1
|
Lira dos Santos EJ, Mohamed FF, Kramer K, Foster BL. Dental manifestations of hypophosphatasia: translational and clinical advances. JBMR Plus 2025; 9:ziae180. [PMID: 39872235 PMCID: PMC11770227 DOI: 10.1093/jbmrpl/ziae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Hypophosphatasia (HPP) is an inherited error in metabolism resulting from loss-of-function variants in the ALPL gene, which encodes tissue-nonspecific alkaline phosphatase (TNAP). TNAP plays a crucial role in biomineralization of bones and teeth, in part by reducing levels of inorganic pyrophosphate (PPi), an inhibitor of biomineralization. HPP onset in childhood contributes to rickets, including growth plate defects and impaired growth. In adulthood, osteomalacia from HPP contributes to increased fracture risk. HPP also affects oral health. The dentoalveolar complex, that is, the tooth and supporting connective tissues of the surrounding periodontia, include 4 unique hard tissues: enamel, dentin, cementum, and alveolar bone, and all can be affected by HPP. Premature tooth loss of fully rooted teeth is pathognomonic for HPP. Patients with HPP often have complex oral health issues that require multidisciplinary dental care, potentially involving general or pediatric dentists, periodontists, prosthodontists, and orthodontists. The scientific literature to date has relatively few reports on dental care of individuals with HPP. Animal models to study HPP included global Alpl knockout mice, Alpl mutation knock-in mice, and mice with tissue-specific conditional Alpl ablation, allowing for new studies on pathological mechanisms and treatment effects in dental and skeletal tissues. Enzyme replacement therapy (ERT) in the form of injected, recombinant mineralized tissue-targeted TNAP has been available for nearly a decade and changed the prognosis for those with HPP. However, effects of ERT on dental tissues remain poorly defined and limitations of the current ERT have prompted exploration of gene therapy approaches to treat HPP. Preclinical gene therapy studies are promising and may contribute to improved oral health in HPP.
Collapse
Affiliation(s)
- Elis J Lira dos Santos
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Fatma F Mohamed
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Kaitrin Kramer
- Cleft Palate-Craniofacial Clinic, Nationwide Children's Hospital, Columbus, OH, 43205, United States
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States
| |
Collapse
|
2
|
Yue H, Cao H, Zhi Y, Song G, Cheng J, He M. Molecular study of patients with odontohypophosphatasia resulting from missense mutation in ALPL. Oral Dis 2024; 30:4677-4682. [PMID: 38591765 DOI: 10.1111/odi.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Affiliation(s)
- Haitang Yue
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haiyan Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yusheng Zhi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guangtai Song
- Department of Paediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Cheng
- Department of Paediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Miao He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Liu W, Min X, Wang H, Lu Q, Li L, Chu H. Hypoalkaline Phosphatemia Dental Type: A Case Report. Clin Med Insights Pediatr 2024; 18:11795565241256615. [PMID: 38895587 PMCID: PMC11185034 DOI: 10.1177/11795565241256615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/01/2024] [Indexed: 06/21/2024] Open
Abstract
Mutations in dental hypophosphatasia (HPP) have been reported less than those in other types of HPP because the symptoms are mild or the dental lesions are only partial manifestations of other types of HPP. In this case, we observe the clinical manifestation of dental hypoalkaline phosphatase by analyzing the genetic mutation and biochemical parameters in child. The clinical data of the child with odonto HPP were collected and analyzed. The blood samples of the child and his parents were sequenced and verified using Sanger through a specific probe capture and high-throughput second-generation sequencing technology. Major clinical manifestations in the patient were early loss of deciduous teeth, significantly lower serum alkaline phosphatase (ALP) levels, lower active vitamin D, and increased blood phosphorus, but no abnormality was observed in the oral X-ray. Two missense mutations-c.542C>T (p. ser181leu) and c.644 T> C (p.Ile215Thr)-were found in exon 6 of the ALPL gene from the father and mother, respectively. The clinical manifestations of odonto hypophosphatasia were early loss of deciduous teeth and significantly reduced serum ALP levels. Of 2 mutations-c.542C>T (p.ser181leu) and c.644 T> C (p.Ile215Thr)-in the ALPL gene, c.644 T> C (p.Ile215Thr) was a new mutation.
Collapse
Affiliation(s)
- Weihua Liu
- Department of Pediatrics, Xi’an First Hospital, The First Affiliated Hospital of Northwestern University, China
| | - Xiaoyang Min
- Department of Pediatrics, Xi’an First Hospital, The First Affiliated Hospital of Northwestern University, China
| | - Hongli Wang
- Pucheng County Hospital of Weinan City, Shaanxi Province, China
| | - Qianqian Lu
- Pucheng County Hospital of Weinan City, Shaanxi Province, China
| | - Lulu Li
- Department of Pediatrics, Xi’an First Hospital, The First Affiliated Hospital of Northwestern University, China
| | - Haiping Chu
- Department of Pediatrics, Xi’an First Hospital, The First Affiliated Hospital of Northwestern University, China
| |
Collapse
|
4
|
Martínez-Heredia L, Muñoz-Torres M, Sanabria-de la Torre R, Jiménez-Ortas Á, Andújar-Vera F, González-Cejudo T, Contreras-Bolívar V, González-Salvatierra S, Gómez-Vida JM, García-Fontana C, García-Fontana B. Systemic effects of hypophosphatasia characterization of two novel variants in the ALPL gene. Front Endocrinol (Lausanne) 2024; 14:1320516. [PMID: 38234425 PMCID: PMC10792043 DOI: 10.3389/fendo.2023.1320516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Hypophosphatasia (HPP) is an inborn metabolic error caused by mutations in the ALPL gene encoding tissue non-specific alkaline phosphatase (TNSALP) and leading to decreased alkaline phosphatase (ALP) activity. Although the main characteristic of this disease is bone involvement, it presents a great genetic and clinical variability, which makes it a systemic disease. Methods Patients were recruited based on biochemical assessments. Diagnosis was made by measuring serum ALP and pyridoxal 5-phosphate levels and finally by Sanger sequencing of the ALPL gene from peripheral blood mononuclear cells. Characterization of the new variants was performed by transfection of the variants into HEK293T cells, where ALP activity and cellular localization were measured by flow cytometry. The dominant negative effect was analyzed by co-transfection of each variant with the wild-type gene, measuring ALP activity and analyzing cellular localization by flow cytometry. Results Two previously undescribed variants were found in the ALPL gene: leucine 6 to serine missense mutation (c.17T>C, L6S) affecting the signal peptide and threonine 167 deletion (c.498_500delCAC, T167del) affecting the vicinity of the active site. These mutations lead mainly to non-pathognomonic symptoms of HPP. Structural prediction and modeling tools indicated the affected residues as critical residues with important roles in protein structure and function. In vitro results demonstrated low TNSALP activity and a dominant negative effect in both mutations. The results of the characterization of these variants suggest that the pleiotropic role of TNSALP could be involved in the systemic effects observed in these patients highlighting digestive and autoimmune disorders associated with TNSALP dysfunction. Conclusions The two new mutations have been classified as pathogenic. At the clinical level, this study suggests that both mutations not only lead to pathognomonic symptoms of the disease, but may also play a role at the systemic level.
Collapse
Affiliation(s)
| | - Manuel Muñoz-Torres
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Department of Medicine, University of Granada, Granada, Spain
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Sanabria-de la Torre
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Ángela Jiménez-Ortas
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
| | - Francisco Andújar-Vera
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), Granada, Spain
- Bioinformatic Service, Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Trinidad González-Cejudo
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Clinical Analysis Unit, University Hospital Clínico San Cecilio, Granada, Spain
| | | | - Sheila González-Salvatierra
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Department of Medicine, University of Granada, Granada, Spain
| | | | - Cristina García-Fontana
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cell Biology, University of Granada, Granada, Spain
| |
Collapse
|
5
|
Yu Y, Rong K, Yao D, Zhang Q, Cao X, Rao B, Xia Y, Lu Y, Shen Y, Yao Y, Xu H, Ma P, Cao Y, Qin A. The structural pathology for hypophosphatasia caused by malfunctional tissue non-specific alkaline phosphatase. Nat Commun 2023; 14:4048. [PMID: 37422472 PMCID: PMC10329691 DOI: 10.1038/s41467-023-39833-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/30/2023] [Indexed: 07/10/2023] Open
Abstract
Hypophosphatasia (HPP) is a metabolic bone disease that manifests as developmental abnormalities in bone and dental tissues. HPP patients exhibit hypo-mineralization and osteopenia due to the deficiency or malfunction of tissue non-specific alkaline phosphatase (TNAP), which catalyzes the hydrolysis of phosphate-containing molecules outside the cells, promoting the deposition of hydroxyapatite in the extracellular matrix. Despite the identification of hundreds of pathogenic TNAP mutations, the detailed molecular pathology of HPP remains unclear. Here, to address this issue, we determine the crystal structures of human TNAP at near-atomic resolution and map the major pathogenic mutations onto the structure. Our study reveals an unexpected octameric architecture for TNAP, which is generated by the tetramerization of dimeric TNAPs, potentially stabilizing the TNAPs in the extracellular environments. Moreover, we use cryo-electron microscopy to demonstrate that the TNAP agonist antibody (JTALP001) forms a stable complex with TNAP by binding to the octameric interface. The administration of JTALP001 enhances osteoblast mineralization and promoted recombinant TNAP-rescued mineralization in TNAP knockout osteoblasts. Our findings elucidate the structural pathology of HPP and highlight the therapeutic potential of the TNAP agonist antibody for osteoblast-associated bone disorders.
Collapse
Affiliation(s)
- Yating Yu
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Kewei Rong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Deqiang Yao
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qing Zhang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Xiankun Cao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bing Rao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Ying Xia
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Yi Lu
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Yafeng Shen
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Ying Yao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Peixiang Ma
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yu Cao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China.
| | - An Qin
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
6
|
Yang Y, Liu Z, Wei L, Taylor TD, Xiao H. Prosthodontic Rehabilitation of a Patient with Hypophosphatasia Using Dental Implants: A Case Report with Seven Years Follow-Up. J Prosthodont 2021; 30:742-746. [PMID: 34453769 DOI: 10.1111/jopr.13419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/26/2022] Open
Abstract
Hypophosphatasia is a rare metabolic inherited dento-osseous disorder. Although there is some available literature on various dental characteristics of hypophosphatasia patients, few reports focus on the effects of hypophosphatasia on the permanent dentition and prosthodontic rehabilitation, particularly in relation to the use of dental implants. This paper reports a case with hypophosphatasia and prosthodontic rehabilitation using dental implants with 7-year follow-up.
Collapse
Affiliation(s)
- Yundong Yang
- Department of Reconstructive Dentistry, Yantai Stomatological Hospital Development Zone Branch, Shandong Province, PR China
| | - Zhonghao Liu
- Binzhou Medical College; Department of Implant Dentistry, Yantai Stomatological Hospital, Shandong Province, PR China
| | - Lingfei Wei
- Department of Implant Dentistry, Yantai Stomatological Hospital, Shandong Province, PR China
| | - Thomas D Taylor
- Department of Reconstructive Sciences, Division of Prosthodontics, UConn School of Dental Medicine, Farmington, CT
| | - Huijuan Xiao
- Department of Reconstructive Dentistry, Yantai Stomatological Hospital Development Zone Branch, Shandong Province, PR China
| |
Collapse
|
7
|
Kramer K, Chavez MB, Tran AT, Farah F, Tan MH, Kolli TN, Dos Santos EJL, Wimer HF, Millán JL, Suva LJ, Gaddy D, Foster BL. Dental defects in the primary dentition associated with hypophosphatasia from biallelic ALPL mutations. Bone 2021; 143:115732. [PMID: 33160095 PMCID: PMC7769999 DOI: 10.1016/j.bone.2020.115732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
ALPL encodes tissue-nonspecific alkaline phosphatase (TNAP), an enzyme expressed in bone, teeth, liver, and kidney. ALPL loss-of-function mutations cause hypophosphatasia (HPP), an inborn error-of-metabolism that produces skeletal and dental mineralization defects. Case reports describe widely varying dental phenotypes, making it unclear how HPP comparatively affects the three unique dental mineralized tissues: enamel, dentin, and cementum. We hypothesized that HPP affected all dental mineralized tissues and aimed to establish quantitative measurements of dental tissues in a subject with HPP. The female proband was diagnosed with HPP during childhood based on reduced alkaline phosphatase activity (ALP), mild rachitic skeletal effects, and premature primary tooth loss. The diagnosis was subsequently confirmed genetically by the presence of compound heterozygous ALPL mutations (exon 5: c.346G>A, p.A116T; exon 10: c.1077C>G, p.I359M). Dental defects in 8 prematurely exfoliated primary teeth were analyzed by high resolution micro-computed tomography (micro-CT) and histology. Similarities to the Alpl-/- mouse model of HPP were identified by additional analyses of murine dentoalveolar tissues. Primary teeth from the proband exhibited substantial remaining root structure compared to healthy control teeth. Enamel and dentin densities were not adversely affected in HPP vs. control teeth. However, analysis of discrete dentin regions revealed an approximate 10% reduction in the density of outer mantle dentin of HPP vs. control teeth. All 4 incisors and the molar lacked acellular cementum by micro-CT and histology, but surprisingly, 2 of 3 prematurely exfoliated canines exhibited apparently normal acellular cementum. Based on dentin findings in the proband's teeth, we examined dentoalveolar tissues in a mouse model of HPP, revealing that the delayed initiation of mineralization in the incisor mantle dentin was associated with a broader lack of circumpulpal dentin mineralization. This study describes a quantitative approach to measure effects of HPP on dental tissues. This approach has uncovered a previously unrecognized novel mantle dentin defect in HPP, as well as a surprising and variable cementum phenotype within the teeth from the same HPP subject.
Collapse
Affiliation(s)
- K Kramer
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - A T Tran
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - F Farah
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M H Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - T N Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - E J Lira Dos Santos
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA; Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, SP, Brazil
| | - H F Wimer
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J L Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - L J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - D Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
TNAP as a New Player in Chronic Inflammatory Conditions and Metabolism. Int J Mol Sci 2021; 22:ijms22020919. [PMID: 33477631 PMCID: PMC7831495 DOI: 10.3390/ijms22020919] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
This review summarizes important information on the ectoenzyme tissue-nonspecific alkaline phosphatase (TNAP) and gives a brief insight into the symptoms, diagnostics, and treatment of the rare disease Hypophosphatasia (HPP), which is resulting from mutations in the TNAP encoding ALPL gene. We emphasize the role of TNAP beyond its well-known contribution to mineralization processes. Therefore, above all, the impact of the enzyme on central molecular processes in the nervous system and on inflammation is presented here.
Collapse
|
9
|
Alonso N, Larraz-Prieto B, Berg K, Lambert Z, Redmond P, Harris SE, Deary IJ, Pugh C, Prendergast J, Ralston SH. Loss-of-Function Mutations in the ALPL Gene Presenting with Adult Onset Osteoporosis and Low Serum Concentrations of Total Alkaline Phosphatase. J Bone Miner Res 2020; 35:657-661. [PMID: 31793067 PMCID: PMC9328664 DOI: 10.1002/jbmr.3928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 12/13/2022]
Abstract
Hypophosphatasia (HPP) is a rare inherited disorder characterized by rickets and low circulating concentrations of total alkaline phosphatase (ALP) caused by mutations in ALPL. Severe HPP presents in childhood but milder forms can present in adulthood. The prevalence and clinical features of adult HPP are poorly defined. The aim of this study was to evaluate the prevalence and clinical significance of low serum total alkaline phosphatase (ALP) levels in a clinic-based population of adult osteoporotic patients. We searched for patients with low ALP in a cohort of 3285 patients referred to an osteoporosis clinic over a 10-year period and performed mutation screening of ALPL in those with low ALP (≤40 U/L) on two or more occasions. These individuals were matched with four clinic controls with a normal ALP. We also evaluated the prevalence of low ALP and ALPL mutations in 639 individuals from the general population from the same region. We identified 16/3285 (0.49%) clinic patients with low ALP and 14 (87.5%) had potentially pathogenic variants in ALPL. Eight of these individuals were heterozygous for mutations previously described in HPP and 2 were heterozygous for novel mutations (p.Arg301Trp and p.Tyr101X). These mutations were not found in clinic controls or in the general population. Eight patients with low ALP, including 4 with ALPL mutations, were treated with bisphosphonates for an average of 6.5 years. In these individuals, the rate of fractures during treatment was comparable to that in normal ALP clinic controls who were treated with bisphosphonates. We conclude that heterozygous loss-of-function mutations in ALPL are common in osteoporosis patients with low ALP. Further studies are required to determine how best these individuals should be treated. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nerea Alonso
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, MRC institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Beatriz Larraz-Prieto
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, MRC institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Kathryn Berg
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, MRC institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Zoe Lambert
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, MRC institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Department of Psychology, University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Carys Pugh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - James Prendergast
- Genetics and Genomics Division, The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Stuart H Ralston
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, MRC institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Yokoi K, Nakajima Y, Shinkai Y, Sano Y, Imamura M, Akiyama T, Yoshikawa T, Ito T, Kurahashi H. Clinical and genetic aspects of mild hypophosphatasia in Japanese patients. Mol Genet Metab Rep 2019; 21:100515. [PMID: 31641588 PMCID: PMC6796780 DOI: 10.1016/j.ymgmr.2019.100515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/05/2019] [Accepted: 09/02/2019] [Indexed: 11/29/2022] Open
Abstract
Background Hypophosphatasia (HPP) is a rare inborn error of metabolism that results from a dysfunctional tissue non-specific alkaline phosphatase enzyme (TNSALP). Although genotype-phenotype correlations have been described in HPP patients, only sparse information is currently available on the genetics of mild type HPP. Methods We investigated 5 Japanese patients from 3 families with mild HPP (patients 1 and 2 are siblings; patient 4 is a daughter of patient 5) who were referred to Fujita Health University due to the premature loss of deciduous teeth. Physical and dental examinations, and blood, urine and bone density tests were conducted. Genetic analysis of the ALPL gene was performed in all patients with their informed consent. Results After a detailed interview and examination, we found characteristic symptoms of HPP in some of the study cases. Mobile teeth or the loss of permanent teeth were observed in 2 patients, and 3 out of 5 patients had a history of asthma. The serum ALP levels of all patients were 30% below the lower limit of the age equivalent normal range. ALPL gene analysis revealed compound heterozygous mutations, including Ile395Val and Leu520Argfs in family 1, Val95Met and Gly491Arg in family 2, and a dominant missense mutation (Gly456Arg) in family 3. The 3D-modeling of human TNSALP revealed three mutations (Val95Met, Ile395Val and Gly456Arg) at the homodimer interface. Severe collisions between the side chains were predicted for the Gly456Arg variant. Discussion One of the characteristic findings of this present study was a high prevalence of coexisting asthma and a high level serum IgE level. These characteristics may account for the fragility of tracheal tissues and a predisposition to asthma in patients with mild HPP. The genotypes of the five mild HPP patients in our present study series included 1) compound heterozygous for severe and hypomorphic mutations, and 2) dominant-negative mutations. All of these mutations were at the homodimer interface, but only the dominant-negative mutation was predicted to cause a severe collision effect between the side chains. This may account for varying mechanisms leading to different effects on TNSALP function.
Collapse
Affiliation(s)
- Katsuyuki Yokoi
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake 470-1192, Japan.,Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Yoko Nakajima
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Yasuko Shinkai
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Yoshimi Sano
- Department of Plastic Surgery, Division of Pediatric Dentistry & Orthodontics, Fujita Health University of Medicine, Toyoake 470-1192, Japan
| | - Mototaka Imamura
- Department of Plastic Surgery, Division of Pediatric Dentistry & Orthodontics, Fujita Health University of Medicine, Toyoake 470-1192, Japan
| | - Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Tetsuya Ito
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
11
|
Almeida ABD, Santos EJLD, Abuna GF, Ribeiro CS, Casati MZ, Ruiz KGS, Nociti Junior FH. Isolation and characterization of a human cementocyte-like cell line, HCY-23. Braz Oral Res 2019; 33:e058. [PMID: 31432925 DOI: 10.1590/1807-3107bor-2019.vol33.0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/14/2019] [Indexed: 11/22/2022] Open
Abstract
Cementum is the mineralized tissue covering the tooth root that functions in tooth attachment and post-eruptive adjustment of tooth position. It has been reported to be highly similar to bone in several respects but remains poorly understood in terms of development and regeneration. Here, we investigate whether cementocytes, the residing cells in cellular cementum, have the potential to be protagonist in cementum homeostasis, responding to endocrine signals and directing local cementum metabolism. Cells from healthy erupted human teeth were isolated using sequential collagenase/EDTA digestions, and maintained in standard cell culture conditions. A cementocyte-like cell line was cloned (HCY-23, for human cementocyte clone 23), which presented a cementocyte compatible gene expression signature, including the expression of dentin matrix protein 1 ( DMP1 ), sclerostin ( SOST ), and E11/gp38/podoplanin ( E11 ). In contrast, these cells did not express the odontoblast/dentin marker dentin sialoprotein ( DSPP ). HCY-23 cells produced mineral-like nodules in vitro under differentiation conditions, and were highly responsive to inorganic phosphate (Pi). Within the limits of the present study, it can be concluded that cementocytes are phosphate-responsive cells, and have the potential do play a key role in periodontal homeostasis and regeneration.
Collapse
Affiliation(s)
- Amanda Bandeira de Almeida
- Universidade Estadual e Campinas - Unicamp, Faculty of Dentistry, Periodontics Dentistry, Piracicaba, SP, Brazil
| | - Elis Janaína Lira Dos Santos
- Universidade Estadual e Campinas - Unicamp, Faculty of Dentistry, Periodontics Dentistry, Piracicaba, SP, Brazil
| | - Gabriel Flores Abuna
- Universidade Estadual e Campinas - Unicamp, Faculty of Dentistry, Dental Materials, Piracicaba, SP, Brazil
| | - Cristiane Salmon Ribeiro
- Universidade Estadual e Campinas - Unicamp, Faculty of Dentistry, Periodontics Dentistry, Piracicaba, SP, Brazil
| | - Márcio Zaffalon Casati
- Universidade Estadual e Campinas - Unicamp, Faculty of Dentistry, Periodontics Dentistry, Piracicaba, SP, Brazil
| | | | | |
Collapse
|
12
|
Martins L, de Almeida AB, Dos Santos EJL, Foster BL, Machado RA, Kantovitz KR, Coletta RD, Nociti FH. A novel combination of biallelic ALPL mutations associated with adult hypophosphatasia: A phenotype-genotype association and computational analysis study. Bone 2019; 125:128-139. [PMID: 31077853 DOI: 10.1016/j.bone.2019.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/28/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
Abstract
Hypophosphatasia (HPP) is an inherited metabolic disorder that causes defective skeletal and dental mineralization. HPP exhibits a markedly heterogeneous range of clinical manifestations caused by dysfunction of the tissue-nonspecific isozyme of alkaline phosphatase (TNSALP), resulting from loss-of-function mutations in the ALPL gene. HPP has been associated with predominantly missense mutations in ALPL, and a number of compound heterozygous genotypes have been identified. Here, we describe a case of a subject with adult-onset HPP caused by a novel combination of missense mutations p.Gly473Ser and p.Ala487Val, resulting in chronic musculoskeletal pain, myopathy, persistent fatigue, vomiting, and an uncommon dental phenotype of short-rooted permanent teeth. Pedigree and biochemical analysis indicated that severity of symptoms was correlated with levels of residual ALP activity, and co-segregated with the p.Gly473Ser missense mutation. Bioinformatic analysis to predict the structural and functional impact of each of the point mutations in the TNSALP molecule, and its potential contribution to the clinical symptoms, revealed that the affected Gly473 residue is localized in the homodimer interface and predicted to have a dominant negative effect. The affected Ala487 residue was predicted to bind to Tyr479, which is closely located the N-terminal α-helix of TNSALP monomer 2, suggesting that both changes may impair dimer stability and catalytic functions. In conclusion, these findings assist in defining genotype-phenotype associations for HPP, and further define specific sites within the TNSALP molecule potentially related to neuromuscular manifestations in adult HPP, allowing for a better understanding of HPP pathophysiology.
Collapse
Affiliation(s)
- Luciane Martins
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Amanda Bandeira de Almeida
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Elis Janaína Lira Dos Santos
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Renato Assis Machado
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Kamila Rosamilia Kantovitz
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil; Department of Dental Materials, São Leopoldo Mandic School of Dentistry and Research Center, Campinas, SP, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Francisco H Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil.
| |
Collapse
|
13
|
Four novel mutations in the ALPL gene in Chinese patients with odonto, childhood, and adult hypophosphatasia. Biosci Rep 2018; 38:BSR20171377. [PMID: 29724887 PMCID: PMC6131208 DOI: 10.1042/bsr20171377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 01/17/2023] Open
Abstract
Hypophosphatasia (HPP) is a rare inherited disorder characterized by defective bone and/or dental mineralization, and decreased serum alkaline phosphatase (ALP) activity. ALPL, the only gene related with HPP, encodes tissue non-specific ALP (TNSALP). Few studies were carried out in ALPL gene mutations in the Chinese population with HPP. The purpose of the present study is to elucidate the clinical and genetic characteristics of HPP in five unrelated Chinese families and two sporadic patients. Ten clinically diagnosed HPP patients from five unrelated Chinese families and two sporadic patients and fifty healthy controls were genetically investigated. All 12 exons and exon–intron boundaries of the ALPL gene were amplified by PCR and directly sequenced. The laboratory and radiological investigations were conducted simultaneously in these HPP ten patients. A 3D model of the TNSALP was used to predict the dominant negative effect of identified missense mutations. Three odonto, three childhood, and four adult types of HPP were clinically diagnosed. Ten mutations were identified in five unrelated Chinese families and two sporadic patients, including eight missense mutations and two frameshift mutations. Of which, four were novel: one frameshift mutation (p.R138Pfsx45); three missense mutations (p.C201R, p.V459A, p.C497S). No identical mutations and any other new ALPL mutations were found in unrelated 50 healthy controls. Our study demonstrated that the ALPL gene mutations are responsible for HPP in these Chinese families. These findings will be useful for clinicians to improve understanding of this heritable bone disorder.
Collapse
|
14
|
Genetic evaluations of Chinese patients with odontohypophosphatasia resulting from heterozygosity for mutations in the tissue-non-specific alkaline phosphatase gene. Oncotarget 2017; 8:51569-51577. [PMID: 28881669 PMCID: PMC5584270 DOI: 10.18632/oncotarget.18093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/07/2017] [Indexed: 11/25/2022] Open
Abstract
Background Hypophosphatasia is a rare heritable metabolic disorder characterized by defective bone and tooth mineralization accompanied by a deficiency of tissue-non-specific (liver/bone/kidney) isoenzyme of alkaline phosphatase activity, caused by a number of loss-of-function mutations in the alkaline phosphatase liver type gene. We seek to explore the clinical manifestations and identify the mutations associated with the disease in a Chinese odonto- hypophosphatasia family. Results The proband and his younger brother affected with premature loss of primary teeth at their 2-year-old. They have mild abnormal serum alkaline phosphatase and 25-hydroxy vitamin D values, but the serum alkaline phosphatase activity of their father, mother and grandmother, who showed no clinical symptoms of hypophosphatasia, was exhibited significant decreased. In addition to premature loss of primary teeth, the proband and his younger brother showed low bone mineral density, X-rays showed that they had slight metaphyseal osteoporosis changes, but no additional skeletal abnormalities. Deoxyribonucleic acid sequencing and analysis revealed a single nucleotide polymorphism c.787T>C (p.Y263H) in exon 7 and/or a novel mutation c.-92C>T located at 5’UTR were found in the affected individuals. Materials and Methods We examined all individuals of an odonto- hypophosphatasia family by clinical and radiographic examinations as well as laboratory assays. Furthermore, all 12 exons and the exon-intron boundaries of the alkaline phosphatase liver type gene were amplified and directly sequenced for further analysis and screened for mutations. Conclusion Our present findings suggest the single nucleotide polymorphism c.787T>C and c.-92C>T should be responsible for the odonto- hypophosphatasia disorders in this family.
Collapse
|
15
|
Abstract
BACKGROUND Hypophosphatasia (HPP) is a rare inherited metabolic disease in which mutations in the ALPL gene (encoding tissue-nonspecific alkaline phosphatase) result in varying degrees of enzyme deficiency. HPP manifests in a spectrum of symptoms, including early primary tooth loss (root intact) and alveolar bone mineralisation defects. OBJECTIVE To provide an overview of HPP for dental professionals to help recognise and differentially diagnose patients for appropriate referral to a specialist team. METHODS A non-systematic review of publications on HPP was performed. RESULTS Different forms of HPP are described, along with characteristic symptoms and laboratory findings. Diagnosis is challenging due to the rareness and variable presentation of symptoms. Low alkaline phosphatase levels are a signature of HPP, but reference ranges vary according to gender and age. Key features are defined and management strategies discussed, focusing on enzyme replacement therapy. Finally, a patient registry aimed at better defining the prevalence of HPP and raising awareness is described. CONCLUSIONS HPP is a rare disease with a wide spectrum of manifestations, with orodental symptoms featuring prominently in the natural history. Dental professionals may be positioned at the beginning of the diagnostic pathway; thus, recognition of HPP features for timely referral and optimal disease management is important.
Collapse
Affiliation(s)
- Agnès Bloch-Zupan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.
- Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de référence des manifestations odontologiques des maladies rares (CRMR), Reference Centre for Orodental Manifestations of Rare Diseases, Strasbourg, France.
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS-UdS UMR7104, Université de Strasbourg, Illkirch, France.
- Eastman Dental Institute, University College London, London, UK.
| |
Collapse
|
16
|
Stagi S, Cavalli L, Seminara S, de Martino M, Brandi ML. The ever-expanding conundrum of primary osteoporosis: aetiopathogenesis, diagnosis, and treatment. Ital J Pediatr 2014; 40:55. [PMID: 24906390 PMCID: PMC4064514 DOI: 10.1186/1824-7288-40-55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/27/2014] [Indexed: 01/07/2023] Open
Abstract
In recent years, as knowledge regarding the etiopathogenetic mechanisms of bone involvement characterizing many diseases has increased and diagnostic techniques evaluating bone health have progressively improved, the problem of low bone mass/quality in children and adolescents has attracted more and more attention, and the body evidence that there are groups of children who may be at risk of osteoporosis has grown. This interest is linked to an increased understanding that a higher peak bone mass (PBM) may be one of the most important determinants affecting the age of onset of osteoporosis in adulthood. This review provides an updated picture of bone pathophysiology and characteristics in children and adolescents with paediatric osteoporosis, taking into account the major causes of primary osteoporosis (PO) and evaluating the major aspects of bone densitometry in these patients. Finally, some options for the treatment of PO will be briefly discussed.
Collapse
Affiliation(s)
- Stefano Stagi
- Health Sciences Department, University of Florence, Anna Meyer Children's University Hospital, Florence, Italy.
| | | | | | | | | |
Collapse
|