1
|
Ahmadi A, Mazloomnejad R, Kasravi M, Gholamine B, Bahrami S, Sarzaeem MM, Niknejad H. Recent advances on small molecules in osteogenic differentiation of stem cells and the underlying signaling pathways. Stem Cell Res Ther 2022; 13:518. [PMID: 36371202 PMCID: PMC9652959 DOI: 10.1186/s13287-022-03204-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022] Open
Abstract
Bone-related diseases are major contributors to morbidity and mortality in elderly people and the current treatments result in insufficient healing and several complications. One of the promising areas of research for healing bone fractures and skeletal defects is regenerative medicine using stem cells. Differentiating stem cells using agents that shift cell development towards the preferred lineage requires activation of certain intracellular signaling pathways, many of which are known to induce osteogenesis during embryological stages. Imitating embryological bone formation through activation of these signaling pathways has been the focus of many osteogenic studies. Activation of osteogenic signaling can be done by using small molecules. Several of these agents, e.g., statins, metformin, adenosine, and dexamethasone have other clinical uses but have also shown osteogenic capacities. On the other hand, some other molecules such as T63 and tetrahydroquinolines are not as well recognized in the clinic. Osteogenic small molecules exert their effects through the activation of signaling pathways known to be related to osteogenesis. These pathways include more well-known pathways including BMP/Smad, Wnt, and Hedgehog as well as ancillary pathways including estrogen signaling and neuropeptide signaling. In this paper, we review the recent data on small molecule-mediated osteogenic differentiation, possible adjunctive agents with these molecules, and the signaling pathways through which each small molecule exerts its effects.
Collapse
Affiliation(s)
- Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Babak Gholamine
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Mahdi Sarzaeem
- Department of Orthopedic Surgery, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran.
| |
Collapse
|
2
|
Ryan DA, Cheng J, Masuda K, Cashman JR. Role of Curcuminoids and Tricalcium Phosphate Ceramic in Rat Spinal Fusion. Tissue Eng Part C Methods 2020; 26:577-589. [PMID: 33086948 DOI: 10.1089/ten.tec.2020.0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Despite considerable research effort, there is a significant need for safe agents that stimulate bone formation. Treatment of large or complex bone defects remains a challenge. Implantation of small molecule-induced human bone marrow-derived mesenchymal stromal cells (hBMSCs) on an appropriate tricalcium phosphate (TCP) scaffold offers a robust system for noninvasive therapy for spinal fusion. To show the efficacy of this approach, we identified a small molecule curcuminoid that when combined with TCP ceramic in the presence of hBMSCs selectively induced growth of bone cells: after 8- or 25-day incubations, alkaline phosphatase was elevated. Treatment of hBMSCs with curcuminoid 1 and TCP ceramic increased osteogenic target gene expression (i.e., Runx2, BMP2, Osteopontin, and Osteocalcin) over time. In the presence of curcuminoid 1 and TCP ceramic, osteogenesis of hBMSCs, including proliferation, differentiation, and mineralization, was observed. No evidence of chondrogenic or adipogenic potential using this protocol was observed. Transplantation of curcuminoid 1-treated hBMSC/TCP mixtures into the spine of immunodeficient rats showed that it achieved spinal fusion and provided greater stability of the spinal column than untreated hBMSC-TCP implants or TCP alone implants. On the basis of histological analysis, greater bone formation was associated with curcuminoid 1-treated hBMSC implants manifested as contiguous growth plates with extensive hematopoietic territories. Stimulation of hBMSCs by administration of small molecule curcuminoid 1 in the presence of TCP ceramic afforded an effective noninvasive strategy that increased spinal fusion repair and provided greater stability of the spinal column after 8 weeks in immunodeficient rats. Impact statement Bone defects only slowly regenerate themselves in humans. Current procedures to restore spinal defects are not always effective. Some have side effects. In this article, a new method to produce bone growth within 8 weeks in rats is presented. In the presence of tricalcium phosphate ceramic, curcuminoid-1 small molecule-stimulated human bone marrow-derived mesenchymal stromal cells showed robust bone cell growth in vitro. Transplantation of this mixture into the spine showed efficient spinal fusion in rats. The approach presented herein provides an efficient biocompatible scaffold for delivery of a potentially clinically useful system that could be applicable in patients.
Collapse
Affiliation(s)
- Daniel A Ryan
- Human BioMolecular Research Institute, San Diego, California, USA
| | - Jiongjia Cheng
- Human BioMolecular Research Institute, San Diego, California, USA
| | - Koichi Masuda
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, California, USA
| | - John R Cashman
- Human BioMolecular Research Institute, San Diego, California, USA
| |
Collapse
|
3
|
Yuan Q, He L, Qian ZJ, Zhou C, Hong P, Wang Z, Wang Y, Sun S, Li C. Significantly Accelerated Osteoblast Cell Growth on TiO 2/SrHA Composite Mediated by Phenolic Compounds (BHM) from Hippocamp us kuda Bleeler. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30214-30226. [PMID: 30113815 DOI: 10.1021/acsami.8b12411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microstructure of hydroxyapatite is known to influence cellular behavior, can be used as a substrate for osteoblast growth, and exploited as a drug-release platform. However, easy delamination and self-decomposition of hydroxyapatite caused by poor adhesion with substrates are the main problems currently. In this paper, we successfully fabricated titanium dioxide/strontium-doped hydroxyapatite (TiO2/SrHA) composite scaffolds by self-generated strontium-substituted hydroxyapatite microspheres in TiO2 nanotubes. Moreover, the active compound 1-(5-bromo-2-hydroxy-methoxyphenyl)-ethanone (BHM) from Seahorse ( Hippocampus kuda Bleeler) was loaded in this scaffold, and the controlled release kinetics of BHM was studied. It was found that in the first 5 h, the release concentration and time of BHM had a good linear relationship, and the correlation coefficient reached 0.98. TiO2/SrHA/BHM composites exhibited favorable cytocompatibility at a given concentration of BHM (20 μmol/L). Compared to pure SrHA, TiO2 nanotubes, and traditional TiO2/SrHA composites, superior cytocompatibility (cell adhesion and proliferation) of MC3T3-E1 was obtained on TiO2/SrHA/BHM composites. The expression levels of osteogenic marker genes such as alkaline phosphatase, osteopontin, osteocalcin, runt-related transcription factor 2, and collagen I are also upregulated to varying degrees. This TiO2/SrHA composite scaffold-mediated phenolic compound BHM could be applied in bone tissue repair.
Collapse
Affiliation(s)
| | | | - Zhong-Ji Qian
- Shenzhen Institute of Guangdong Ocean University , Shenzhen 518108 , China
| | - Chunxia Zhou
- Shenzhen Institute of Guangdong Ocean University , Shenzhen 518108 , China
- Guangdong Modern Agricultural Science and Technology Innovation Center , Zhanjiang 524088 , China
| | - Pengzhi Hong
- Shenzhen Institute of Guangdong Ocean University , Shenzhen 518108 , China
- Guangdong Modern Agricultural Science and Technology Innovation Center , Zhanjiang 524088 , China
| | - Zhe Wang
- Center for Biomedical Materials and Interfaces , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Yi Wang
- Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Kowloon , Hong Kong Special Administrative Region 999077 , China
| | | | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University , Shenzhen 518108 , China
- Guangdong Modern Agricultural Science and Technology Innovation Center , Zhanjiang 524088 , China
| |
Collapse
|
4
|
Zhang J, Sun L, Luo X, Barbieri D, de Bruijn JD, van Blitterswijk CA, Moroni L, Yuan H. Cells responding to surface structure of calcium phosphate ceramics for bone regeneration. J Tissue Eng Regen Med 2017; 11:3273-3283. [DOI: 10.1002/term.2236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Jingwei Zhang
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; 7500AE Enschede the Netherlands
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu China
| | - Lanying Sun
- Oral Implantology Center; Stomotology Hospital of Jinan; 250001 Jinan China
| | - Xiaoman Luo
- Xpand Biotechnology BV; Bilthoven the Netherlands
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; 7500AE Enschede the Netherlands
| | | | - Joost D. de Bruijn
- Xpand Biotechnology BV; Bilthoven the Netherlands
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; 7500AE Enschede the Netherlands
- School of Engineering and Materials Science (SEMS); Queen Mary University of London; London UK
| | - Clemens A. van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; 7500AE Enschede the Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine; Maastricht University; 6229 ER the Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; 7500AE Enschede the Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine; Maastricht University; 6229 ER the Netherlands
| | - Huipin Yuan
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; 7500AE Enschede the Netherlands
- Xpand Biotechnology BV; Bilthoven the Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine; Maastricht University; 6229 ER the Netherlands
- College of Physical Science and Technology; Sichuan University; Chengdu China
| |
Collapse
|
5
|
Gong J, Sachdev E, Robbins LA, Lin E, Hendifar AE, Mita MM. Statins and pancreatic cancer. Oncol Lett 2017; 13:1035-1040. [PMID: 28454210 DOI: 10.3892/ol.2017.5572] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer remains among the most lethal cancers, despite ongoing advances in treatment for all stages of the disease. Disease prevention represents another opportunity to improve patient outcome, with metabolic syndrome and its components, such as diabetes, obesity and dyslipidemia, having been recognized as modifiable risk factors for pancreatic cancer. In addition, statins have been shown to potentially reduce pancreatic cancer risk and to improve survival in patients with a combination of metabolic syndrome and pancreatic cancer. Furthermore, preclinical studies have demonstrated that statins exhibit antitumor effects in pancreatic cancer cell lines in vitro and animal models in vivo, in addition to delaying the progression of pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma (PDAC) and inhibiting PDAC formation in conditional K-Ras mutant mice. The mechanisms by which statins produce anticancer effects remain poorly understood, although appear to involve inhibition of the mevalonate/cholesterol synthesis pathway, thus blocking the synthesis of intermediates important for prenylation and activation of the Ras/mitogen-activated protein kinase 1 signaling pathway. Furthermore, statins have been identified to modulate the phosphoinositide 3-kinase/Akt serine/threonine kinase 1 and inflammation signaling pathways, and to alter the expression of genes involved in lipid metabolism, which are important for PDAC growth and proliferation. In addition, statins have been demonstrated to exhibit further antitumor mechanisms in a number of other cancer types, which are beyond the scope of the present review. In the present review, current evidence highlighting the potential of statins as chemopreventive agents in pancreatic cancer is presented, and the antitumor mechanisms of statins elucidated thus far in this disease are discussed.
Collapse
Affiliation(s)
- Jun Gong
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Esha Sachdev
- Department of Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lori A Robbins
- Department of Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Emily Lin
- Department of Internal Medicine, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | - Andrew E Hendifar
- Department of Internal Medicine, Division of Medical Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Monica M Mita
- Experimental Therapeutics Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
6
|
Liu X, Li M, Zhu Y, Yeung KWK, Chu PK, Wu S. The modulation of stem cell behaviors by functionalized nanoceramic coatings on Ti-based implants. Bioact Mater 2016; 1:65-76. [PMID: 29744396 PMCID: PMC5883996 DOI: 10.1016/j.bioactmat.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022] Open
Abstract
Nanoceramic coating on the surface of Ti-based metallic implants is a clinical potential option in orthopedic surgery. Stem cells have been found to have osteogenic capabilities. It is necessary to study the influences of functionalized nanoceramic coatings on the differentiation and proliferation of stem cells in vitro or in vivo. In this paper, we summarized the recent advance on the modulation of stem cells behaviors through controlling the properties of nanoceramic coatings, including surface chemistry, surface roughness and microporosity. In addition, mechanotransduction pathways have also been discussed to reveal the interaction mechanisms between the stem cells and ceramic coatings on Ti-based metals. In the final part, the osteoinduction and osteoconduction of ceramic coating have been also presented when it was used as carrier of BMPs in new bone formation. The effects of basic physical properties like roughness, topography and porous stucture of ceramic coatings on the stem cells behaviors on Ti-based alloys have been reviewed together. The chemical way to modulate the cell behaviors is also discussed in this review paper; and the related mechanotransduction pathways have been described in this paper.
Collapse
Affiliation(s)
- Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Man Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Yizhou Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - K W K Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China.,Division of Spine Surgery, Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Paul K Chu
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shuilin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|