γ-H2AX staining in canine Gracie and human OS-33 tumors treated with [177Lu]Lu-IF3 and [225Ac]Ac-IF3 was observed at 24 and 72 h post-RIT. PRINCIPAL CONCLUSIONS These findings suggest that radiolabeled antibodies offer a hopeful avenue for personalized OS treatment, emphasizing the importance of understanding their impact on the TME and potential synergies with immunotherapy.
Collapse
Affiliation(s)
- Sabeena Giri
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Kevin J H Allen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Chandra Bose Prabaharan
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jonathan Bonet Ramirez
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Luciano Fiore
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
2
|
Wilk SS, Michalak K, Owczarek EP, Winiarczyk S, Zabielska-Koczywąs KA. Proteomic Analyses Reveal the Role of Alpha-2-Macroglobulin in Canine Osteosarcoma Cell Migration. Int J Mol Sci 2024; 25:3989. [PMID: 38612805 PMCID: PMC11011979 DOI: 10.3390/ijms25073989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Canine osteosarcoma (OSA) is an aggressive bone neoplasia with high metastatic potential. Metastasis is the main cause of death associated with OSA, and there is no current treatment available for metastatic disease. Proteomic analyses, including matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI TOF/TOF MS), are widely used to select molecular targets and identify proteins that may play a key role in primary tumours and at various steps of the metastatic cascade. The main aim of this study was to identify proteins differently expressed in canine OSA cell lines with different malignancy phenotypes (OSCA-8 and OSCA-32) compared to canine osteoblasts (CnOb). The intermediate aim of the study was to compare canine OSA cell migration capacity and assess its correlation with the malignancy phenotypes of each cell line. Using MALDI-TOF/TOF MS analyses, we identified eight proteins that were significantly differentially expressed (p ≤ 0.05) in canine OSA cell lines compared to CnOb: cilia- and flagella-associated protein 298 (CFAP298), general transcription factor II-I (GTF2I), mirror-image polydactyly gene 1 protein (MIPOL1), alpha-2 macroglobulin (A2M), phosphoglycerate mutase 1 (PGAM1), ubiquitin (UB2L6), ectodysplasin-A receptor-associated adapter protein (EDARADD), and leucine-rich-repeat-containing protein 72 (LRRC72). Using the Simple Western technique, we confirmed high A2M expression in CnOb compared to OSCA-8 and OSCA-32 cell lines (with intermediate and low A2M expression, respectively). Then, we confirmed the role of A2M in cancer cell migration by demonstrating significantly inhibited OSA cell migration by treatment with A2M (both at 10 and 30 mM concentrations after 12 and 24 h) in a wound-healing assay. This study may be the first report indicating A2M's role in OSA cell metastasis; however, further in vitro and in vivo studies are needed to confirm its possible role as an anti-metastatic agent in this malignancy.
Collapse
Affiliation(s)
- Sylwia S. Wilk
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-787 Warsaw, Poland; (S.S.W.); (E.P.O.)
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland; (K.M.); (S.W.)
| | - Ewelina P. Owczarek
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-787 Warsaw, Poland; (S.S.W.); (E.P.O.)
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena, 02-109 Warsaw, Poland
| | - Stanisław Winiarczyk
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland; (K.M.); (S.W.)
- National Veterinary Research Institute, Aleja Partyzantów 5, 24-100 Puławy, Poland
| | - Katarzyna A. Zabielska-Koczywąs
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-787 Warsaw, Poland; (S.S.W.); (E.P.O.)
| |
Collapse
|
3
|
Zucko D, Boris-Lawrie K. Blocking tri-methylguanosine synthase 1 (TGS1) stops anchorage-independent growth of canine sarcomas. Cancer Gene Ther 2023; 30:1274-1284. [PMID: 37386121 PMCID: PMC10501901 DOI: 10.1038/s41417-023-00636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
Tri methylguanosine synthase 1 (TGS1) is the enzyme that hyper methylates the hallmark 7-methyl-guanosine cap (m7G-cap) appended to the transcription start site of RNAs. The m7G-cap and the eIF4E-cap binding protein guide canonical cap-dependent translation of mRNAs, whereas hyper methylated cap, m2,2,7G-cap (TMG) lacks adequate eIF4E affinity and licenses entry into a different translation initiation pathway. The potential role for TGS1 and TMG-capped mRNA in neoplastic growth is unknown. Canine sarcoma has high translational value to the human disease. Cumulative downregulation of protein synthesis in osteosarcoma OSCA-40 was achieved cooperatively by siTGS1 and Torin-1. Torin-1 inhibited the proliferation of three canine sarcoma explants in a reversible manner that was eliminated by siRNA-downregulation of TGS1. TGS1 failure prevented the anchorage-independent growth of osteo- and hemangio-sarcomas and curtailed sarcoma recovery from mTOR inhibition. RNA immunoprecipitation studies identified TMG-capped mRNAs encoding TGS1, DHX9 and JUND. TMG-tgs1 transcripts were downregulated by leptomycin B and TGS1 failure was compensated by eIF4E mRNP-dependent tgs1 mRNA translation affected by mTOR. The evidence documents TMG-capped mRNAs are hallmarks of the investigated neoplasms and synergy between TGS1 specialized translation and canonical translation is involved in sarcoma recovery from mTOR inhibition. Therapeutic targeting of TGS1 activity in cancer is ripe for future exploration.
Collapse
Affiliation(s)
- Dora Zucko
- University of Minnesota - Twin Cities, Department of Veterinary and Biomedical Sciences, Saint Paul, MN, 55108, USA
| | - Kathleen Boris-Lawrie
- University of Minnesota - Twin Cities, Department of Veterinary and Biomedical Sciences, Saint Paul, MN, 55108, USA.
| |
Collapse
|
4
|
Sarver AL, Mills LJ, Makielski KM, Temiz NA, Wang J, Spector LG, Subramanian S, Modiano JF. Distinct mechanisms of PTEN inactivation in dogs and humans highlight convergent molecular events that drive cell division in the pathogenesis of osteosarcoma. Cancer Genet 2023; 276-277:1-11. [PMID: 37267683 DOI: 10.1016/j.cancergen.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/02/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
A hallmark of osteosarcoma in both human and canine tumors is somatic fragmentation and rearrangement of chromosome structure which leads to recurrent increases and decreases in DNA copy number. The PTEN gene has been implicated as an important tumor suppressor in osteosarcoma via forward genetic screens. Here, we analyzed copy number changes, promoter methylation and transcriptomes to better understand the role of PTEN in canine and human osteosarcoma. Reduction in PTEN copy number was observed in 23 of 95 (25%) of the canine tumors examined leading to corresponding decreases in PTEN transcript levels from RNA-Seq samples. Unexpectedly, canine tumors with an intact PTEN locus had higher levels of PTEN transcripts than human tumors. This variation in transcript abundance was used to evaluate the role of PTEN in osteosarcoma biology. Decreased PTEN copy number and transcript level was observed in - and likely an important driver of - increases in cell cycle transcripts in four independent canine transcriptional datasets. In human osteosarcoma, homozygous copy number loss was not observed, instead increased methylation of the PTEN promoter was associated with increased cell cycle transcripts. Somatic modification of PTEN, either by homozygous deletion in dogs or by promoter methylation in humans, is clinically relevant to osteosarcoma, because the cell cycle related transcripts are associated with patient outcomes. The PTEN gene is part of a syntenic rearrangement unique to the canine genome, making it susceptible to somatic loss of both copies of distal chromosome 26 which also includes the FAS death receptor. SIGNIFICANCE STATEMENT: PTEN function is abrogated by different mechanisms in canine and human osteosarcoma tumors leading to uncontrolled cell cycling. Somatic loss of this canine specific syntenic region may help explain why the canine genome appears to be uniquely susceptible to osteosarcoma. Syntenic arrangement, in the context of copy number change, may lead to synergistic interactions that in turn modify species specific cancer risk. Comparative models of tumorigenesis may utilize different driver mechanisms.
Collapse
Affiliation(s)
- Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA.
| | - Lauren J Mills
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kelly M Makielski
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jinhua Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Logan G Spector
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Surgery, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Jaime F Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Center for Engineering and Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Małek A, Wojnicki M, Borkowska A, Wójcik M, Ziółek G, Lechowski R, Zabielska-Koczywąs K. Gold Nanoparticles Inhibit Extravasation of Canine Osteosarcoma Cells in the Ex Ovo Chicken Embryo Chorioallantoic Membrane Model. Int J Mol Sci 2023; 24:9858. [PMID: 37373007 DOI: 10.3390/ijms24129858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Canine osteosarcoma (OS) is an aggressive bone tumor with high metastatic potential and poor prognosis, mainly due to metastatic disease. Nanomedicine-based agents can be used to improve both primary and metastatic tumor treatment. Recently, gold nanoparticles were shown to inhibit different stages of the metastatic cascade in various human cancers. Here, we assessed the potential inhibitory effect of the glutathione-stabilized gold nanoparticles (Au-GSH NPs) on canine OS cells extravasation, utilizing the ex ovo chick embryo chorioallantoic membrane (CAM) model. The calculation of cells extravasation rates was performed using wide-field fluorescent microscopy. Transmission electron microscopy and Microwave Plasma Atomic Emission Spectroscopy revealed Au-GSH NPs absorption by OS cells. We demonstrated that Au-GSH NPs are non-toxic and significantly inhibit canine OS cells extravasation rates, regardless of their aggressiveness phenotype. The results indicate that Au-GSH NPs can act as a possible anti metastatic agent for OS treatment. Furthermore, the implemented CAM model may be used as a valuable preclinical platform in veterinary medicine, such as testing anti-metastatic agents.
Collapse
Affiliation(s)
- Anna Małek
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Aleksandra Borkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Faculty of Pharmacy, The Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Michał Wójcik
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Gabriela Ziółek
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Roman Lechowski
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Zabielska-Koczywąs
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| |
Collapse
|
6
|
Su C, Himes JE, Kirsch DG. Relationship between the tumor microenvironment and the efficacy of the combination of radiotherapy and immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:201-232. [PMID: 37438018 DOI: 10.1016/bs.ircmb.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Activating and recruiting the immune system is critical for successful cancer treatment. Since the discovery of immune checkpoint inhibitors, immunotherapy has become the standard of care for many types of cancers. However, many patients fail to respond to immunotherapy. Further research is needed to understand the mechanisms of resistance and adjuvant therapies that can help sensitize patients to immunotherapies. Here, we will discuss how radiotherapy can change the tumor microenvironment and work synergistically with immunotherapy. We will examine different pre-clinical models focusing on their limitations and their unique advantages in studying the efficacy of treatments and the tumor microenvironment. We will also describe emerging findings from clinical trials testing the combination of immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- Chang Su
- Molecular Cancer Biology Program and Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, United States
| | - Jonathon E Himes
- Molecular Cancer Biology Program and Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, United States
| | - David G Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, United States; Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
7
|
Pinto C, Aluai-Cunha C, Santos A. The human and animals' malignant melanoma: comparative tumor models and the role of microbiome in dogs and humans. Melanoma Res 2023; 33:87-103. [PMID: 36662668 DOI: 10.1097/cmr.0000000000000880] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Currently, the most progressively occurring incident cancer is melanoma. The mouse is the most popular model in human melanoma research given its various benefits as a laboratory animal. Nevertheless, unlike humans, mice do not develop melanoma spontaneously, so they need to be genetically manipulated. In opposition, there are several reports of other animals, ranging from wild to domesticated animals, that spontaneously develop melanoma and that have cancer pathways that are similar to those of humans. The influence of the gut microbiome on health and disease is being the aim of many recent studies. It has been proven that the microbiome is a determinant of the host's immune status and disease prevention. In human medicine, there is increasing evidence that changes in the microbiome influences malignant melanoma progression and response to therapy. There are several similarities between some animals and human melanoma, especially between canine and human oral malignant melanoma as well as between the gut microbiome of both species. However, microbiome studies are scarce in veterinary medicine, especially in the oncology field. Future studies need to address the relevance of gut and tissue microbiome for canine malignant melanoma development, which results will certainly benefit both species in the context of translational medicine.
Collapse
Affiliation(s)
- Catarina Pinto
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
| | - Catarina Aluai-Cunha
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
| | - Andreia Santos
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
- Animal Science and Study Centre (CECA), Food and Agragrian Sciences and Technologies Institute (ICETA), Apartado, Porto, Portugal
| |
Collapse
|
8
|
A novel molecular classification method for osteosarcoma based on tumor cell differentiation trajectories. Bone Res 2023; 11:1. [PMID: 36588108 PMCID: PMC9806110 DOI: 10.1038/s41413-022-00233-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 01/03/2023] Open
Abstract
Subclassification of tumors based on molecular features may facilitate therapeutic choice and increase the response rate of cancer patients. However, the highly complex cell origin involved in osteosarcoma (OS) limits the utility of traditional bulk RNA sequencing for OS subclassification. Single-cell RNA sequencing (scRNA-seq) holds great promise for identifying cell heterogeneity. However, this technique has rarely been used in the study of tumor subclassification. By analyzing scRNA-seq data for six conventional OS and nine cancellous bone (CB) samples, we identified 29 clusters in OS and CB samples and discovered three differentiation trajectories from the cancer stem cell (CSC)-like subset, which allowed us to classify OS samples into three groups. The classification model was further examined using the TARGET dataset. Each subgroup of OS had different prognoses and possible drug sensitivities, and OS cells in the three differentiation branches showed distinct interactions with other clusters in the OS microenvironment. In addition, we verified the classification model through IHC staining in 138 OS samples, revealing a worse prognosis for Group B patients. Furthermore, we describe the novel transcriptional program of CSCs and highlight the activation of EZH2 in CSCs of OS. These findings provide a novel subclassification method based on scRNA-seq and shed new light on the molecular features of CSCs in OS and may serve as valuable references for precision treatment for and therapeutic development in OS.
Collapse
|
9
|
Megquier K, Turner-Maier J, Morrill K, Li X, Johnson J, Karlsson EK, London CA, Gardner HL. The genomic landscape of canine osteosarcoma cell lines reveals conserved structural complexity and pathway alterations. PLoS One 2022; 17:e0274383. [PMID: 36099278 PMCID: PMC9469990 DOI: 10.1371/journal.pone.0274383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/25/2022] [Indexed: 01/09/2023] Open
Abstract
The characterization of immortalized canine osteosarcoma (OS) cell lines used for research has historically been based on phenotypic features such as cellular morphology and expression of bone specific markers. With the increasing use of these cell lines to investigate novel therapeutic approaches prior to in vivo translation, a much more detailed understanding regarding the genomic landscape of these lines is required to ensure accurate interpretation of findings. Here we report the first whole genome characterization of eight canine OS cell lines, including single nucleotide variants, copy number variants and other structural variants. Many alterations previously characterized in primary canine OS tissue were observed in these cell lines, including TP53 mutations, MYC copy number gains, loss of CDKN2A, PTEN, DLG2, MAGI2, and RB1 and structural variants involving SETD2, DLG2 and DMD. These data provide a new framework for understanding how best to incorporate in vitro findings generated using these cell lines into the design of future clinical studies involving dogs with spontaneous OS.
Collapse
Affiliation(s)
- Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jason Turner-Maier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kathleen Morrill
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Xue Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Cheryl A. London
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Heather L. Gardner
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
10
|
Nance RL, Sajib AM, Smith BF. Canine models of human cancer: Bridging the gap to improve precision medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:67-99. [PMID: 35595353 DOI: 10.1016/bs.pmbts.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dogs are remarkable, adaptable, and dependable creatures that have evolved alongside humans while contributing tremendously to our survival. Our canine companions share many similarities to human disease, particularly cancer. With the advancement of next-generation sequencing technology, we are beginning to unravel the complexity of cancer and the vast intra- and intertumoral heterogeneity that makes treatment difficult. Consequently, precision medicine has emerged as a therapeutic approach to improve patient survival by evaluating and classifying an individual tumor's molecular profile. Many canine and human cancers share striking similarities in terms of genotypic, phenotypic, clinical, and histological presentations. Dogs are superior to rodent models of cancer because they are a naturally heterogeneous population in which tumors occur spontaneously, are exposed to similar environmental conditions, and show more similarities in key modulators of tumorigenesis and clinical response, including the immune system, drug metabolism, and gut microbiome. In this chapter, we will explore various canine models of human cancers and emphasize the dog's critical role in advancing precision medicine and improving the survival of both man and man's best friend.
Collapse
Affiliation(s)
- Rebecca L Nance
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, United States; Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Abdul Mohin Sajib
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Bruce F Smith
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, United States; Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States.
| |
Collapse
|
11
|
Mills LJ, Scott MC, Shah P, Cunanan AR, Deshpande A, Auch B, Curtin B, Beckman KB, Spector LG, Sarver AL, Subramanian S, Richmond TA, Modiano JF. Comparative analysis of genome-wide DNA methylation identifies patterns that associate with conserved transcriptional programs in osteosarcoma. Bone 2022; 158:115716. [PMID: 33127576 PMCID: PMC8076342 DOI: 10.1016/j.bone.2020.115716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma is an aggressive tumor of the bone that primarily affects young adults and adolescents. Osteosarcoma is characterized by genomic chaos and heterogeneity. While inactivation of tumor protein p53 (TP53) is nearly universal other high frequency mutations or structural variations have not been identified. Despite this genomic heterogeneity, key conserved transcriptional programs associated with survival have been identified across human, canine and induced murine osteosarcoma. The epigenomic landscape, including DNA methylation, plays a key role in establishing transcriptional programs in all cell types. The role of epigenetic dysregulation has been studied in a variety of cancers but has yet to be explored at scale in osteosarcoma. Here we examined genome-wide DNA methylation patterns in 24 human and 44 canine osteosarcoma samples identifying groups of highly correlated DNA methylation marks in human and canine osteosarcoma samples. We also link specific DNA methylation patterns to key transcriptional programs in both human and canine osteosarcoma. Building on previous work, we built a DNA methylation-based measure for the presence and abundance of various immune cell types in osteosarcoma. Finally, we determined that the underlying state of the tumor, and not changes in cell composition, were the main driver of differences in DNA methylation across the human and canine samples. SIGNIFICANCE: Genome wide comparison of DNA methylation patterns in osteosarcoma across two species lays the ground work for the exploration of DNA methylation programs that help establish conserved transcriptional programs in the context of varied mutational landscapes.
Collapse
Affiliation(s)
- Lauren J Mills
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Childhood Cancer Genomics Group, Department of Pediatric, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Milcah C Scott
- Department of Microbiology and Immunology, Center for Immunology, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pankti Shah
- Roche Sequencing Solution, Pleasanton, CA, USA
| | | | | | - Benjamin Auch
- University of Minnesota Genomics Center, Minneapolis, MN 55455, USA
| | - Bridget Curtin
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Logan G Spector
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Childhood Cancer Genomics Group, Department of Pediatric, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul 55108, USA; Institute of Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jaime F Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul 55108, USA; Institute of Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, UDS Institute for Engineering in Medicine, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Beck J, Ren L, Huang S, Berger E, Bardales K, Mannheimer J, Mazcko C, LeBlanc A. Canine and murine models of osteosarcoma. Vet Pathol 2022; 59:399-414. [PMID: 35341404 PMCID: PMC9290378 DOI: 10.1177/03009858221083038] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children. Despite efforts to develop and implement new therapies, patient outcomes have not measurably improved since the 1980s. Metastasis continues to be the main source of patient mortality, with 30% of cases developing metastatic disease within 5 years of diagnosis. Research models are critical in the advancement of cancer research and include a variety of species. For example, xenograft and patient-derived xenograft (PDX) mouse models provide opportunities to study human tumor cells in vivo while transgenic models have offered significant insight into the molecular mechanisms underlying OS development. A growing recognition of naturally occurring cancers in companion species has led to new insights into how veterinary patients can contribute to studies of cancer biology and drug development. The study of canine cases, including the use of diagnostic tissue archives and clinical trials, offers a potential mechanism to further canine and human cancer research. Advancement in the field of OS research requires continued development and appropriate use of animal models. In this review, animal models of OS are described with a focus on the mouse and tumor-bearing pet dog as parallel and complementary models of human OS.
Collapse
Affiliation(s)
| | - Ling Ren
- National Cancer Institute, Bethesda, MD
| | | | | | - Kathleen Bardales
- National Cancer Institute, Bethesda, MD
- University of Pennsylvania, Philadelphia, PA
| | | | | | | |
Collapse
|
13
|
Bulla SC, Badial PR, Bulla C. Canine Cancer Cells Activate Platelets via the Platelet P2Y12 Receptor. J Comp Pathol 2022; 192:41-49. [PMID: 35305713 DOI: 10.1016/j.jcpa.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/09/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
In addition to their well-known functions in haemostasis, anucleated platelets have a critical role in cancer biology. Many human and non-human cancer types can directly interact with and activate platelets, promoting cancer malignancy and progression. Although naturally occurring canine neoplastic diseases mimic the biologically complex conditions of human cancers more closely than laboratory-bred mice, studies evaluating the relationship between cancer cells and platelets in dogs are scarce, and the effects of tumour cells on platelets in these animals are unknown. To evaluate whether cancer cells could activate canine platelets, we assessed the response of platelet-rich plasma to cultured canine cancer cells using light transmittance aggregometry. Similar to human and murine cancer cell research, we demonstrated that both canine osteosarcoma and mammary carcinoma cells activated canine platelets in vitro, resulting in platelet aggregation. The degree of aggregation was most pronounced at a cancer cell to platelet ratio of 1:200 for most cell lines. Mechanistic studies revealed that the platelet adenosine diphosphate (ADP) receptor P2Y12 is essential for canine platelet aggregation induced by canine cancer. ADP receptor blockage on platelets inhibited >50% of cancer cell-induced maximum platelet aggregation in all cell lines evaluated. As in other species, our results suggest that canine cancers may activate canine platelets in vivo. This mechanism is likely relevant for the biology and progression of cancer in the dog.
Collapse
Affiliation(s)
- Sandra C Bulla
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Peres R Badial
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Camilo Bulla
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA.
| |
Collapse
|
14
|
Makielski KM, Donnelly AJ, Khammanivong A, Scott MC, Ortiz AR, Galvan DC, Tomiyasu H, Amaya C, Ward KA, Montoya A, Garbe JR, Mills LJ, Cutter GR, Fenger JM, Kisseberth WC, O'Brien TD, Weigel BJ, Spector LG, Bryan BA, Subramanian S, Modiano JF. Development of an exosomal gene signature to detect residual disease in dogs with osteosarcoma using a novel xenograft platform and machine learning. J Transl Med 2021; 101:1585-1596. [PMID: 34489559 DOI: 10.1038/s41374-021-00655-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 01/07/2023] Open
Abstract
Osteosarcoma has a guarded prognosis. A major hurdle in developing more effective osteosarcoma therapies is the lack of disease-specific biomarkers to predict risk, prognosis, or therapeutic response. Exosomes are secreted extracellular microvesicles emerging as powerful diagnostic tools. However, their clinical application is precluded by challenges in identifying disease-associated cargo from the vastly larger background of normal exosome cargo. We developed a method using canine osteosarcoma in mouse xenografts to distinguish tumor-derived from host-response exosomal messenger RNAs (mRNAs). The model allows for the identification of canine osteosarcoma-specific gene signatures by RNA sequencing and a species-differentiating bioinformatics pipeline. An osteosarcoma-associated signature consisting of five gene transcripts (SKA2, NEU1, PAF1, PSMG2, and NOB1) was validated in dogs with spontaneous osteosarcoma by real-time quantitative reverse transcription PCR (qRT-PCR), while a machine learning model assigned dogs into healthy or disease groups. Serum/plasma exosomes were isolated from 53 dogs in distinct clinical groups ("healthy", "osteosarcoma", "other bone tumor", or "non-neoplastic disease"). Pre-treatment samples from osteosarcoma cases were used as the training set, and a validation set from post-treatment samples was used for testing, classifying as "osteosarcoma detected" or "osteosarcoma-NOT detected". Dogs in a validation set whose post-treatment samples were classified as "osteosarcoma-NOT detected" had longer remissions, up to 15 months after treatment. In conclusion, we identified a gene signature predictive of molecular remissions with potential applications in the early detection and minimal residual disease settings. These results provide proof of concept for our discovery platform and its utilization in future studies to inform cancer risk, diagnosis, prognosis, and therapeutic response.
Collapse
Affiliation(s)
- Kelly M Makielski
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA.
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| | - Alicia J Donnelly
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Ali Khammanivong
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Milcah C Scott
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota, Microbiology, Immunology, and Cancer Biology Graduate Program, Minneapolis, MN, USA
| | - Andrea R Ortiz
- Texas Tech Health Sciences Center, El Paso, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Dana C Galvan
- Texas Tech Health Sciences Center, El Paso, TX, USA
- Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| | - Hirotaka Tomiyasu
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Kristin A Ward
- Texas Tech Health Sciences Center, El Paso, TX, USA
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Alexa Montoya
- Texas Tech Health Sciences Center, El Paso, TX, USA
- Department of Biology, University of Texas, El Paso, TX, USA
| | - John R Garbe
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN, USA
| | - Lauren J Mills
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Gary R Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joelle M Fenger
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Ethos Discovery, San Diego, CA, USA
| | - William C Kisseberth
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Timothy D O'Brien
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Brenda J Weigel
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Logan G Spector
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Brad A Bryan
- Texas Tech Health Sciences Center, El Paso, TX, USA
| | - Subbaya Subramanian
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jaime F Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
15
|
Tawa GJ, Braisted J, Gerhold D, Grewal G, Mazcko C, Breen M, Sittampalam G, LeBlanc AK. Transcriptomic profiling in canines and humans reveals cancer specific gene modules and biological mechanisms common to both species. PLoS Comput Biol 2021; 17:e1009450. [PMID: 34570764 PMCID: PMC8523068 DOI: 10.1371/journal.pcbi.1009450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 10/18/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022] Open
Abstract
Understanding relationships between spontaneous cancer in companion (pet) canines and humans can facilitate biomarker and drug development in both species. Towards this end we developed an experimental-bioinformatic protocol that analyzes canine transcriptomics data in the context of existing human data to evaluate comparative relevance of canine to human cancer. We used this protocol to characterize five canine cancers: melanoma, osteosarcoma, pulmonary carcinoma, B- and T-cell lymphoma, in 60 dogs. We applied an unsupervised, iterative clustering method that yielded five co-expression modules and found that each cancer exhibited a unique module expression profile. We constructed cancer models based on the co-expression modules and used the models to successfully classify the canine data. These canine-derived models also successfully classified human tumors representing the same cancers, indicating shared cancer biology between canines and humans. Annotation of the module genes identified cancer specific pathways relevant to cells-of-origin and tumor biology. For example, annotations associated with melanin production (PMEL, GPNMB, and BACE2), synthesis of bone material (COL5A2, COL6A3, and COL12A1), synthesis of pulmonary surfactant (CTSH, LPCAT1, and NAPSA), ribosomal proteins (RPL8, RPS7, and RPLP0), and epigenetic regulation (EDEM1, PTK2B, and JAK1) were unique to melanoma, osteosarcoma, pulmonary carcinoma, B- and T-cell lymphoma, respectively. In total, 152 biomarker candidates were selected from highly expressing modules for each cancer type. Many of these biomarker candidates are under-explored as drug discovery targets and warrant further study. The demonstrated transferability of classification models from canines to humans enforces the idea that tumor biology, biomarker targets, and associated therapeutics, discovered in canines, may translate to human medicine.
Collapse
Affiliation(s)
- Gregory J. Tawa
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - John Braisted
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - David Gerhold
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - Gurmit Grewal
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - Christina Mazcko
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Comparative Oncology Program, Bethesda, Maryland, United States of America
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Gurusingham Sittampalam
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - Amy K. LeBlanc
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Comparative Oncology Program, Bethesda, Maryland, United States of America
| |
Collapse
|
16
|
Palma SD, McConnell A, Verganti S, Starkey M. Review on Canine Oral Melanoma: An Undervalued Authentic Genetic Model of Human Oral Melanoma? Vet Pathol 2021; 58:881-889. [PMID: 33685309 DOI: 10.1177/0300985821996658] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oral melanoma (OM) is a highly aggressive tumor of the oral cavity in humans and dogs. Here we review the phenotypic similarities between the disease in these 2 species as the basis for the view that canine OM is a good model for the corresponding human disease. Utility of the "canine model" has likely been hindered by a paucity of information about the extent of the molecular genetic similarities between human and canine OMs. Current knowledge of the somatic alterations that underpin human tumorigenesis and metastatic progression is relatively limited, primarily due to the rarity of the disease in humans and consequent lack of opportunity for large-scale molecular analysis. The molecular genetic comparisons between human and canine OMs that have been completed indicate some overlap between the somatic mutation profiles of canine OMs and a subset of human OMs. However, further comparative studies featuring, in particular, larger numbers of human OMs are required to provide substantive evidence that canine OMs share mechanisms of tumorigenesis with at least a subset of human OMs. Future molecular genetic investigations of both human and canine OMs should investigate how primary tumors develop a metastatic gene expression signature and the genetic and epigenetic alterations specific to metastatic sites. Such studies may identify genetic alterations and pathways specific to the metastatic disease which could be targetable by new drugs.
Collapse
Affiliation(s)
| | | | - Sara Verganti
- 170851Dick White Referrals, Station Farm, Cambridgeshire, UK
| | - Mike Starkey
- 11661Animal Health Trust, Newmarket, Suffolk, UK
| |
Collapse
|
17
|
Mason NJ. Comparative Immunology and Immunotherapy of Canine Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:199-221. [PMID: 32767244 DOI: 10.1007/978-3-030-43085-6_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approximately 800 people are diagnosed with osteosarcoma (OSA) per year in the USA. Although 70% of patients with localized OSA are cured with multiagent chemotherapy and surgical resection, the prognosis for patients with metastatic or relapsed disease is guarded. The small number of patients diagnosed annually contributes to an incomplete understanding of disease pathogenesis, and challenges in performing appropriately powered clinical trials and detecting correlative biomarkers of response. While mouse models of OSA are becoming increasingly sophisticated, they generally fail to accurately recapitulate tumor heterogeneity, tumor microenvironment (TME), systemic immune dysfunction, and the clinical features of tumor recurrence, metastases, and chemoresistance, which influence outcome. Pet dogs spontaneously develop OSA with an incidence that is 30-50 times higher than humans. Canine OSA parallels the human disease in its clinical presentation, biological behavior, genetic complexity, and therapeutic management. However, despite therapy, most dogs die from metastatic disease within 1 year of diagnosis. Since OSA occurs in immune-competent dogs, immune factors that sculpt tumor immunogenicity and influence responses to immune modulation are in effect. In both species, immune modulation has shown beneficial effects on patient outcome and work is now underway to identify the most effective immunotherapies, combination of immunotherapies, and correlative biomarkers that will further improve clinical response. In this chapter, the immune landscape of canine OSA and the immunotherapeutic strategies used to modulate antitumor immunity in dogs with the disease will be reviewed. From this immunological viewpoint, the value of employing dogs with spontaneous OSA to accelerate and inform the translation of immunotherapies into the human clinic will be underscored.
Collapse
Affiliation(s)
- Nicola J Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Abstract
Comparative oncology clinical trials play an important and growing role in cancer research and drug development efforts. These trials, typically conducted in companion (pet) dogs, allow assessment of novel anticancer agents and combination therapies in a veterinary clinical setting that supports serial biologic sample collections and exploration of dose, schedule and corresponding pharmacokinetic/pharmacodynamic relationships. Further, an intact immune system and natural co-evolution of tumour and microenvironment support exploration of novel immunotherapeutic strategies. Substantial improvements in our collective understanding of the molecular landscape of canine cancers have occurred in the past 10 years, facilitating translational research and supporting the inclusion of comparative studies in drug development. The value of the approach is demonstrated in various clinical trial settings, including single-agent or combination response rates, inhibition of metastatic progression and randomized comparison of multiple agents in a head-to-head fashion. Such comparative oncology studies have been purposefully included in the developmental plan for several US FDA-approved and up-and-coming anticancer drugs. Challenges for this field include keeping pace with technology and data dissemination/harmonization, improving annotation of the canine genome and immune system, and generation of canine-specific validated reagents to support integration of correlative biology within clinical trial efforts.
Collapse
Affiliation(s)
- Amy K LeBlanc
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Christina N Mazcko
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Boyé P, David E, Serres F, Pascal Q, Floch F, Geeraert K, Coste V, Marescaux L, Cagnol S, Goujon JY, Egorov M, Le Bot R, Tierny D. Phase I dose escalation study of 12b80 (hydroxybisphosphonate linked doxorubicin) in naturally occurring osteosarcoma. Oncotarget 2020; 11:4281-4292. [PMID: 33245733 PMCID: PMC7679038 DOI: 10.18632/oncotarget.27801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose: 12b80 combines doxorubicin bound to a bone targeting hydroxybisphosphonate vector using a pH-sensitive linker, designed to specifically trigger doxorubicin release in an acidic bone tumor microenvironment. This phase I study aimed to determine the safety and toxicity profiles of 12b80 in dogs with naturally occurring osteosarcoma, with the objective to translate findings from dogs to humans. Experimental Design: Ten client-owned dogs with osteosarcoma were enrolled in an accelerated dose-titration design followed by 3 + 3 design. Dogs received three cycles of 12b80 intravenous injection at 4 mg/kg (n = 1), 6 mg/kg (n = 2), 8 mg/kg (n = 3), and 10 mg/kg (n = 4). Endpoints included safety, tolerability, maximum tolerated dose (MTD), and dose-limiting toxicity (DLT). Results: The MTD of 12b80 was 8 mg/kg (i.e., equivalent dose of doxorubicin of 110 mg/m2, range: 93–126). Most adverse events included grade ≤ 2 gastrointestinal disorders and hypersensitivity reactions. No hematological or cardiac DLT were observed at any dose tested. Conclusions: In dogs, 12b80 is overall well tolerated and expends the MTD of doxorubicin up to four times the standard dose of 30 mg/m2. These results demonstrate the potential therapeutic benefit of 12b80 in canine and human osteosarcoma.
Collapse
Affiliation(s)
- Pierre Boyé
- Oncovet Clinical Research (OCR), Parc Eurasanté, Loos, France.,Oncovet, Villeneuve d'Ascq, France.,Department of Small Animal Teaching Hospital, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
| | | | - François Serres
- Oncovet Clinical Research (OCR), Parc Eurasanté, Loos, France.,Oncovet, Villeneuve d'Ascq, France
| | - Quentin Pascal
- Oncovet Clinical Research (OCR), Parc Eurasanté, Loos, France
| | | | | | - Virginie Coste
- Oncovet Clinical Research (OCR), Parc Eurasanté, Loos, France
| | | | | | | | | | | | - Dominique Tierny
- Oncovet Clinical Research (OCR), Parc Eurasanté, Loos, France.,Oncovet, Villeneuve d'Ascq, France
| |
Collapse
|
20
|
Atherton MJ, Lenz JA, Mason NJ. Sarcomas-A barren immunological wasteland or field of opportunity for immunotherapy? Vet Comp Oncol 2020; 18:447-470. [PMID: 32246517 DOI: 10.1111/vco.12595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Key advances in our understanding of immunobiology and the immunosuppressive mechanisms of the tumour microenvironment have led to significant breakthroughs in manipulating the immune system to successfully treat cancer. Remarkable therapeutic responses have occurred with tumours that carry a high mutational burden. In these cases, pre-existing tumour-specific T cells can be rejuvenated via checkpoint inhibition to eliminate tumours. Furthermore, durable remissions have been achieved in haematological malignancies following adoptive transfer of T cells that specifically target cell surface proteins where expression is restricted to the malignancy's cell of origin. Soft tissue sarcomas and bone sarcomas have a paucity of non-synonymous somatic mutations and do not commonly express known, targetable, tumour-specific antigens. Historically, soft tissue sarcomas have been considered immunologically 'cold' and as such, unlikely candidates for immune therapy. Here, we review the immune landscape of canine and feline sarcomas and the immunotherapeutic strategies that have been employed in veterinary clinical trials to improve patient outcome. We also provide insight into immunotherapeutic approaches being used to treat human sarcomas. Together, current data indicates that, rather than a barren immunological wasteland, sarcomas represent a field of opportunities for immunotherapies. Furthermore, we and others would suggest that strategic combinations of immunotherapeutic approaches may hold promise for more effective treatments for high grade soft tissue sarcomas and bone sarcomas.
Collapse
Affiliation(s)
- Matthew J Atherton
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer A Lenz
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicola J Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Leonardi L, Benassi MS, Pollino S, Locaputo C, Pazzaglia L. miR-106B-25 Cluster expression: a comparative human and canine osteosarcoma study. Vet Rec Open 2020; 7:e000379. [PMID: 32201579 PMCID: PMC7061892 DOI: 10.1136/vetreco-2019-000379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common primary malignant bone tumour in dogs and human beings, characterised by similar genetic and clinical features. With the aim to define similarities and differences in the biological aspects involved in OS progression, a comparative study was performed to create a model to improve patient outcome. Methods First, the expression of microRNAs (miRNAs) belonging to the cluster miR-106b-25 (miR-106b, miR-25 and miR-93-5p) in human and canine OS tissue was compared. Results miR-25 and miR-106b presented a variable expression not significantly different from the corresponding normal bone, while miR-93-5p expression was increased in all OS specimens, with higher levels in the canine subset compared with human. Accordingly, its target p21 presented a weaker and less homogeneous immunostaining distribution in the canine group. Given the high expression of miR-93-5p in all OS specimens, the functional response of human 143B and canine DAN OS cells to miRNA inhibition was evaluated. Although p21 expression increased after miR-93-5p inhibition both at mRNA and protein level, a more significant cell response in terms of proliferation and apoptosis was seen in canine OS cells. Conclusions In conclusion, canine OS tissue and cell line presented higher expression levels of miR-93-5p than human OS. In addition, the introduction of miR-93-5p inhibitor caused a cell response in 143B and DAN that differed for the more intense functional impact in the canine OS cell line.
Collapse
Affiliation(s)
- Leonardo Leonardi
- Department of Veterinary Medicine - Veterinary Pathology, Università degli Studi di Perugia, Perugia, PG, Italy
| | - Maria Serena Benassi
- Oncologia Sperimentale, Istituto Ortopedico Rizzoli Istituto di Ricovero e Cura a Carattere Scientifico, Bologna, Italy
| | - Serena Pollino
- Oncologia Sperimentale, Istituto Ortopedico Rizzoli Istituto di Ricovero e Cura a Carattere Scientifico, Bologna, Italy
| | - Carmen Locaputo
- Oncologia Sperimentale, Istituto Ortopedico Rizzoli Istituto di Ricovero e Cura a Carattere Scientifico, Bologna, Italy
| | - Laura Pazzaglia
- Oncologia Sperimentale, Istituto Ortopedico Rizzoli Istituto di Ricovero e Cura a Carattere Scientifico, Bologna, Italy
| |
Collapse
|
22
|
Sobczuk P, Brodziak A, Khan MI, Chhabra S, Fiedorowicz M, Wełniak-Kamińska M, Synoradzki K, Bartnik E, Cudnoch-Jędrzejewska A, Czarnecka AM. Choosing The Right Animal Model for Renal Cancer Research. Transl Oncol 2020; 13:100745. [PMID: 32092671 PMCID: PMC7036425 DOI: 10.1016/j.tranon.2020.100745] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
The increase in the life expectancy of patients with renal cell carcinoma (RCC) in the last decade is due to changes that have occurred in the area of preclinical studies. Understanding cancer pathophysiology and the emergence of new therapeutic options, including immunotherapy, would not be possible without proper research. Before new approaches to disease treatment are developed and introduced into clinical practice they must be preceded by preclinical tests, in which animal studies play a significant role. This review describes the progress in animal model development in kidney cancer research starting from the oldest syngeneic or chemically-induced models, through genetically modified mice, finally to xenograft, especially patient-derived, avatar and humanized mouse models. As there are a number of subtypes of RCC, our aim is to help to choose the right animal model for a particular kidney cancer subtype. The data on genetic backgrounds, biochemical parameters, histology, different stages of carcinogenesis and metastasis in various animal models of RCC as well as their translational relevance are summarized. Moreover, we shed some light on imaging methods, which can help define tumor microstructure, assist in the analysis of its metabolic changes and track metastasis development.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Anna Brodziak
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Mohammed Imran Khan
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada.
| | - Stuti Chhabra
- Department of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Michał Fiedorowicz
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Marlena Wełniak-Kamińska
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Anna M Czarnecka
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| |
Collapse
|
23
|
Duckett MM, Phung SK, Nguyen L, Khammanivong A, Dickerson E, Dusenbery K, Lawrence J. The adrenergic receptor antagonists propranolol and carvedilol decrease bone sarcoma cell viability and sustained carvedilol reduces clonogenic survival and increases radiosensitivity in canine osteosarcoma cells. Vet Comp Oncol 2019; 18:128-140. [PMID: 31778284 DOI: 10.1111/vco.12560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/28/2019] [Accepted: 11/19/2019] [Indexed: 11/30/2022]
Abstract
Adrenergic receptor (AR) expression has been demonstrated at several sites of primary and metastatic tumour growth and may influence proliferation, survival, metastasis and angiogenesis. AR antagonists like propranolol and carvedilol inhibit proliferation, induce apoptosis and synergize with chemotherapy agents in some cancers. Radiation resistance is mediated in many cells by upregulation of pro-survival pathways, which may be influenced by ARs. Studies evaluating AR antagonists combined with radiation are limited. The purpose of this study was to determine the effect of propranolol and carvedilol on viability and radiosensitivity in sarcoma cell lines. The hypothesis was that propranolol and carvedilol would increase radiosensitivity in four primary bone sarcoma cell lines. Single agent propranolol or carvedilol inhibited cell viability in all cell lines in a concentration-dependent manner. The mean inhibitory concentrations (IC50 ) for carvedilol were approximately 4-fold lower than propranolol and may be clinically relevant in vivo. Immunoblot analysis confirmed AR expression in both human and canine sarcoma cell lines; however, there was no correlation between baseline AR protein expression and radiosensitivity. Short duration treatment with carvedilol and propranolol did not significantly affect clonogenic survival. Prolonged exposure to propranolol and carvedilol significantly decreased the surviving fraction of canine osteosarcoma cells after 3Gy radiation. Based on our results and possible in vivo activity in dogs, further studies investigating the effects of carvedilol on sarcoma are warranted.
Collapse
Affiliation(s)
- Megan M Duckett
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Shee Kwan Phung
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Linh Nguyen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Ali Khammanivong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota.,Masonic Cancer Center, Masonic Cancer Research Building, University of Minnesota, Minneapolis, Minnesota
| | - Erin Dickerson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota.,Masonic Cancer Center, Masonic Cancer Research Building, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn Dusenbery
- Department of Radiation Oncology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota.,Masonic Cancer Center, Masonic Cancer Research Building, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
24
|
Rogers BJ, Lawrence J, Ehler E, Ferreira C. Impact of various irradiation conditions on delivered dose and cell viability for
in vitro
cell irradiation. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab5037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Jin Z, Liu S, Zhu P, Tang M, Wang Y, Tian Y, Li D, Zhu X, Yan D, Zhu Z. Cross-Species Gene Expression Analysis Reveals Gene Modules Implicated in Human Osteosarcoma. Front Genet 2019; 10:697. [PMID: 31440272 PMCID: PMC6693360 DOI: 10.3389/fgene.2019.00697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/03/2019] [Indexed: 01/20/2023] Open
Abstract
Background: Osteosarcoma (OS) is one of the malignant bone tumors occurring in both human and canine, and in both of them, it is characterized by a high rate of metastasis and poor prognosis. Cross-species analysis reveals previously neglected molecular or signaling pathways involved in the progression of diseases, and dogs are genetically comparable to humans and live in similar environments. Therefore, the aim of this study was to find out OS hub genes through a cross-species analysis. Materials and Methods: All the human and canine OS gene expression data obtained by the Affymetrix platform were collected. After quality assessment and normalization, co-expression network was performed using weighted gene co-expression network analysis (WGCNA). Species-specific modules and consensus modules were identified. Protein–protein interaction (PPI) networks analysis was performed based on consensus gene modules. Then, consensus modules were functionally annotated and correlated with clinical traits. Hub nodes were identified by a subnetwork analysis of PPI network and WGCNA module membership. Modules of interest and hub nodes were validated in an external data set. Results: Three modules for the human network, seven modules for the canine network, and four consensus modules were identified. The consensus module 3 (C3) showed a significant correlation with the metastatic status in the training data set and a significant correlation with metastasis-free survival in the external data set. Cluster of differentiation 86 (CD86) was identified as the hub gene of C3, showing a significant correlation with metastasis-free survival. Conclusion: Genes in C3 play an important role in OS metastasis, whereas CD86 might be a potential molecular biomarker for OS metastasis.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shanshan Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pei Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mengyan Tang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuanxin Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuan Tian
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xun Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Tinkle CL, Lu J, Han Y, Li Y, McCarville BM, Neel MD, Bishop MW, Krasin MJ. Curative-intent radiotherapy for pediatric osteosarcoma: The St. Jude experience. Pediatr Blood Cancer 2019; 66:e27763. [PMID: 31012273 PMCID: PMC6588458 DOI: 10.1002/pbc.27763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND Radiation therapy (RT) confers local tumor control and survival advantages in some patients with osteosarcoma, yet pediatric and adolescent and young adult (AYA) population studies are limited. METHODS Twenty-eight patients treated with curative-intent RT (median dose, 59.4 Gy; range, 40-76 Gy) at our institution from 1990 to 2017 were retrospectively identified. Cumulative incidence (CIN) of local failure (LF) was estimated by Gray's method and overall survival (OS) by the Kaplan-Meier method. Competing-risk regression and Cox proportional hazards models determined predictors of outcome. Toxicity was reported according to CTCAE v4.0. RESULTS With a median follow-up of 99.1 months in living patients, nine patients (32.1%) developed LF. Estimated CINs of LF with competing risk of death at 5 years for the entire cohort, patients at initial diagnosis (n = 16), and recurrent/refractory patients (n = 12) were 32.7% (95% CI, 16.0-50.5%), 25.0% (95% CI, 7.3-48.0%), and 43.8% (95% CI, 13.6-71.0%), respectively (P = 0.31). Estimated 5-year OS was 42.6% (95% CI, 23.2-62.0%), 54.6% (95% CI, 29.5-79.6%), and 24.3% (95% CI, 0-52.2%), respectively (P = 0.15). No clinicopathologic features were significantly associated with LF, yet lack of chemotherapy or metastasis at the time of RT was independent significant prognostic factors of decreased OS. Eleven patients experienced RT-related morbidity, with two grade 3 toxicities and no grade 4/5 events. CONCLUSIONS Curative-intent RT in pediatric and AYA patients was well tolerated and achieved a local tumor control rate of 75% in patients with primary disease. Local control rates were similar to those in primarily adult studies, with similar or lower doses.
Collapse
Affiliation(s)
- Christopher L. Tinkle
- Departments of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee.,Correspondence: Christopher L. Tinkle, MD, PhD; St. Jude Children’s Research Hospital; 262 Danny Thomas Place, MS 210; Memphis, TN 38105. Tel: (901) 595-3226; Fax: (901) 595-3113;
| | - Jason Lu
- Departments of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yuanyuan Han
- Departments of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yimei Li
- Departments of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Beth M. McCarville
- Departments of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Michael D. Neel
- Departments of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Michael W. Bishop
- Departments of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Matthew J. Krasin
- Departments of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
27
|
Goh TS, Lee JS, Il Kim J, Park YG, Pak K, Jeong DC, Oh SO, Kim YH. Prognostic scoring system for osteosarcoma using network-regularized high-dimensional Cox-regression analysis and potential therapeutic targets. J Cell Physiol 2019; 234:13851-13857. [PMID: 30604867 DOI: 10.1002/jcp.28065] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/18/2018] [Indexed: 07/20/2023]
Abstract
With the recent emphasis on the importance of personalized genomic medicine, studies have performed prognostic stratification using gene signatures in cancers. However, these studies have not considered gene networks with clinical data. Therefore, this study aimed to develop a novel prognostic score using grouped variable selection for patients with osteosarcoma. We assessed messenger RNA (mRNA) expression and clinical data from Gene Expression Omnibus to develop a novel prognostic scoring system for patients with osteosarcoma. Variable selection using Network-Regularized high-dimensional Cox-regression analysis with information regarding gene networks obtained from six large pathway databases was performed. We determined the risk score on the linear combination of regression coefficients and mRNA expression values. Log-rank test, UNO's c-index, and area under the curve (AUC) values were determined to evaluate the discriminatory power between the low- and high-risk groups. A recently reported next-generation Connectivity Map was used to identify future therapeutic targets for osteosarcoma. Our novel model had significantly high discriminatory power in predicting overall survival. An optimal c-index of 0.967 was obtained and time-dependent receiver operating characteristic analysis revealed an acceptable predictive value of AUC between 0.953 and 1.000. Knockdown of BACE2 or ING2 and linifanib treatment may improve the prognosis of patients with osteosarcoma. Herein, this novel prognostic scoring system would not only facilitate a more accurate prediction of patient prognosis, but also contribute to the selection of suitable therapeutic alternatives for osteosarcoma patients.
Collapse
Affiliation(s)
- Tae Sik Goh
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jeung Il Kim
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Yong Geon Park
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Dae Cheon Jeong
- Deloitte Analytics Group, Deloitte Consulting LLC, Seoul, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
28
|
Gardner HL, Sivaprakasam K, Briones N, Zismann V, Perdigones N, Drenner K, Facista S, Richholt R, Liang W, Aldrich J, Trent JM, Shields PG, Robinson N, Johnson J, Lana S, Houghton P, Fenger J, Lorch G, Janeway KA, London CA, Hendricks WPD. Canine osteosarcoma genome sequencing identifies recurrent mutations in DMD and the histone methyltransferase gene SETD2. Commun Biol 2019; 2:266. [PMID: 31341965 PMCID: PMC6642146 DOI: 10.1038/s42003-019-0487-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023] Open
Abstract
Osteosarcoma (OS) is a rare, metastatic, human adolescent cancer that also occurs in pet dogs. To define the genomic underpinnings of canine OS, we performed multi-platform analysis of OS tumors from 59 dogs, including whole genome sequencing (n = 24) and whole exome sequencing (WES; n = 13) of primary tumors and matched normal tissue, WES (n = 10) of matched primary/metastatic/normal samples and RNA sequencing (n = 54) of primary tumors. We found that canine OS recapitulates features of human OS including low point mutation burden (median 1.98 per Mb) with a trend towards higher burden in metastases, high structural complexity, frequent TP53 (71%), PI3K pathway (37%), and MAPK pathway mutations (17%), and low expression of immune-associated genes. We also identified novel features of canine OS including putatively inactivating somatic SETD2 (42%) and DMD (50%) aberrations. These findings set the stage for understanding OS development in dogs and humans, and establish genomic contexts for future comparative analyses.
Collapse
Affiliation(s)
- Heather L. Gardner
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 USA
| | | | - Natalia Briones
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Victoria Zismann
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | | | - Kevin Drenner
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | | | - Ryan Richholt
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Winnie Liang
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Jessica Aldrich
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Jeffrey M. Trent
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Peter G. Shields
- College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Nicholas Robinson
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA 01536 USA
| | | | - Susan Lana
- Colorado State University, Fort Collins, CO 80525 USA
| | - Peter Houghton
- University of Texas Health Science Center, San Antonio, TX 78229 USA
| | - Joelle Fenger
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210 USA
| | - Gwendolen Lorch
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210 USA
| | | | - Cheryl A. London
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA 01536 USA
| | | |
Collapse
|
29
|
Diessner BJ, Marko TA, Scott RM, Eckert AL, Stuebner KM, Hohenhaus AE, Selting KA, Largaespada DA, Modiano JF, Spector LG. A comparison of risk factors for metastasis at diagnosis in humans and dogs with osteosarcoma. Cancer Med 2019; 8:3216-3226. [PMID: 31006987 PMCID: PMC6558582 DOI: 10.1002/cam4.2177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Canine osteosarcoma (OS) is a relevant spontaneous model for human OS. Identifying similarities in clinical characteristics associated with metastasis at diagnosis in both species may substantiate research aimed at using canine OS as a model for identifying mechanisms driving distant spread in the human disease. Methods This retrospective study included dog OS cases from three academic veterinary hospitals and human OS cases from the Surveillance, Epidemiology, and End Results program. Associations between clinical factors and metastasis at diagnosis were estimated using logistic regression models. Results In humans, those with trunk tumors had higher odds of metastasis at diagnosis compared to those with lower limb tumors (OR = 2.38, 95% CI: 1.51, 3.69). A similar observation was seen in dogs with trunk tumors compared to dogs with forelimb tumors (OR = 3.28, 95% CI 1.36, 7.50). Other associations were observed in humans but not in dogs. Humans aged 20‐29 years had lower odds of metastasis at diagnosis compared to those aged 10‐14 years (OR = 0.67, 95% CI: 0.47, 0.96); every 1‐cm increase in tumor size was associated with a 6% increase in the odds of metastasis at diagnosis (95% CI: 1.04, 1.08); compared to those with a white, non‐Hispanic race, higher odds were observed among those with a black, non‐Hispanic race (OR: 1.51, 95% CI: 1.04, 2.16), and those with a Hispanic origin (OR 1.35, 95% CI: 1.00, 1.81). Conclusion A common mechanism may be driving trunk tumors to progress to detectable metastasis prior to diagnosis in both species.
Collapse
Affiliation(s)
- Brandon J Diessner
- Division of Pediatric Epidemiology and Clinical Research, School of Medicine, University of Minnesota, Minneapolis, Minnesota.,Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Tracy A Marko
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Ruth M Scott
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota.,Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
| | - Andrea L Eckert
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota.,Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
| | - Kathleen M Stuebner
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota.,Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
| | | | - Kim A Selting
- Veterinary Medical Teaching Hospital, University of Missouri, Columbia, Missouri
| | - David A Largaespada
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
| | - Jaime F Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota.,Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota.,Center for Immunology, University of Minnesota, Minneapolis, Minnesota.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Logan G Spector
- Division of Pediatric Epidemiology and Clinical Research, School of Medicine, University of Minnesota, Minneapolis, Minnesota.,Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
| |
Collapse
|
30
|
Rodents Versus Pig Model for Assessing the Performance of Serotype Chimeric Ad5/3 Oncolytic Adenoviruses. Cancers (Basel) 2019; 11:cancers11020198. [PMID: 30744019 PMCID: PMC6406826 DOI: 10.3390/cancers11020198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Oncolytic adenoviruses (Ad) are promising tools for cancer therapeutics. Most Ad-based therapies utilize species C serotypes, with Adenovirus type 5 (Ad5) most commonly employed. Prior clinical trials demonstrated low efficiency of oncolytic Ad5 vectors, mainly due to the absence of Ad5 primary receptor (Coxsackie and Adenovirus Receptor, CAR) on cancer cells. Engineering serotype chimeric vectors (Ad5/3) to utilize Adenovirus type 3 (Ad3) receptors has greatly improved their oncolytic potential. Clinical translation of these infectivity-enhanced vectors has been challenging due to a lack of replication permissive animal models. In this study, we explored pigs as a model to study the performance of fiber-modified Ad5/3 chimeric vectors. As a control, the Ad5 fiber-unmodified virus was used. We analyzed binding, gene transfer, replication, and cytolytic ability of Ad5 and Ad5/3 in various non-human cell lines (murine, hamster, canine, porcine). Among all tested cell lines only porcine cells supported active binding and replication of Ad5/3. Syrian hamster cells supported Ad5 replication but showed no evidence of productive viral replication after infection with Ad5/3 vectors. Transduction and replication ability of Ad5/3 in porcine cells outperformed Ad5, a phenomenon often observed in human cancer cell lines. Replication of Ad5 and Ad5/3 was subsequently evaluated in vivo in immunocompetent pigs. Quantitative PCR analyses 7 days post infection revealed Ad5 and Ad5/3 DNA and replication-dependent luciferase activity in the swine lungs and spleen indicating active replication in these tissues. These studies demonstrated the flaws in using Syrian hamsters for testing serotype chimeric Ad5/3 vectors. This is the first report to validate the pig as a valuable model for preclinical testing of oncolytic adenoviruses utilizing Adenovirus type 3 receptors. We hope that these data will help to foster the clinical translation of oncolytic adenoviruses including those with Ad3 retargeted tropism.
Collapse
|
31
|
Heishima K, Meuten T, Yoshida K, Mori T, Thamm DH. Prognostic significance of circulating microRNA-214 and -126 in dogs with appendicular osteosarcoma receiving amputation and chemotherapy. BMC Vet Res 2019; 15:39. [PMID: 30683101 PMCID: PMC6347759 DOI: 10.1186/s12917-019-1776-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dogs with appendicular osteosarcoma (OSA) receiving standard amputation and adjuvant chemotherapy demonstrate variable outcome with treatment; however, additional biomarkers would be helpful for predicting their outcome. In the present study, we assessed the potential of circulating microRNA-214 (miR-214) and - 126 (miR-126) to predict time to metastasis and death in dogs with OSA treated with amputation and chemotherapy. RESULTS Seventy-six dogs that fully met inclusion criteria were included in the analysis. The criteria included (1) a diagnosis of appendicular OSA without metastases at diagnosis, (2) treatment by amputation and chemotherapy using carboplatin, doxorubicin, cisplatin, or a combination of these agents. Circulating miR-214 and -126 levels at the time before treatment were measured by using RT-qPCR. High circulating miR-214 and serum alkaline phosphatase (ALP) significantly predicted short disease-free survival (DFS) and overall survival (OS). Conversely, high circulating miR-126 significantly predicted prolonged DFS and OS. An integrated approach using circulating miR-214, - 126, and serum ALP showed better accuracy in the prediction of DFS and OS and identification of long-term survivors than prediction using only ALP. Other variables (age, weight, sex, monocyte counts, and primary tumor site) were associated with neither DFS nor OS. miRNA levels did not strongly correlate with histopathological indices. CONCLUSIONS Circulating miR-214, - 126, and an integrated prognostic score have strong potential to predict the outcome of canine appendicular OSA patients receiving amputation and chemotherapy.
Collapse
Affiliation(s)
- Kazuki Heishima
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Travis Meuten
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Kyoko Yoshida
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Douglas H. Thamm
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
32
|
Fan TM, Selting KA. Exploring the Potential Utility of Pet Dogs With Cancer for Studying Radiation-Induced Immunogenic Cell Death Strategies. Front Oncol 2019; 8:680. [PMID: 30697532 PMCID: PMC6340932 DOI: 10.3389/fonc.2018.00680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/27/2018] [Indexed: 01/21/2023] Open
Abstract
Radiotherapy serves as a foundational pillar for the therapeutic management of diverse solid tumors through the generation of lethal DNA damage and induction of cell death. While the direct cytotoxic effects of radiation therapy remain a cornerstone for cancer management, in the era of immunooncology there is renewed and focused interest in exploiting the indirect bystander activities of radiation, termed abscopal effects. In radioimmunobiologic terms, abscopal effects describe the radiotherapy-induced regression of cancerous lesions distant from the primary site of radiation delivery and rely upon the induction of immunogenic cell death and consequent systemic anticancer immune activation. Despite the promise of radiation therapy for awaking potent anticancer immune responses, the purposeful harnessing of abscopal effects with radiotherapy remain clinically elusive. In part, failure to fully leverage and clinically implement the promise of radiation-induced abscopal effects stems from limitations associated with existing conventional tumor models which inadequately recapitulate the complexity of malignant transformation and the dynamic nature of tumor immune surveillance. To supplement this existing gap in modeling systems, pet dogs diagnosed with solid tumors including melanoma and osteosarcoma, which are both metastatic and immunogenic in nature, could potentially serve as unique resources for exploring the fundamental underpinnings required for maximizing radiation-induced abscopal effects. Given the spontaneous course of cancer development in the context of operative immune mechanisms, pet dogs treated with radiotherapy for metastatic solid tumors might be leveraged as valuable model systems for realizing the science and best clinical practices necessary to generate potent abscopal effects with anti-metastatic immune activities.
Collapse
Affiliation(s)
- Timothy M Fan
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, United States
| | - Kimberly A Selting
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, United States
| |
Collapse
|
33
|
Luu AK, Schott CR, Jones R, Poon AC, Golding B, Hamed R, Deheshi B, Mutsaers A, Wood GA, Viloria-Petit AM. An evaluation of TAZ and YAP crosstalk with TGFβ signalling in canine osteosarcoma suggests involvement of hippo signalling in disease progression. BMC Vet Res 2018; 14:365. [PMID: 30477496 PMCID: PMC6258471 DOI: 10.1186/s12917-018-1651-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/16/2018] [Indexed: 11/30/2022] Open
Abstract
Background Osteosarcoma (OSA) is the most common bone cancer in canines. Both transforming growth factor beta (TGFβ) and Hippo pathway mediators have important roles in bone development, stemness, and cancer progression. The role of Hippo signalling effectors TAZ and YAP has never been addressed in canine OSA. Further, the cooperative role of TGFβ and Hippo signalling has yet to be explored in osteosarcoma. To address these gaps, this study investigated the prognostic value of TAZ and YAP alone and in combination with pSmad2 (a marker of active TGFβ signalling), as well as the involvement of a TGFβ-Hippo signalling crosstalk in tumourigenic properties of OSA cells in vitro. An in-house trial tissue microarray (TMA) which contained 16 canine appendicular OSA cases undergoing standard care and accompanying follow-up was used to explore the prognostic role of TAZ, YAP and pSmad2. Published datasets were used to test associations between TAZ and YAP mRNA levels, metastasis, and disease recurrence. Small interfering RNAs specific to TAZ and YAP were utilized in vitro alone or in combination with TGFβ treatment to determine their role in OSA viability, proliferation and migration. Results Patients with low levels of both YAP and pSmad2 when evaluated in combination had a significantly longer time to metastasis (log-rank test, p = 0.0058) and a longer overall survival (log rank test, p = 0.0002). No similar associations were found for TAZ and YAP mRNA levels. In vitro, TAZ knockdown significantly decreased cell viability, proliferation, and migration in metastatic cell lines, while YAP knockdown significantly decreased viability in three cell lines, and migration in two cell lines, derived from either primary tumours or their metastases. The impact of TGFβ signaling activation on these effects was cell line-dependent. Conclusions YAP and pSmad2 have potential prognostic value in canine appendicular osteosarcoma. Inhibiting YAP and TAZ function could lead to a decrease in viability, proliferation, and migratory capacity of canine OSA cells. Assessment of YAP and pSmad2 in larger patient cohorts in future studies are needed to further elucidate the role of TGFβ-Hippo signalling crosstalk in canine OSA progression. Electronic supplementary material The online version of this article (10.1186/s12917-018-1651-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anita K Luu
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Courtney R Schott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Robert Jones
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Andrew C Poon
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Brandon Golding
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Roa'a Hamed
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Benjamin Deheshi
- Medical City Forth Worth, HCA affiliated Hospital, 900 8th Ave, Fort Worth, TX, 76104, USA
| | - Anthony Mutsaers
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Alicia M Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
34
|
Muroi C, Hugelshofer M, Seehusen F, Keller E. Natural Cerebral Aneurysm and Spontaneous Subarachnoid Hemorrhage in Mammals Other Than Man: Is There a Scope for Comparative Medicine? World Neurosurg 2018; 122:384-389. [PMID: 30447438 DOI: 10.1016/j.wneu.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Concepts that showed substantial efficacy in animal models of subarachnoid hemorrhage (SAH) often failed to improve outcome in humans with aneurysmal SAH. The concept of "comparative medicine," an open-minded comparison across species, might offer an alternative to the "constructed" animal models' approach. Naturally occurring diseases in animals might bear more similarity to human diseases than models. In this context, the question arises whether spontaneous intracranial aneurysms exist in animals or not, and whether they cause SAH or not. METHODS A systematic literature search was performed. Only articles dealing with natural aneurysms and/or SAH of mammals other than man were included. All articles dealing with induced aneurysms and/or SAH were removed. RESULTS Of 2812 screened articles, 9 articles describing natural intracranial aneurysms and/or SAH were found. In total 1979 individual animals of 29 species were examined. Natural intracranial aneurysms were described in 7 individual animals of 6 species. Spontaneous SAH was described in 3 species. In 1 chimpanzee, a ruptured intracranial aneurysm caused an SAH. Histological descriptions of the aneurysms were strikingly similar to those of humans. CONCLUSIONS Although interesting and innovative, the concept of "comparative medicine" seems to be impracticable due to the seemingly ultralow incidence of natural aneurysmal SAH in mammals other than man. The answer to the question "why intracranial aneurysms are less common in animals despite the strong histological similarity of cerebral arteries" might be a key issue. Last but not least, primates likely matter in SAH-related research, as aneurysmal SAH occurs in primates.
Collapse
Affiliation(s)
- Carl Muroi
- Neurocritical Care Unit, University Hospital Zurich, Zurich, Switzerland.
| | | | - Frauke Seehusen
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Emanuela Keller
- Neurocritical Care Unit, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Gross AC, Cam H, Phelps DA, Saraf AJ, Bid HK, Cam M, London CA, Winget SA, Arnold MA, Brandolini L, Mo X, Hinckley JM, Houghton PJ, Roberts RD. IL-6 and CXCL8 mediate osteosarcoma-lung interactions critical to metastasis. JCI Insight 2018; 3:99791. [PMID: 30135299 PMCID: PMC6141177 DOI: 10.1172/jci.insight.99791] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023] Open
Abstract
Osteosarcoma (OS), a malignant tumor of bone, kills through aggressive metastatic spread almost exclusively to the lung. Mechanisms driving this tropism for lung tissue remain unknown, though likely invoke specific interactions between tumor cells and other cells within the lung metastatic niche. Aberrant overexpression of ΔNp63 in OS cells directly drives production of IL-6 and CXCL8. All these factors were expressed at higher levels in OS lung metastases than in matched primary tumors from the same patients. Expression in cell lines correlated strongly with lung colonization efficiency in murine xenograft models. Lentivirus-mediated expression endowed poorly metastatic OS cells with increased metastatic capacity. Disruption of IL-6 and CXCL8 signaling using genetic or pharmaceutical inhibitors had minimal effects on tumor cell proliferation in vitro or in vivo, but combination treatment inhibited metastasis across multiple models of metastatic OS. Strong interactions occurred between OS cells and both primary bronchial epithelial cells and bronchial smooth muscle cells that drove feed-forward amplification of IL-6 and CXCL8 production. These results identify IL-6 and CXCL8 as primary mediators of OS lung tropism and suggest pleiotropic, redundant mechanisms by which they might effect metastasis. Combination therapy studies demonstrate proof of concept for targeting these tumor-lung interactions to affect metastatic disease.
Collapse
Affiliation(s)
- Amy C Gross
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Hakan Cam
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio, USA.,The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Doris A Phelps
- Greehey Children's Cancer Research Institute, San Antonio, Texas, USA
| | - Amanda J Saraf
- The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio, USA.,Division of Pediatric Hematology, Oncology, and BMT, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Hemant K Bid
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio, USA.,The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Maren Cam
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Cheryl A London
- Department of Veterinary Clinical Sciences and Biosciences, The Ohio State University, Columbus, Ohio, USA.,Cummings School of Veterinary Medicine, Tufts University, Boston, Massachusetts, USA
| | - Sarah A Winget
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Michael A Arnold
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - John M Hinckley
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio, USA.,Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, San Antonio, Texas, USA
| | - Ryan D Roberts
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio, USA.,The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio, USA.,Division of Pediatric Hematology, Oncology, and BMT, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
36
|
Cross-species genomics identifies DLG2 as a tumor suppressor in osteosarcoma. Oncogene 2018; 38:291-298. [PMID: 30093633 PMCID: PMC6756098 DOI: 10.1038/s41388-018-0444-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 07/24/2018] [Indexed: 11/27/2022]
Abstract
Leveraging the conserved cancer genomes across mammals has the potential to transform driver gene discovery in orphan cancers. Here, we combine cross-species genomics with validation across human–dog–mouse systems to uncover a new bone tumor suppressor gene. Comparative genomics of spontaneous human and dog osteosarcomas (OS) expose Disks Large Homolog 2 (DLG2) as a tumor suppressor candidate. DLG2 copy number loss occurs in 42% of human and 56% of canine OS. Functional validation through pertinent human and canine OS DLG2-deficient cell lines identifies a regulatory role of DLG2 in cell division, migration and tumorigenesis. Moreover, osteoblast-specific deletion of Dlg2 in a clinically relevant genetically engineered mouse model leads to acceleration of OS development, establishing DLG2 as a critical determinant of OS. This widely applicable cross-species approach serves as a platform to expedite the search of cancer drivers in rare human malignancies, offering new targets for cancer therapy.
Collapse
|
37
|
Abstract
Pet dogs are becoming increasingly recognized as a population with the potential to inform medical research through their treatment for a variety of maladies by veterinary health professionals. This is the basis of the One Health initiative, supporting the idea of collaboration between human and animal health researchers and clinicians to study spontaneous disease processes and treatment in animals to inform human health. Cancer is a major health burden in pet dogs, accounting for approximately 30% of deaths across breeds. As such, pet dogs with cancer are becoming increasingly recognized as a resource for studying the pharmacology and therapeutic potential of anticancer drugs and therapies under development. This was recently highlighted by a National Academy of Medicine Workshop on Comparative Oncology that took place in mid-2015 (http://www.nap.edu/21830). One component of cancer burden in dogs is their significantly higher incidence of sarcomas as compared to humans. This increased incidence led to canine osteosarcoma being an important component in the development of surgical approaches for osteosarcoma in children. Included in this review of sarcomas in dogs is a description of the incidence, pathology, molecular characteristics and previous translational therapeutic studies associated with these tumors. An understanding of the patho-physiological and molecular characteristics of these naturally occurring canine sarcomas holds great promise for effective incorporation into drug development schemas, for evaluation of target modulation or other pharmacodynamic measures associated with therapeutic response. These data could serve to supplement other preclinical data and bolster clinical investigations in tumor types for which there is a paucity of human patients for clinical trials.
Collapse
Affiliation(s)
- Daniel L Gustafson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Dawn L Duval
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel P Regan
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Douglas H Thamm
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
38
|
Patatsos K, Shekhar TM, Hawkins CJ. Pre-clinical evaluation of proteasome inhibitors for canine and human osteosarcoma. Vet Comp Oncol 2018; 16:544-553. [PMID: 29998615 DOI: 10.1111/vco.12413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/30/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
Osteosarcoma, a common malignancy in large dog breeds, typically metastasises from long bones to lungs and is usually fatal within 1 to 2 years of diagnosis. Better therapies are needed for canine patients and their human counterparts, a third of whom die within 5 years of diagnosis. We compared the in vitro sensitivity of canine osteosarcoma cells derived from 4 tumours to the currently used chemotherapy drugs doxorubicin and carboplatin, and 4 new anti-cancer drugs. Agents targeting histone deacetylases or PARP were ineffective. Two of the 4 cell lines were somewhat sensitive to the BH3-mimetic navitoclax. The proteasome inhibitor bortezomib potently induced caspase-dependent apoptosis, at concentrations substantially lower than levels detected in the bones and lungs of treated rodents. Co-treatment with bortezomib and either doxorubicin or carboplatin was more toxic to canine osteosarcoma cells than each agent alone. Newer proteasome inhibitors carfilzomib, ixazomib, oprozomib and delanzomib manifested similar activities to bortezomib. Human osteosarcoma cells were as sensitive to bortezomib as the canine cells, but slightly less sensitive to the newer drugs. Human osteoblasts were less sensitive to proteasome inhibition than osteosarcoma cells, but physiologically relevant concentrations were toxic. Such toxicity, if replicated in vivo, may impair bone growth and strength in adolescent human osteosarcoma patients, but may be tolerated by canine patients, which are usually diagnosed later in life. Proteasome inhibitors such as bortezomib may be useful for treating canine osteosarcoma, and ultimately may improve outcomes for human patients if their osteoblasts survive exposure in vivo, or if osteoblast toxicity can be managed.
Collapse
Affiliation(s)
- K Patatsos
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - T M Shekhar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - C J Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
39
|
Albuquerque TAF, Drummond do Val L, Doherty A, de Magalhães JP. From humans to hydra: patterns of cancer across the tree of life. Biol Rev Camb Philos Soc 2018; 93:1715-1734. [PMID: 29663630 PMCID: PMC6055669 DOI: 10.1111/brv.12415] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Cancer is a disease of multicellularity; it originates when cells become dysregulated due to mutations and grow out of control, invading other tissues and provoking discomfort, disability, and eventually death. Human life expectancy has greatly increased in the last two centuries, and consequently so has the incidence of cancer. However, how cancer patterns in humans compare to those of other species remains largely unknown. In this review, we search for clues about cancer and its evolutionary underpinnings across the tree of life. We discuss data from a wide range of species, drawing comparisons with humans when adequate, and interpret our findings from an evolutionary perspective. We conclude that certain cancers are uniquely common in humans, such as lung, prostate, and testicular cancer; while others are common across many species. Lymphomas appear in almost every animal analysed, including in young animals, which may be related to pathogens imposing selection on the immune system. Cancers unique to humans may be due to our modern environment or may be evolutionary accidents: random events in the evolution of our species. Finally, we find that cancer‐resistant animals such as whales and mole‐rats have evolved cellular mechanisms that help them avoid neoplasia, and we argue that there are multiple natural routes to cancer resistance.
Collapse
Affiliation(s)
- Thales A F Albuquerque
- Escola Superior de Ciências da Saúde, SMHN Quadra 03 conjunto A, Bloco 1 Edifício Fepecs CEP 70, 710-907, Brasilia, Brazil
| | - Luisa Drummond do Val
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| | - Aoife Doherty
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| |
Collapse
|
40
|
Londhe P, Yu PY, Ijiri Y, Ladner KJ, Fenger JM, London C, Houghton PJ, Guttridge DC. Classical NF-κB Metabolically Reprograms Sarcoma Cells Through Regulation of Hexokinase 2. Front Oncol 2018; 8:104. [PMID: 29696133 PMCID: PMC5904193 DOI: 10.3389/fonc.2018.00104] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 03/23/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Metabolic reprogramming has emerged as a cancer hallmark, and one of the well-known cancer-associated metabolic alterations is the increase in the rate of glycolysis. Recent reports have shown that both the classical and alternative signaling pathways of nuclear factor κB (NF-κB) play important roles in controlling the metabolic profiles of normal cells and cancer cells. However, how these signaling pathways affect the metabolism of sarcomas, specifically rhabdomyosarcoma (RMS) and osteosarcoma (OS), has not been characterized. METHODS Classical NF-κB activity was inhibited through overexpression of the IκBα super repressor of NF-κB in RMS and OS cells. Global gene expression analysis was performed using Affymetrix GeneChip Human Transcriptome Array 2.0, and data were interpreted using gene set enrichment analysis. Seahorse Bioscience XFe24 was used to analyze oxygen consumption rate as a measure of aerobic respiration. RESULTS Inhibition of classical NF-κB activity in sarcoma cell lines restored alternative signaling as well as an increased oxidative respiratory metabolic phenotype in vitro. In addition, microarray analysis indicated that inhibition of NF-κB in sarcoma cells reduced glycolysis. We showed that a glycolytic gene, hexokinase (HK) 2, is a direct NF-κB transcriptional target. Knockdown of HK2 shifted the metabolic profile in sarcoma cells away from aerobic glycolysis, and re-expression of HK2 rescued the metabolic shift induced by inhibition of NF-κB activity in OS cells. CONCLUSION These findings suggest that classical signaling of NF-κB plays a crucial role in the metabolic profile of pediatric sarcomas potentially through the regulation of HK2.
Collapse
Affiliation(s)
- Priya Londhe
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Peter Y. Yu
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Medical Student Research Program, The Ohio State University, Columbus, OH, United States
| | - Yuichi Ijiri
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Katherine J. Ladner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Joelle M. Fenger
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Cheryl London
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, United States
| | - Peter J. Houghton
- Greehey Children’s Research Institute, University of Texas Health Science Center, San Antonio, TX, United States
| | - Denis C. Guttridge
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
41
|
miR-1 and miR-133b expression in canine osteosarcoma. Res Vet Sci 2018; 117:133-137. [DOI: 10.1016/j.rvsc.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
|
42
|
Kim JH, Frantz AM, Sarver AL, Gorden Klukas BH, Lewellen M, O’Brien TD, Dickerson EB, Modiano JF. Modulation of fatty acid metabolism and immune suppression are features of in vitro tumour sphere formation in ontogenetically distinct dog cancers. Vet Comp Oncol 2018; 16:E176-E184. [PMID: 29152836 PMCID: PMC5821546 DOI: 10.1111/vco.12368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022]
Abstract
Non-adherent, 3-dimensional sphere formation is used as an in vitro surrogate to evaluate cellular potential for tumour initiation and self-renewal. To determine if a shared molecular program underlies the capacity for sphere formation by cells originating from diverse tumour types, we characterized molecular and functional properties of 10 independent cell lines derived from 3 ontogenetically distinct dog cancers: hemangiosarcoma, osteosarcoma and glial brain tumours. Genome-wide gene expression profiling identified tumour-of-origin-dependent patterns of adjustment to sphere formation in a uniform culture condition. However, expression of the stem/progenitor markers CD34 and CD117, resistance to cytotoxic drugs and dye efflux (side population assays) showed no association with these gene expression profiles. Instead, primary sphere-forming capacity was inversely correlated with the ability to reform secondary spheres, regardless of tumour ontogeny. Primary sphere formation seemed to be proportional to the number of pre-existing cells with sphere-forming capacity in the cell lines. Cell lines where secondary sphere formation was more proficient than primary sphere formation showed enrichment of genes involved in fatty acid synthesis and immunosuppressive cytokines. In contrast, cell lines where secondary sphere formation was approximately equivalent to or less proficient than primary sphere formation showed upregulation of CD40 and enrichment of genes involved in fatty acid oxidation. Our data suggest that in vitro sphere formation is associated with upregulation of gene clusters involved in metabolic and immunosuppressive functions, which might be necessary for self-renewal and for tumour initiation and/or tumour propagation in vivo.
Collapse
Affiliation(s)
- Jong-Hyuk Kim
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Aric M. Frantz
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Aaron L. Sarver
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Brandi H. Gorden Klukas
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Mitzi Lewellen
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Timothy D. O’Brien
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Erin B. Dickerson
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jaime F. Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
43
|
Saraf AJ, Fenger JM, Roberts RD. Osteosarcoma: Accelerating Progress Makes for a Hopeful Future. Front Oncol 2018; 8:4. [PMID: 29435436 PMCID: PMC5790793 DOI: 10.3389/fonc.2018.00004] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/05/2018] [Indexed: 11/20/2022] Open
Abstract
Patients who develop osteosarcoma in 2017 receive treatment that remains essentially unchanged since the 1970s. Outcomes likewise remain largely unimproved. Large, collaborative, multinational efforts to improve therapy have evaluated strategies leveraging both cytotoxic intensification and immunomodulatory agents. While these have confirmed our capacity to conduct such trials, results have proved largely disappointing. This has motivated efforts to focus on the basic biology of osteosarcoma, where understanding remains poor but has improved significantly. Recent advances have identified characteristic genetic features of osteosarcoma, including profound chromosomal disruption, marked patient-patient heterogeneity, and a paucity of recurrent mutations. Analyses suggest genesis in early catastrophic genetic events, although the nature of the inciting events remains unclear. While p53 and Rb inactivation occurs in most osteosarcomas, the landscape of associated driver mutations has proved extensive. Few mutations recur with high frequency, though patterns continue to emerge that suggest recurrent alterations within specific pathways. Biological pathways implicated in osteosarcoma biology through genetic and other preclinical studies include PI3K/mTOR, WNT/βcatenin, TGFβ, RANKL/NF-κB, and IGF. Unfortunately, clinical studies evaluating targeted agents have to date yielded disappointing results, as have studies examining modern immunotherapeutics. It remains unclear whether this pattern of clinical failures exposes inadequacies of our preclinical models, unrealistic expectations for single-agent responses in heavily pretreated patients, or biology less relevant than suggested. Nearly all patients who succumb to osteosarcoma develop lung metastases, which exhibit marked chemoresistance. Much scientific effort has recently sought to enhance our mechanistic understanding of metastasis biology. This research has potential to reveal novel targets for preventing and treating metastasis and for uncovering key vulnerabilities of osteosarcoma cells. Efforts to implement drug development strategies that leverage clinical studies in veterinary patients have potential to accelerate the translation of novel experimental regimens toward human studies. These could reduce costs and development timelines, prioritize agents, and refine regimens prior to human clinical trials. The rise of philanthropic groups focused on osteosarcoma has enhanced cross-disciplinary and cross-institutional focus and provided much needed resources. Transformative new therapies will likely arise from collaborative, interdisciplinary efforts that extend our understanding of osteosarcoma's most basic inner workings.
Collapse
Affiliation(s)
- Amanda J. Saraf
- Pediatric Hematology, Oncology, and BMT, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Joelle M. Fenger
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Ryan D. Roberts
- Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
44
|
Lopez CM, Yu PY, Zhang X, Yilmaz AS, London CA, Fenger JM. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines. PLoS One 2018; 13:e0190086. [PMID: 29293555 PMCID: PMC5749745 DOI: 10.1371/journal.pone.0190086] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. METHODOLOGY AND PRINCIPAL FINDINGS RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. CONCLUSIONS These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA.
Collapse
Affiliation(s)
- Cecilia M. Lopez
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Peter Y. Yu
- Medical Student Research Program, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Xiaoli Zhang
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Ayse Selen Yilmaz
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Cheryl A. London
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, College of Veterinary Medicine, Tufts University, New Grafton, Massachusetts, United States of America
| | - Joelle M. Fenger
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
45
|
Naik S, Galyon GD, Jenks NJ, Steele MB, Miller AC, Allstadt SD, Suksanpaisan L, Peng KW, Federspiel MJ, Russell SJ, LeBlanc AK. Comparative Oncology Evaluation of Intravenous Recombinant Oncolytic Vesicular Stomatitis Virus Therapy in Spontaneous Canine Cancer. Mol Cancer Ther 2017; 17:316-326. [PMID: 29158470 DOI: 10.1158/1535-7163.mct-17-0432] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/13/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022]
Abstract
Clinical translation of intravenous therapies to treat disseminated or metastatic cancer is imperative. Comparative oncology, the evaluation of novel cancer therapies in animals with spontaneous cancer, can be utilized to inform and accelerate clinical translation. Preclinical murine studies demonstrate that single-shot systemic therapy with a vesicular stomatitis virus (VSV)-IFNβ-NIS, a novel recombinant oncolytic VSV, can induce curative remission in tumor-bearing mice. Clinical translation of VSV-IFNβ-NIS therapy is dependent on comprehensive assessment of clinical toxicities, virus shedding, pharmacokinetics, and efficacy in clinically relevant models. Dogs spontaneously develop cancer with comparable etiology, clinical progression, and response to therapy as human malignancies. A comparative oncology study was carried out to investigate feasibility and tolerability of intravenous oncolytic VSV-IFNβ-NIS therapy in pet dogs with spontaneous cancer. Nine dogs with various malignancies were treated with a single intravenous dose of VSV-IFNβ-NIS. Two dogs with high-grade peripheral T-cell lymphoma had rapid but transient remission of disseminated disease and transient hepatotoxicity that resolved spontaneously. There was no shedding of infectious virus. Correlative pharmacokinetic studies revealed elevated levels of VSV RNA in blood in dogs with measurable disease remission. This is the first evaluation of intravenous oncolytic virus therapy for spontaneous canine cancer, demonstrating that VSV-IFNβ-NIS is well-tolerated and safe in dogs with advanced or metastatic disease. This approach has informed clinical translation, including dose and target indication selection, leading to a clinical investigation of intravenous VSV-IFNβ-NIS therapy, and provided preliminary evidence of clinical efficacy and potential biomarkers that correlate with therapeutic response. Mol Cancer Ther; 17(1); 316-26. ©2017 AACR.
Collapse
Affiliation(s)
- Shruthi Naik
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota.,Vyriad, Inc., Rochester, Minnesota
| | - Gina D Galyon
- Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - Nathan J Jenks
- Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Michael B Steele
- Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Amber C Miller
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Sara D Allstadt
- Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | | | - Kah Whye Peng
- Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Mark J Federspiel
- Viral Vector Production Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota.,Vyriad, Inc., Rochester, Minnesota
| | - Amy K LeBlanc
- Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
46
|
Scott MC, Temiz NA, Sarver AE, LaRue RS, Rathe SK, Varshney J, Wolf NK, Moriarity BS, O'Brien TD, Spector LG, Largaespada DA, Modiano JF, Subramanian S, Sarver AL. Comparative Transcriptome Analysis Quantifies Immune Cell Transcript Levels, Metastatic Progression, and Survival in Osteosarcoma. Cancer Res 2017; 78:326-337. [PMID: 29066513 DOI: 10.1158/0008-5472.can-17-0576] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/13/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022]
Abstract
Overall survival of patients with osteosarcoma (OS) has improved little in the past three decades, and better models for study are needed. OS is common in large dog breeds and is genetically inducible in mice, making the disease ideal for comparative genomic analyses across species. Understanding the level of conservation of intertumor transcriptional variation across species and how it is associated with progression to metastasis will enable us to more efficiently develop effective strategies to manage OS and to improve therapy. In this study, transcriptional profiles of OS tumors and cell lines derived from humans (n = 49), mice (n = 103), and dogs (n = 34) were generated using RNA sequencing. Conserved intertumor transcriptional variation was present in tumor sets from all three species and comprised gene clusters associated with cell cycle and mitosis and with the presence or absence of immune cells. Further, we developed a novel gene cluster expression summary score (GCESS) to quantify intertumor transcriptional variation and demonstrated that these GCESS values associated with patient outcome. Human OS tumors with GCESS values suggesting decreased immune cell presence were associated with metastasis and poor survival. We validated these results in an independent human OS tumor cohort and in 15 different tumor data sets obtained from The Cancer Genome Atlas. Our results suggest that quantification of immune cell absence and tumor cell proliferation may better inform therapeutic decisions and improve overall survival for OS patients.Significance: This study offers new tools to quantify tumor heterogeneity in osteosarcoma, identifying potentially useful prognostic biomarkers for metastatic progression and survival in patients. Cancer Res; 78(2); 326-37. ©2017 AACR.
Collapse
Affiliation(s)
- Milcah C Scott
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| | - Anne E Sarver
- Department of Surgery, University of Minnesota School of Medicine, Minneapolis, Minnesota
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, Minnesota
| | - Rebecca S LaRue
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota
| | - Susan K Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Jyotika Varshney
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Natalie K Wolf
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Genetics, Cell Biology and Development, University of Minnesota School of Medicine, Minneapolis, Minnesota
| | - Branden S Moriarity
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Brain Tumor Program, University of Minnesota, Minneapolis, Minnesota
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
- Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota
| | - Timothy D O'Brien
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota
- Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota
- Stem Cell Institute University of Minnesota, Minneapolis, Minnesota
| | - Logan G Spector
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, Minnesota
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, Minnesota
- Department of Genetics, Cell Biology and Development, University of Minnesota School of Medicine, Minneapolis, Minnesota
- Brain Tumor Program, University of Minnesota, Minneapolis, Minnesota
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Jaime F Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota
- Stem Cell Institute University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Surgery, University of Minnesota School of Medicine, Minneapolis, Minnesota
| | - Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
47
|
Ceciliani F, Roccabianca P, Giudice C, Lecchi C. Application of post-genomic techniques in dog cancer research. MOLECULAR BIOSYSTEMS 2017; 12:2665-79. [PMID: 27345606 DOI: 10.1039/c6mb00227g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Omics techniques have been widely applied to veterinary science, although mostly on farm animal productions and infectious diseases. In canine oncology, on the contrary, the use of omics methodologies is still far behind. This review presents the most recent achievement in the application of postgenomic techniques, such as transcriptomics, proteomics, and metabolomics, to canine cancer research. The protocols to recover material suitable for omics analyses from formalin-fixed, paraffin-embedded tissues are presented, and omics applications for biomarker discovery and their potential for cancer diagnostics in veterinary medicine are highlighted.
Collapse
Affiliation(s)
- F Ceciliani
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - P Roccabianca
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Giudice
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Lecchi
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| |
Collapse
|
48
|
Murphy BG, Mok MY, York D, Rebhun R, Woolard KD, Hillman C, Dickinson P, Skorupski K. Evaluation of P16 expression in canine appendicular osteosarcoma. BMC Vet Res 2017. [PMID: 28633676 PMCID: PMC5477683 DOI: 10.1186/s12917-017-1113-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Osteosarcoma (OSA) is a common malignant bone tumor of large breed dogs that occurs at predictable anatomic sites. At the time of initial diagnosis, most affected dogs have occult pulmonary metastases. Even with aggressive surgical treatment combined with chemotherapy, the majority of dogs diagnosed with OSA live less than 1 year from the time of diagnosis. The ability to identify canine OSA cases most responsive to treatment is needed. In humans, OSA is also an aggressive tumor that is histologically and molecularly similar to canine OSA. The expression of the tumor suppressor gene product P16 by human OSA tissue has been linked to a favorable response to chemotherapy. RESULTS We identified an antibody that binds canine P16 and developed a canine OSA tissue microarray in order to test the hypothesis that P16 expression by canine OSA tissue is predictive of clinical outcome following amputation and chemotherapy. Although statistical significance was not reached, a trend was identified between the lack of canine OSA P16 expression and a shorter disease free interval. CONCLUSIONS The identification of a molecular marker for canine OSA is an important goal and the results reported here justify a larger study.
Collapse
Affiliation(s)
- B G Murphy
- Department Pathology, University of California, Davis, School of Veterinary Medicine, Microbiology and Immunology, Davis, CA, 95618, USA.
| | - M Y Mok
- Department Pathology, University of California, Davis, School of Veterinary Medicine, Microbiology and Immunology, Davis, CA, 95618, USA
| | - D York
- Department of Surgical and Radiological Sciences, Davis, CA, 95618, USA
| | - R Rebhun
- Department of Surgical and Radiological Sciences, Davis, CA, 95618, USA
| | - K D Woolard
- Department Pathology, University of California, Davis, School of Veterinary Medicine, Microbiology and Immunology, Davis, CA, 95618, USA
| | - C Hillman
- Department Pathology, University of California, Davis, School of Veterinary Medicine, Microbiology and Immunology, Davis, CA, 95618, USA
| | - P Dickinson
- Department of Surgical and Radiological Sciences, Davis, CA, 95618, USA
| | - K Skorupski
- Department of Surgical and Radiological Sciences, Davis, CA, 95618, USA
| |
Collapse
|
49
|
MicroRNA-155 targets MAP3K10 and regulates osteosarcoma cell growth. Pathol Res Pract 2017; 213:389-393. [DOI: 10.1016/j.prp.2016.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/26/2016] [Accepted: 12/18/2016] [Indexed: 02/07/2023]
|
50
|
Wang J, Sun G. FOXO1-MALAT1-miR-26a-5p Feedback Loop Mediates Proliferation and Migration in Osteosarcoma Cells. Oncol Res 2017; 25:1517-1527. [PMID: 28160461 PMCID: PMC7841132 DOI: 10.3727/096504017x14859934460780] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
miR-26a has been found to be downregulated in osteosarcoma (OS) when compared with normal control tissues and has been shown to suppress the malignant behaviors of OS cells. The underlying mechanism, nevertheless, remains unknown. In our study, the long noncoding RNA MALAT1, confirmed to be significantly upregulated in OS, is first shown to be capable of promoting proliferation and migration by directly suppressing miR-26a-5p in OS cells. In addition, we have identified forkhead box O1 (FOXO1) as a transcriptional factor of MALAT1 that can negatively regulate MALAT1. We have shown that MALAT1 promoted growth and migration through inhibiting miR-26a-5p in OS cells. Suppression of FOXO1, identified as a regulatory transcriptional factor of MALAT1, was shown to be able to slow down both proliferation and metastases in OS cells, suggesting that targeting FOXO1 can be useful in the therapy of patients with OS.
Collapse
|