1
|
O'Hooley DB, Nicolopoulos C, Worthing MG, Yuvanoglu P, Melas F, Fairbairn PJM, Kurtzman GM. A Retrospective Study Using a Novel Body-Shift Implant Design with a Novel Alloplastic Particulate Grafting Material in Immediate Extraction Sockets. Eur J Dent 2025. [PMID: 39900097 DOI: 10.1055/s-0045-1801849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025] Open
Abstract
With resurgence in immediate tooth replacement therapy (ITRT) as a method of preserving both hard and soft tissues for improved aesthetic outcomes, this multicenter, prospective study looked at two novel products and their effect on those outcomes. Thirty-one maxillary single-tooth implants were included, of these 54.8% were central incisors, 25.8% lateral incisors, and 19.4% canines. Three complications were reported; one case nondraining fistula, one case a nonseated provisional restoration, and one case a fractured zirconia abutment. The definitive restorations were delivered between 4 hours and 18 months postimplant placement and all restorations were screw-retained. ITRT is frequently utilized when a tooth to be extracted will be replaced by an implant aiding in preservation of the hard and soft tissue that may be lost due to resorption during healing of the extraction socket. The narrower neck region of the Inverta implant results in thicker crestal bone around the implant, where loading under function occurs. Grafting that area around the implant at placement with EthOss results in more predictable bone stability in the long term.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter J M Fairbairn
- Private Practice, London, United Kingdom
- Department of Periodontology and Implant Dentistry, University of Detroit Mercy School of Dentistry, Detroit, Michigan, United States
- Department of Oral Surgery, Tufts University School of Dental Medicine, London, United Kingdom
| | | |
Collapse
|
2
|
Panagakis P, Zygogiannis K, Fanourgiakis I, Kalatzis D, Stathopoulos K. The Role of the Periosteum in Bone Formation From Adolescence to Old Age. Cureus 2025; 17:e76774. [PMID: 39897255 PMCID: PMC11786143 DOI: 10.7759/cureus.76774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2025] [Indexed: 02/04/2025] Open
Abstract
Bone formation is a complex process involving the coordinated activity of many different cell types, including osteoblasts and osteocytes. The periosteum is a dense membrane of connective tissue that covers the outer surface of bones and is essential for the growth, repair, and maintenance of osseous tissue. The present study aims to summarize the contribution of the periosteum in bone formation from adolescence to adulthood and old age. This is a narrative literature review using the PubMed electronic internet database. The search was based on the keyword "periosteal bone formation". Inclusion criteria were preclinical or clinical studies evaluating the role of the periosteum in bone formation. Non-English studies were excluded. The original search provided 126 published papers. After inclusion and exclusion criteria, we finally accepted 20 articles for our current review. After checking the references list of the included studies, 14 more studies were added, leaving 34 studies for the present review. Across the lifespan, periosteal bone formation undergoes dynamic changes. During adolescence, the periosteum is highly osteogenic and actively contributes to rapid bone growth. In adulthood, it plays a role in maintaining bone strength and adapting to mechanical loading. In adulthood, the periosteum continues to provide a source of osteoprogenitor cells, which contribute to the ongoing process of bone remodeling and repair. At more advanced ages, the response of the periosteum to hormones and cytokines in terms of bone formation decreases; however, the power of osteogenetic differentiation of periosteal cells may be preserved.
Collapse
Affiliation(s)
| | | | | | - Dimitrios Kalatzis
- Orthopedics and Traumatology, Laiko General Hospital of Athens, Athens, GRC
| | - Konstantinos Stathopoulos
- Laboratory for Research of the Musculoskeletal System, National and Kapodistrian University of Athens, Athens, GRC
| |
Collapse
|
3
|
Kim M, Wang X, Li Y, Lin Z, Collins CP, Liu Y, Ahn Y, Tsal HM, Song JW, Duan C, Zhu Y, Sun C, He TC, Luo Y, Reid RR, Ameer GA. Personalized composite scaffolds for accelerated cell- and growth factor-free craniofacial bone regeneration. Bioact Mater 2024; 41:427-439. [PMID: 39188380 PMCID: PMC11345904 DOI: 10.1016/j.bioactmat.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/28/2024] Open
Abstract
Approaches to regenerating bone often rely on integrating biomaterials and biological signals in the form of cells or cytokines. However, from a translational point of view, these approaches are challenging due to the sourcing and quality of the biologic, unpredictable immune responses, complex regulatory paths, and high costs. We describe a simple manufacturing process and a material-centric 3D-printed composite scaffold system (CSS) that offers distinct advantages for clinical translation. The CSS comprises a 3D-printed porous polydiolcitrate-hydroxyapatite composite elastomer infused with a polydiolcitrate-graphene oxide hydrogel composite. Using a micro-continuous liquid interface production 3D printer, we fabricate a precise porous ceramic scaffold with 60 wt% hydroxyapatite resembling natural bone. The resulting scaffold integrates with a thermoresponsive hydrogel composite in situ to fit the defect, which is expected to enhance surface contact with surrounding tissue and facilitate biointegration. The antioxidative properties of citrate polymers prevent long-term inflammatory responses. The CSS stimulates osteogenesis in vitro and in vivo. Within 4 weeks in a calvarial critical-sized bone defect model, the CSS accelerated ECM deposition (8-fold) and mineralized osteoid (69-fold) compared to the untreated. Through spatial transcriptomics, we demonstrated the comprehensive biological processes of CSS for prompt osseointegration. Our material-centric approach delivers impressive osteogenic properties and streamlined manufacturing advantages, potentially expediting clinical application for bone reconstruction surgeries.
Collapse
Affiliation(s)
- Mirae Kim
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xinlong Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yiming Li
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zitong Lin
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Caralyn P. Collins
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208 USA
| | - Yugang Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yujin Ahn
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61820, USA
| | - Hsiu-Ming Tsal
- Department of Radiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Joseph W. Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Chongwen Duan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Cheng Sun
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208 USA
| | - Tong-Chuan He
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Clinical and Translational Sciences Institute, Northwestern University, Chicago, IL, 60611, USA
- Center for Collaborative AI in Healthcare, Institute for AI in Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Russell R. Reid
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Chemistry of Life Process Institute, Northwestern University, Chicago, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
4
|
Zhang S, Zhu J, Jin S, Sun W, Ji W, Chen Z. Jawbone periosteum-derived cells with high osteogenic potential controlled by R-spondin 3. FASEB J 2024; 38:e70079. [PMID: 39340242 DOI: 10.1096/fj.202400988rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The jawbone periosteum, the easily accessible tissue responding to bone repair, has been overlooked in the recent development of cell therapy for jawbone defect reconstruction. Therefore, this study aimed to elucidate the in vitro and in vivo biological characteristics of jawbone periosteum-derived cells (jb-PDCs). For this purpose, we harvested the jb-PDCs from 8-week-old C57BL/6 mice. The in vitro cultured jb-PDCs (passages 1 and 3) contained skeletal stem/progenitor cells and exhibited clonogenicity and tri-lineage differentiation capacity. When implanted in vivo, the jb-PDCs (passage 3) showed evident ectopic bone formation after 4-week subcutaneous implantation, and active contribution to repair the critical-size jawbone defects in mice. Molecular profiling suggested that R-spondin 3 was strongly associated with the superior in vitro and in vivo osteogenic potentials of jb-PDCs. Overall, our study highlights the significance of comprehending the biological characteristics of the jawbone periosteum, which could pave the way for innovative cell-based therapies for the reconstruction of jawbone defects.
Collapse
Affiliation(s)
- Shu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingxian Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Siyu Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Sun
- Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Stegen S, Carmeliet G. Metabolic regulation of skeletal cell fate and function. Nat Rev Endocrinol 2024; 20:399-413. [PMID: 38499689 DOI: 10.1038/s41574-024-00969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Bone development and bone remodelling during adult life are highly anabolic processes requiring an adequate supply of oxygen and nutrients. Bone-forming osteoblasts and bone-resorbing osteoclasts interact closely to preserve bone mass and architecture and are often located close to blood vessels. Chondrocytes within the developing growth plate ensure that bone lengthening occurs before puberty, but these cells function in an avascular environment. With ageing, numerous bone marrow adipocytes appear, often with negative effects on bone properties. Many studies have now indicated that skeletal cells have specific metabolic profiles that correspond to the nutritional microenvironment and their stage-specific functions. These metabolic networks provide not only skeletal cells with sufficient energy, but also biosynthetic intermediates that are necessary for proliferation and extracellular matrix synthesis. Moreover, these metabolic pathways control redox homeostasis to avoid oxidative stress and safeguard cell survival. Finally, several intracellular metabolites regulate the activity of epigenetic enzymes and thus control the fate and function of skeletal cells. The metabolic profile of skeletal cells therefore not only reflects their cellular state, but can also drive cellular activity. Insight into skeletal cell metabolism will thus not only advance our understanding of skeletal development and homeostasis, but also of skeletal disorders, such as osteoarthritis, diabetic bone disease and bone malignancies.
Collapse
Affiliation(s)
- Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Sun T, Chen C, Liu K, Li L, Zhang R, Wen W, Ding S, Liu M, Zhou C, Luo B. A Wood-Derived Periosteum for Spatiotemporal Drug Release: Boosting Bone Repair through Anisotropic Structure and Multiple Functions. Adv Healthc Mater 2024; 13:e2400707. [PMID: 38563114 DOI: 10.1002/adhm.202400707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Existing artificial periostea face many challenges, including difficult-to-replicate anisotropy in mechanics and structure, poor tissue adhesion, and neglected synergistic angiogenesis and osteogenesis. Here, inspired by natural wood (NW), a wood-derived elastic artificial periosteum is developed to mimic the structure and functions of natural periosteum, which combines an elastic wood (EW) skeleton, a polydopamine (PDA) binder layer, and layer-by-layer (LBL) biofunctional layers. Specifically, EW derived from NW is utilized as the anisotropic skeleton of artificial periosteum to guide cell directional behaviors, moreover, it also shows a similar elastic modulus and flexibility to natural periosteum. To further enhance its synergistic angiogenesis and osteogenesis, surface LBL biofunctional layers are designed to serve as spatiotemporal release platforms to achieve sequential and long-term release of pamidronate disodium (PDS) and deferoxamine (DFO), which are pre-encapsulated in chitosan (CS) and hyaluronic acid (HA) solutions, respectively. Furthermore, the combined effect of PDA coating and LBL biofunctional layers enables the periosteum to tightly adhere to damaged bone tissue. More importantly, this novel artificial periosteum can boost angiogenesis and bone formation in vitro and in vivo. This study opens up a new path for biomimetic design of artificial periosteum, and provides a feasible clinical strategy for bone repair.
Collapse
Affiliation(s)
- Tianyi Sun
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Chunhua Chen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Lin Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Ruixi Zhang
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Shan Ding
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Mingxian Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| |
Collapse
|
7
|
Helal A, El-Gebaly O, Hamed H, Omran AM, ELForse E. Periosteal wrapping of the hamstring tendon autograft improves graft healing and prevents tunnel widening after anterior cruciate ligament anatomic reconstruction. Arch Orthop Trauma Surg 2024; 144:2711-2722. [PMID: 38748257 PMCID: PMC11211196 DOI: 10.1007/s00402-024-05356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/28/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION The periosteum is a readily available tissue at the hamstring harvest site that could be utilized to enhance graft healing and prevent tunnel widening without additional cost or morbidity. This study aimed to compare graft healing using magnetic resonance imaging (MRI) and functional clinical outcome scores in a matched cohort of patients who underwent anterior cruciate ligament (ACL) reconstruction with hamstring autografts with or without periosteal augmentation. MATERIAL AND METHODS Forty-eight patients who underwent ACL reconstruction (ACLR) were prospectively enrolled: 25 with standard ACLR (ST-ACLR) and 23 with periosteal augmented grafts (PA-ACLR). The same surgical techniques, fixation methods, and postoperative protocol were used in both groups. Signal-to-noise quotient (SNQ), graft healing at the bone-graft interface, graft signal according to the Howell scale, and femoral tunnel widening were evaluated using MRI after 1 year of follow-up. International knee documentation score (IKDC), Lysholm, Tegner activity scale, and visual analog scale for pain were used for functional evaluation at a minimum of 2 years postoperative. RESULTS The mean SNQ of the proximal part of the graft was 9.6 ± 9.2 and 2.9 ± 3.3 for the ST-ACLR and PA-ACLR groups, respectively (P = 0.005). The mean femoral tunnel widening was 30.3% ± 18.3 and 2.3% ± 9.9 for the ST-ACLR, PA-ACLR groups, respectively (P < 0.001). Complete graft tunnel healing was observed in 65% and 28% of cases in the PA-ACLR and ST-ACLR groups, respectively. Both groups showed marked improvements in functional scores, with no statistically significant differences. CONCLUSION Periosteal wrapping of hamstring tendon autografts is associated with better graft healing and maturation and lower incidence of femoral tunnel widening based on MRI analysis 1 year after ACL reconstruction. However, patient-reported outcomes and measured laxity were similar between the two groups at 2 years follow up. TRIAL REGISTRATION Trail registration number: PACTR202308594339018, date of registration: 1/5/2023, retrospectively registered at the Pan African Clinical Trial Registry (pactr.samrc.ac.za) database.
Collapse
Affiliation(s)
- Ahmed Helal
- Department of Orthopaedics, Tanta Faculty of Medicine, Tanta University, Tanta, El-Gharbia Governorate, Egypt.
| | - Osama El-Gebaly
- Department of Orthopaedics, Tanta Faculty of Medicine, Tanta University, Tanta, El-Gharbia Governorate, Egypt
| | - Hany Hamed
- Department of Orthopaedics, Faculty of Medicine, Kafr El-Shaikh University, Kafr El Sheikh, Egypt
| | - Ali M Omran
- Department of Orthopaedics, Tanta Faculty of Medicine, Tanta University, Tanta, El-Gharbia Governorate, Egypt
| | - ElSayed ELForse
- Department of Orthopaedics, Tanta Faculty of Medicine, Tanta University, Tanta, El-Gharbia Governorate, Egypt
| |
Collapse
|
8
|
Flanagan D. Horizontal Alveolar Ridge Splitting and Expansion. J ORAL IMPLANTOL 2024; 50:200-210. [PMID: 38624042 DOI: 10.1563/aaid-joi-d-23-00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
When considering placing dental implants in atrophic edentulous sites, there may be inadequate site width and little or no vertical bone loss. Any of several surgical procedures can augment these sites. Extracortical augmentation is done by applying graft material against the cortical bone. This technique expects progenitor cells to migrate outside the bony ridge's confines and form new bone. Another method entails ridge splitting and expansion to create space for osteogenesis and, when possible, implant placement. This may be a better method for horizontal ridge augmentation. The ridge is split, separating the facial and lingual cortices for a complete bone fracture. The patient's osseous cells can then migrate into the created space from the exposed medullary bone to form bone. The technique can be preferably performed flapless so the intact periosteum maintains a blood supply to ensure appropriate healing.
Collapse
|
9
|
Agten H, Van Hoven I, Van Hoorick J, Van Vlierberghe S, Luyten FP, Bloemen V. In vitro and in vivo evaluation of periosteum-derived cells and iPSC-derived chondrocytes encapsulated in GelMA for osteochondral tissue engineering. Front Bioeng Biotechnol 2024; 12:1386692. [PMID: 38665810 PMCID: PMC11043557 DOI: 10.3389/fbioe.2024.1386692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Osteochondral defects are deep joint surface lesions that affect the articular cartilage and the underlying subchondral bone. In the current study, a tissue engineering approach encompassing individual cells encapsulated in a biocompatible hydrogel is explored in vitro and in vivo. Cell-laden hydrogels containing either human periosteum-derived progenitor cells (PDCs) or human induced pluripotent stem cell (iPSC)-derived chondrocytes encapsulated in gelatin methacryloyl (GelMA) were evaluated for their potential to regenerate the subchondral mineralized bone and the articular cartilage on the joint surface, respectively. PDCs are easily isolated and expanded progenitor cells that are capable of generating mineralized cartilage and bone tissue in vivo via endochondral ossification. iPSC-derived chondrocytes are an unlimited source of stable and highly metabolically active chondrocytes. Cell-laden hydrogel constructs were cultured for up to 28 days in a serum-free chemically defined chondrogenic medium. On day 1 and day 21 of the differentiation period, the cell-laden constructs were implanted subcutaneously in nude mice to evaluate ectopic tissue formation 4 weeks post-implantation. Taken together, the data suggest that iPSC-derived chondrocytes encapsulated in GelMA can generate hyaline cartilage-like tissue constructs with different levels of maturity, while using periosteum-derived cells in the same construct type generates mineralized tissue and cortical bone in vivo. Therefore, the aforementioned cell-laden hydrogels can be an important part of a multi-component strategy for the manufacturing of an osteochondral implant.
Collapse
Affiliation(s)
- Hannah Agten
- Department of Materials Engineering, Surface and Interface Engineered Materials (SIEM), Group T Leuven Campus, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Inge Van Hoven
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | - Sandra Van Vlierberghe
- BIO INX BV, Zwijnaarde, Belgium
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Frank P. Luyten
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Veerle Bloemen
- Department of Materials Engineering, Surface and Interface Engineered Materials (SIEM), Group T Leuven Campus, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Ji L, Yu Y, Zhu F, Huang D, Wang X, Wang J, Liu C. 2-N, 6-O sulfated chitosan evokes periosteal stem cells for bone regeneration. Bioact Mater 2024; 34:282-297. [PMID: 38261845 PMCID: PMC10796814 DOI: 10.1016/j.bioactmat.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Musculoskeletal injuries and bone defects represent a significant clinical challenge, necessitating innovative approaches for effective bone tissue regeneration. In this study, we investigated the potential of harnessing periosteal stem cells (PSCs) and glycosaminoglycan (GAG)-mimicking materials for in situ bone regeneration. Our findings demonstrated that the introduction of 2-N, 6-O sulfated chitosan (26SCS), a GAG-like polysaccharide, enriched PSCs and promoted robust osteogenesis at the defect area. Mechanistically, 26SCS amplifies the biological effect of endogenous platelet-derived growth factor-BB (PDGF-BB) through enhancing the interaction between PDGF-BB and its receptor PDGFRβ abundantly expressed on PSCs, resulting in strengthened PSC proliferation and osteogenic differentiation. As a result, 26SCS effectively improved bone defect repair, even in an osteoporotic mouse model with lowered PDGF-BB level and diminished regenerative potential. Our findings suggested the significant potential of GAG-like biomaterials in regulating PSC behavior, which holds great promise for addressing osteoporotic bone defect repair in future applications.
Collapse
Affiliation(s)
- Luli Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuanman Yu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fuwei Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Dongao Huang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaogang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
11
|
Hajdu KS, Baker CE, Moore-Lotridge SN, Schoenecker JG. Sequestration and Involucrum: Understanding Bone Necrosis and Revascularization in Pediatric Orthopedics. Orthop Clin North Am 2024; 55:233-246. [PMID: 38403369 DOI: 10.1016/j.ocl.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Sequestration, a condition where a section of bone becomes necrotic due to a loss of vascularity or thrombosis, can be a challenging complication of osteomyelitis. This review explores the pathophysiology of sequestration, highlighting the role of the periosteum in forming involucrum and creeping substitution which facilitate revascularization and bone formation. The authors also discuss the induced membrane technique, a two-stage surgical procedure for cases of failed healing of sequestration. Future directions include the potential use of prophylactic anticoagulation and novel drugs targeting immunocoagulopathy, as well as the development of advanced imaging techniques and single-stage surgical procedures.
Collapse
Affiliation(s)
- Katherine S Hajdu
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Courtney E Baker
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephanie N Moore-Lotridge
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan G Schoenecker
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, USA.
| |
Collapse
|
12
|
Zhang X, Deng C, Qi S. Periosteum Containing Implicit Stem Cells: A Progressive Source of Inspiration for Bone Tissue Regeneration. Int J Mol Sci 2024; 25:2162. [PMID: 38396834 PMCID: PMC10889827 DOI: 10.3390/ijms25042162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The periosteum is known as the thin connective tissue covering most bone surfaces. Its extrusive bone regeneration capacity was confirmed from the very first century-old studies. Recently, pluripotent stem cells in the periosteum with unique physiological properties were unveiled. Existing in dynamic contexts and regulated by complex molecular networks, periosteal stem cells emerge as having strong capabilities of proliferation and multipotential differentiation. Through continuous exploration of studies, we are now starting to acquire more insight into the great potential of the periosteum in bone formation and repair in situ or ectopically. It is undeniable that the periosteum is developing further into a more promising strategy to be harnessed in bone tissue regeneration. Here, we summarized the development and structure of the periosteum, cell markers, and the biological features of periosteal stem cells. Then, we reviewed their pivotal role in bone repair and the underlying molecular regulation. The understanding of periosteum-related cellular and molecular content will help enhance future research efforts and application transformation of the periosteum.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Prosthodontics, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200001, China;
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Chen Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Shengcai Qi
- Department of Prosthodontics, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200001, China;
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| |
Collapse
|
13
|
Chen S, Croft AS, Bigdon S, Albers CE, Li Z, Gantenbein B. Conditioned Medium of Intervertebral Disc Cells Inhibits Osteo-Genesis on Autologous Bone-Marrow-Derived Mesenchymal Stromal Cells and Osteoblasts. Biomedicines 2024; 12:376. [PMID: 38397978 PMCID: PMC10886592 DOI: 10.3390/biomedicines12020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Low back pain (LBP) is associated with the degeneration of human intervertebral discs (IVDs). Despite progress in the treatment of LBP through spinal fusion, some cases still end in non-fusion after the removal of the affected IVD tissue. In this study, we investigated the hypothesis that the remaining IVD cells secrete BMP inhibitors that are sufficient to inhibit osteogenesis in autologous osteoblasts (OBs) and bone marrow mesenchymal stem cells (MSCs). A conditioned medium (CM) from primary human IVD cells in 3D alginate culture was co-cultured with seven donor-matched OB and MSCs. After ten days, osteogenesis was quantified at the transcript level using qPCR to measure the expression of bone-related genes and BMP antagonists, and at the protein level by alkaline phosphatase (ALP) activity. Additionally, cells were evaluated histologically using alizarin red (ALZR) staining on Day 21. For judging ALP activity and osteogenesis, the Noggin expression in samples was investigated to uncover the potential causes. The results after culture with the CM showed significantly decreased ALP activity and the inhibition of the calcium deposit formation in alizarin red staining. Interestingly, no significant changes were found among most bone-related genes and BMP antagonists in OBs and MSCs. Noteworthy, Noggin was relatively expressed higher in human IVD cells than in autologous OBs or MSCs (relative to autologous OB, the average fold change was in 6.9, 10.0, and 6.3 in AFC, CEPC, and NPC, respectively; and relative to autologous MSC, the average fold change was 2.3, 3.4, and 3.2, in AFC, CEPC, and NPC, respectively). The upregulation of Noggin in residual human IVDs could potentially inhibit the osteogenesis of autologous OB and MSC, thus inhibiting the postoperative spinal fusion after discectomy surgery.
Collapse
Affiliation(s)
- Shuimu Chen
- Tissue Engineering for Orthopedics & Mechanobiology (TOM), Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Andreas S Croft
- Tissue Engineering for Orthopedics & Mechanobiology (TOM), Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Sebastian Bigdon
- Department of Orthopedic Surgery & Traumatology, Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Christoph E Albers
- Department of Orthopedic Surgery & Traumatology, Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Zhen Li
- AO Research Institute Davos, 7270 Davos, Switzerland
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopedics & Mechanobiology (TOM), Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Department of Orthopedic Surgery & Traumatology, Inselspital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
14
|
Cao Y, Bolam SM, Boss AL, Murray HC, Munro JT, Poulsen RC, Dalbeth N, Brooks AES, Matthews BG. Characterization of adult human skeletal cells in different tissues reveals a CD90 +CD34 + periosteal stem/progenitor population. Bone 2024; 178:116926. [PMID: 37793499 DOI: 10.1016/j.bone.2023.116926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
The periosteum plays a crucial role in bone healing and is an important source of skeletal stem and progenitor cells. Recent studies in mice indicate that diverse populations of skeletal progenitors contribute to growth, homeostasis and healing. Information about the in vivo identity and diversity of skeletal stem and progenitor cells in different compartments of the adult human skeleton is limited. In this study, we compared non-hematopoietic populations in matched tissues from the femoral head and neck of 21 human participants using spectral flow cytometry of freshly isolated cells. High-dimensional clustering analysis indicated significant differences in marker distribution between periosteum, articular cartilage, endosteum and bone marrow populations, and identified populations that were highly enriched or unique to specific tissues. Periosteum-enriched markers included CD90 and CD34. Articular cartilage, which has very poor regenerative potential, showed enrichment of multiple markers, including the PDPN+CD73+CD164+CD146- population previously reported to represent human skeletal stem cells. We further characterized periosteal populations by combining CD90 with other strongly expressed markers. CD90+CD34+ cells sorted directly from periosteum showed significant colony-forming unit fibroblasts (CFU-F) enrichment, rapid expansion, and consistent multi-lineage differentiation of clonal populations in vitro. In situ, CD90+CD34+ cells include a perivascular population in the outer layer of the periosteum and non-perivascular cells closer to the bone surface. CD90+ cells are also highly enriched for CFU-F in bone marrow and endosteum, but not articular cartilage. In conclusion, our study indicates considerable diversity in the non-hematopoietic cell populations in different tissue compartments within the adult human skeleton, and suggests that periosteal progenitor cells reside within the CD90+CD34+ population.
Collapse
Affiliation(s)
- Ye Cao
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Scott M Bolam
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Anna L Boss
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Helen C Murray
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Jacob T Munro
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Raewyn C Poulsen
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Brya G Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
15
|
Steppe L, Megafu M, Tschaffon-Müller ME, Ignatius A, Haffner-Luntzer M. Fracture healing research: Recent insights. Bone Rep 2023; 19:101686. [PMID: 38163010 PMCID: PMC10757288 DOI: 10.1016/j.bonr.2023.101686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 01/03/2024] Open
Abstract
Bone has the rare capability of scarless regeneration that enables the complete restoration of the injured bone area. In recent decades, promising new technologies have emerged from basic, translational and clinical research for fracture treatment; however, 5-10 % of all bone fractures still fail to heal successfully or heal in a delayed manner. Several comorbidities and risk factors have been identified which impair bone healing and might lead to delayed bone union or non-union. Therefore, a considerable amount of research has been conducted to elucidate molecular mechanisms of successful and delayed fracture healing to gain further insights into this complex process. One focus of recent research is to investigate the complex interactions of different cell types and the action of progenitor cells during the healing process. Of particular interest is also the identification of patient-specific comorbidities and how these affect fracture healing. In this review, we discuss the recent knowledge about progenitor cells for long bone repair and the influence of comorbidities such as diabetes, postmenopausal osteoporosis, and chronic stress on the healing process. The topic selection for this review was made based on the presented studies at the 2022 annual meeting of the European Calcified Tissue Society (ECTS) in Helsinki.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Germany
| | - Michael Megafu
- A.T. Still University Kirksville College of Osteopathic Medicine, USA
| | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Germany
| | | |
Collapse
|
16
|
Chen R, Dong H, Raval D, Maridas D, Baroi S, Chen K, Hu D, Berry SR, Baron R, Greenblatt MB, Gori F. Sfrp4 is required to maintain Ctsk-lineage periosteal stem cell niche function. Proc Natl Acad Sci U S A 2023; 120:e2312677120. [PMID: 37931101 PMCID: PMC10655581 DOI: 10.1073/pnas.2312677120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
We have previously reported that the cortical bone thinning seen in mice lacking the Wnt signaling antagonist Sfrp4 is due in part to impaired periosteal apposition. The periosteum contains cells which function as a reservoir of stem cells and contribute to cortical bone expansion, homeostasis, and repair. However, the local or paracrine factors that govern stem cells within the periosteal niche remain elusive. Cathepsin K (Ctsk), together with additional stem cell surface markers, marks a subset of periosteal stem cells (PSCs) which possess self-renewal ability and inducible multipotency. Sfrp4 is expressed in periosteal Ctsk-lineage cells, and Sfrp4 global deletion decreases the pool of PSCs, impairs their clonal multipotency for differentiation into osteoblasts and chondrocytes and formation of bone organoids. Bulk RNA sequencing analysis of Ctsk-lineage PSCs demonstrated that Sfrp4 deletion down-regulates signaling pathways associated with skeletal development, positive regulation of bone mineralization, and wound healing. Supporting these findings, Sfrp4 deletion hampers the periosteal response to bone injury and impairs Ctsk-lineage periosteal cell recruitment. Ctsk-lineage PSCs express the PTH receptor and PTH treatment increases the % of PSCs, a response not seen in the absence of Sfrp4. Importantly, in the absence of Sfrp4, PTH-dependent increase in cortical thickness and periosteal bone formation is markedly impaired. Thus, this study provides insights into the regulation of a specific population of periosteal cells by a secreted local factor, and shows a central role for Sfrp4 in the regulation of Ctsk-lineage periosteal stem cell differentiation and function.
Collapse
Affiliation(s)
- Ruiying Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard University Medical School, Boston, MA02115
| | - Dhairya Raval
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - David Maridas
- Department of Developmental Biology, Harvard Medical School and Harvard School of Dental Medicine, Boston, MA02115
| | - Sudipta Baroi
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Kun Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Dorothy Hu
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Shawn R. Berry
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
- Harvard Medical School, Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Boston, MA02114
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
- Research Division, Hospital for Special Surgery, New York, NY10021
| | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| |
Collapse
|
17
|
Wells LM, Roberts HC, Luyten FP, Roberts SJ. Identifying Fibroblast Growth Factor Receptor 3 as a Mediator of Periosteal Osteochondral Differentiation through the Construction of microRNA-Based Interaction Networks. BIOLOGY 2023; 12:1381. [PMID: 37997980 PMCID: PMC10669632 DOI: 10.3390/biology12111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Human periosteum-derived progenitor cells (hPDCs) have the ability to differentiate towards both the chondrogenic and osteogenic lineages. This coordinated and complex osteochondrogenic differentiation process permits endochondral ossification and is essential in bone development and repair. We have previously shown that humanised cultures of hPDCs enhance their osteochondrogenic potentials in vitro and in vivo; however, the underlying mechanisms are largely unknown. This study aimed to identify novel regulators of hPDC osteochondrogenic differentiation through the construction of miRNA-mRNA regulatory networks derived from hPDCs cultured in human serum or foetal bovine serum as an alternative in silico strategy to serum characterisation. Sixteen differentially expressed miRNAs (DEMis) were identified in the humanised culture. In silico analysis of the DEMis with TargetScan allowed for the identification of 1503 potential miRNA target genes. Upon comparison with a paired RNAseq dataset, a 4.5% overlap was observed (122 genes). A protein-protein interaction network created with STRING interestingly identified FGFR3 as a key network node, which was further predicted using multiple pathway analyses. Functional analysis revealed that hPDCs with the activating mutation FGFR3N540K displayed increased expressions of chondrogenic gene markers when cultured under chondrogenic conditions in vitro and displayed enhanced endochondral bone formation in vivo. A further histological analysis uncovered known downstream mediators involved in FGFR3 signalling and endochondral ossification to be upregulated in hPDC FGFR3N540K-seeded implants. This combinational approach of miRNA-mRNA-protein network analysis with in vitro and in vivo characterisation has permitted the identification of FGFR3 as a novel mediator of hPDC biology. Furthermore, this miRNA-based workflow may also allow for the identification of drug targets, which may be of relevance in instances of delayed fracture repair.
Collapse
Affiliation(s)
- Leah M. Wells
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London NW1 0TU, UK;
| | - Helen C. Roberts
- Department of Natural Sciences, Middlesex University, London NW4 4BT, UK;
| | - Frank P. Luyten
- Skeletal Biology and Engineering Research Centre (SBE), KU Leuven, 3000 Leuven, Belgium;
| | - Scott J. Roberts
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London NW1 0TU, UK;
| |
Collapse
|
18
|
Romero-Torrecilla JA, Lamo-Espinosa JM, Ripalda-Cemboráin P, López-Martínez T, Abizanda G, Riera-Álvarez L, de Galarreta-Moriones SR, López-Barberena A, Rodríguez-Flórez N, Elizalde R, Jayawarna V, Valdés-Fernández J, de Anleo MEG, Childs P, de Juan-Pardo E, Salmeron-Sanchez M, Prósper F, Muiños-López E, Granero-Moltó F. An engineered periosteum for efficient delivery of rhBMP-2 and mesenchymal progenitor cells during bone regeneration. NPJ Regen Med 2023; 8:54. [PMID: 37773177 PMCID: PMC10541910 DOI: 10.1038/s41536-023-00330-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
During bone regeneration, the periosteum acts as a carrier for key regenerative cues, delivering osteochondroprogenitor cells and crucial growth factors to the injured bone. We developed a biocompatible, 3D polycaprolactone (PCL) melt electro-written membrane to act as a mimetic periosteum. Poly (ethyl acrylate) coating of the PCL membrane allowed functionalization, mediated by fibronectin and low dose recombinant human BMP-2 (rhBMP-2) (10-25 μg/ml), resulting in efficient, sustained osteoinduction in vitro. In vivo, rhBMP-2 functionalized mimetic periosteum demonstrated regenerative potential in the treatment of rat critical-size femoral defects with highly efficient healing and functional recovery (80%-93%). Mimetic periosteum has also proven to be efficient for cell delivery, as observed through the migration of transplanted periosteum-derived mesenchymal cells to the bone defect and their survival. Ultimately, mimetic periosteum demonstrated its ability to deliver key stem cells and morphogens to an injured site, exposing a therapeutic and translational potential in vivo when combined with unprecedentedly low rhBMP-2 doses.
Collapse
Affiliation(s)
- Juan Antonio Romero-Torrecilla
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - José María Lamo-Espinosa
- Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Purificación Ripalda-Cemboráin
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
- Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Tania López-Martínez
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Gloria Abizanda
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Luis Riera-Álvarez
- Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Naiara Rodríguez-Flórez
- Tecnun-School of Engineering, Universidad de Navarra, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Reyes Elizalde
- Tecnun-School of Engineering, Universidad de Navarra, San Sebastian, Spain
| | - Vineetha Jayawarna
- Center for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - José Valdés-Fernández
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Miguel Echanove-González de Anleo
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Peter Childs
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Elena de Juan-Pardo
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Manuel Salmeron-Sanchez
- Center for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Felipe Prósper
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
- Department of Hematology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Emma Muiños-López
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain.
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain.
- Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain.
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain.
| | - Froilán Granero-Moltó
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain.
- Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain.
- Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain.
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
19
|
Zhou B, Jiang X, Zhou X, Tan W, Luo H, Lei S, Yang Y. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Biomater Res 2023; 27:86. [PMID: 37715230 PMCID: PMC10504735 DOI: 10.1186/s40824-023-00422-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
Currently, the clinical treatment of critical bone defects attributed to various causes remains a great challenge, and repairing these defects with synthetic bone substitutes is the most common strategy. In general, tissue engineering materials that mimic the structural, mechanical and biological properties of natural bone have been extensively applied to fill bone defects and promote in situ bone regeneration. Hydrogels with extracellular matrix (ECM)-like properties are common tissue engineering materials, among which methacrylate-based gelatin (GelMA) hydrogels are widely used because of their tunable mechanical properties, excellent photocrosslinking capability and good biocompatibility. Owing to their lack of osteogenic activity, however, GelMA hydrogels are combined with other types of materials with osteogenic activities to improve the osteogenic capability of the current composites. There are three main aspects to consider when enhancing the bone regenerative performance of composite materials: osteoconductivity, vascularization and osteoinduction. Bioceramics, bioglass, biomimetic scaffolds, inorganic ions, bionic periosteum, growth factors and two-dimensional (2D) nanomaterials have been applied in various combinations to achieve enhanced osteogenic and bone regeneration activities. Three-dimensional (3D)-bioprinted scaffolds are a popular research topic in bone tissue engineering (BTE), and printed and customized scaffolds are suitable for restoring large irregular bone defects due to their shape and structural tunability, enhanced mechanical properties, and good biocompatibility. Herein, the recent progress in research on GelMA-based composite hydrogel scaffolds as multifunctional platforms for restoring critical bone defects in plastic or orthopedic clinics is systematically reviewed and summarized. These strategies pave the way for the design of biomimetic bone substitutes for effective bone reconstruction with good biosafety. This review provides novel insights into the development and current trends of research on GelMA-based hydrogels as effective bone tissue engineering (BTE) scaffolds for correcting bone defects, and these contents are summarized and emphasized from various perspectives (osteoconductivity, vascularization, osteoinduction and 3D-bioprinting). In addition, advantages and deficiencies of GelMA-based bone substitutes used for bone regeneration are put forward, and corresponding improvement measures are presented prior to their clinical application in near future (created with BioRender.com).
Collapse
Affiliation(s)
- Bixia Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Xulei Jiang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Xinxin Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Wuyuan Tan
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Hang Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China
| | - Shaorong Lei
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| | - Ying Yang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
20
|
Rifai A, Weerasinghe DK, Tilaye GA, Nisbet D, Hodge JM, Pasco JA, Williams LJ, Samarasinghe RM, Williams RJ. Biofabrication of functional bone tissue: defining tissue-engineered scaffolds from nature. Front Bioeng Biotechnol 2023; 11:1185841. [PMID: 37614632 PMCID: PMC10444209 DOI: 10.3389/fbioe.2023.1185841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Damage to bone leads to pain and loss of movement in the musculoskeletal system. Although bone can regenerate, sometimes it is damaged beyond its innate capacity. Research interest is increasingly turning to tissue engineering (TE) processes to provide a clinical solution for bone defects. Despite the increasing biomimicry of tissue-engineered scaffolds, significant gaps remain in creating the complex bone substitutes, which include the biochemical and physical conditions required to recapitulate bone cells' natural growth, differentiation and maturation. Combining advanced biomaterials with new additive manufacturing technologies allows the development of 3D tissue, capable of forming cell aggregates and organoids based on natural and stimulated cues. Here, we provide an overview of the structure and mechanical properties of natural bone, the role of bone cells, the remodelling process, cytokines and signalling pathways, causes of bone defects and typical treatments and new TE strategies. We highlight processes of selecting biomaterials, cells and growth factors. Finally, we discuss innovative tissue-engineered models that have physiological and anatomical relevance for cancer treatments, injectable stimuli gels, and other therapeutic drug delivery systems. We also review current challenges and prospects of bone TE. Overall, this review serves as guide to understand and develop better tissue-engineered bone designs.
Collapse
Affiliation(s)
- Aaqil Rifai
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - D. Kavindi Weerasinghe
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Gebreselassie Addisu Tilaye
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - David Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Laboratory of Advanced Biomaterials, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Jason M. Hodge
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Julie A. Pasco
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Medicine-Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - Lana J. Williams
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Rasika M. Samarasinghe
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Richard J. Williams
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Tee R, Harvey JN, Tham SK, Ek ET. Medial Femoral Condyle Corticoperiosteal Flap for Failed Total Wrist Fusions. J Wrist Surg 2023; 12:288-294. [PMID: 37564622 PMCID: PMC10411124 DOI: 10.1055/s-0043-1760737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 12/03/2022] [Indexed: 01/22/2023]
Abstract
Background Recalcitrant nonunion following total wrist arthrodesis is a rare but challenging problem. Most commonly, in the setting of failed fusion after multiple attempts of refixation and cancellous bone grafting, the underlying cause for the failure is invariably multifactorial and is often associated with a range of host issues in addition to poor local soft-tissue and bony vascularity. The vascularized medial femoral condyle corticoperiosteal (MFC-CP) flap has been shown to be a viable option in a variety of similar settings, which provides vascularity and rich osteogenic progenitor cells to a nonunion site, with relatively low morbidity. While its utility has been described for many other anatomical locations throughout the body, its use for the treatment of failed total wrist fusions has not been previously described in detail in the literature. Methods In this article, we outline in detail the surgical technique for MFC-CP flap for the management of recalcitrant aseptic nonunions following failed total wrist arthrodesis. We discuss indications and contraindications, pearls and pitfalls, and potential complications of this technique. Results Two illustrative cases are presented of patients with recalcitrant nonunions following multiple failed total wrist fusions. Conclusion When all avenues have been exhausted, a free vascularized corticoperiosteal flap from the MFC is a sound alternative solution to achieve union, especially when biological healing has been compromised. We have been able to achieve good clinical outcomes and reliable fusion in this difficult patient population.
Collapse
Affiliation(s)
- Richard Tee
- Division of Hand Surgery, Department of Orthopaedic Surgery, Dandenong Hospital, Monash Health, Melbourne, Victoria, Australia
| | - Jason N. Harvey
- Division of Hand Surgery, Department of Orthopaedic Surgery, Dandenong Hospital, Monash Health, Melbourne, Victoria, Australia
- Orthosport Victoria, Richmond, Melbourne, Victoria, Australia
| | - Stephen K. Tham
- Division of Hand Surgery, Department of Orthopaedic Surgery, Dandenong Hospital, Monash Health, Melbourne, Victoria, Australia
- Department of Surgery, Monash Medical Centre, Monash University, Melbourne, Victoria, Australia
- Victorian Hand Surgery Associates, Fitzroy, Melbourne, Victoria, Australia
| | - Eugene T. Ek
- Division of Hand Surgery, Department of Orthopaedic Surgery, Dandenong Hospital, Monash Health, Melbourne, Victoria, Australia
- Department of Surgery, Monash Medical Centre, Monash University, Melbourne, Victoria, Australia
- Melbourne Orthopaedic Group, Windsor, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Bousson V, Bisseret D, Kaci R. Overview of Periosteal Reaction by Imaging. Semin Musculoskelet Radiol 2023; 27:421-431. [PMID: 37748465 DOI: 10.1055/s-0043-1770354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The periosteum is a membrane that covers almost all bones in the body. It is a living structure but attracts little attention unless it reacts excessively. We highlight the important points in the anatomy, histology, and physiology of the periosteum, the stimuli and various aspects of periosteal reaction, and the main conditions underlying periosteal reaction.
Collapse
Affiliation(s)
- Valérie Bousson
- Service de Radiologie, Hôpital Lariboisière-Fernand Widal. APHP.Nord-Université de Paris, Paris, France
| | | | - Rachid Kaci
- Service d'anatomopathologie, Hôpital Lariboisière-Fernand Widal. APHP.Nord-Université de Paris, Paris, France
| |
Collapse
|
23
|
Cao R, Chen B, Song K, Guo F, Pan H, Cao Y. Characterization and potential of periosteum-derived cells: an overview. Front Med (Lausanne) 2023; 10:1235992. [PMID: 37554503 PMCID: PMC10405467 DOI: 10.3389/fmed.2023.1235992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
As a thin fibrous layer covering the bone surface, the periosteum plays a significant role in bone physiology during growth, development and remodeling. Over the past several decades, the periosteum has received considerable scientific attention as a source of mesenchymal stem cells (MSCs). Periosteum-derived cells (PDCs) have emerged as a promising strategy for tissue engineering due to their chondrogenic, osteogenic and adipogenic differentiation capacities. Starting from the history of PDCs, the present review provides an overview of their characterization and the procedures used for their isolation. This study also summarizes the chondrogenic, osteogenic, and adipogenic abilities of PDCs, serving as a reference about their potential therapeutic applications in various clinical scenarios, with particular emphasis on the comparison with other common sources of MSCs. As techniques continue to develop, a comprehensive analysis of the characterization and regulation of PDCs can be conducted, further demonstrating their role in tissue engineering. PDCs present promising potentials in terms of their osteogenic, chondrogenic, and adipogenic capacities. Further studies should focus on exploring their utility under multiple clinical scenarios to confirm their comparative benefit over other commonly used sources of MSCs.
Collapse
Affiliation(s)
- Rongkai Cao
- Stomatological Hospital and Dental School of Tongji University, Shanghai, China
| | - Beibei Chen
- Stomatological Hospital and Dental School of Tongji University, Shanghai, China
| | - Kun Song
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fang Guo
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Haoxin Pan
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yujie Cao
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
24
|
Leclerc K, Remark LH, Ramsukh M, Josephson AM, Palma L, Parente PEL, Sambon M, Lee S, Lopez EM, Morgani SM, Leucht P. Hox genes are crucial regulators of periosteal stem cell identity. Development 2023; 150:dev201391. [PMID: 36912250 PMCID: PMC10112919 DOI: 10.1242/dev.201391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
Periosteal stem and progenitor cells (PSPCs) are major contributors to bone maintenance and repair. Deciphering the molecular mechanisms that regulate their function is crucial for the successful generation and application of future therapeutics. Here, we pinpoint Hox transcription factors as necessary and sufficient for periosteal stem cell function. Hox genes are transcriptionally enriched in periosteal stem cells and their overexpression in more committed progenitors drives reprogramming to a naïve, self-renewing stem cell-like state. Crucially, individual Hox family members are expressed in a location-specific manner and their stem cell-promoting activity is only observed when the Hox gene is matched to the anatomical origin of the PSPC, demonstrating a role for the embryonic Hox code in adult stem cells. Finally, we demonstrate that Hoxa10 overexpression partially restores the age-related decline in fracture repair. Together, our data highlight the importance of Hox genes as key regulators of PSPC identity in skeletal homeostasis and repair.
Collapse
Affiliation(s)
- Kevin Leclerc
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Lindsey H. Remark
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Malissa Ramsukh
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Anne Marie Josephson
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Laura Palma
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo E. L. Parente
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Margaux Sambon
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Sooyeon Lee
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm 89081, Germany
| | - Emma Muiños Lopez
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Sophie M. Morgani
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Philipp Leucht
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
25
|
Isaka M, Konno W, Kokubo D, Udagawa H, Hizuka S, Sakai T, Yamamoto S, Torisu S, Ueno H. Comparison of perioperative serum osteocrin concentrations between surgical techniques in dogs with cranial cruciate ligament rupture. Res Vet Sci 2023; 158:41-43. [PMID: 36917865 DOI: 10.1016/j.rvsc.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/15/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
The cranial cruciate ligament (CCL) rupture is a common orthopedic disease in dogs that is usually managed with tibial plateau leveling osteotomy (TPLO) or extracapsular lateral suture (ECLS). Osteotomy is generally associated with some complications, including nonunion. The periosteum plays an important role in bone growth and remodeling. Osteocrin (OSTN), which was recently identified and is involved in bone formation and differentiation, is produced in the periosteum and osteoblasts. The aimed to investigate whether the concentrations of serum OSTN change before and after stifle surgery in dogs and compare the OSTN concentrations in the two surgical techniques (TPLO: n = 20 vs. ECLS: n = 36). The postoperative serum OSTN concentration in the TPLO group was significantly lower than the preoperative value (p < 0.05), while serum OSTN concentrations differed statistically between the preoperative and suture-removal periods. In contrast, no significant differences were observed in the ECLS group. In conclusion, osteotomy affects serum OSTN concentrations during the perioperative period in dogs, which may be related to periosteal injury.
Collapse
Affiliation(s)
- Mitsuhiro Isaka
- Laboratory of Companion Animal Surgery, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan.
| | - Wataru Konno
- Laboratory of Companion Animal Surgery, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Daiki Kokubo
- Laboratory of Companion Animal Surgery, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiromu Udagawa
- Laboratory of Companion Animal Surgery, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Sho Hizuka
- Laboratory of Companion Animal Surgery, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Toshikazu Sakai
- Laboratory of Companion Animal Surgery, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Shushi Yamamoto
- Laboratory of Companion Animal Surgery, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Shidow Torisu
- Laboratory of Companion Animal Surgery, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroshi Ueno
- Laboratory of Companion Animal Surgery, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
26
|
Shainer R, Kram V, Kilts TM, Li L, Doyle AD, Shainer I, Martin D, Simon CG, Zeng-Brouwers J, Schaefer L, Young MF. Biglycan regulates bone development and regeneration. Front Physiol 2023; 14:1119368. [PMID: 36875017 PMCID: PMC9979216 DOI: 10.3389/fphys.2023.1119368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Endochondral bone development and regeneration relies on activation and proliferation of periosteum derived-cells (PDCs). Biglycan (Bgn), a small proteoglycan found in extracellular matrix, is known to be expressed in bone and cartilage, however little is known about its influence during bone development. Here we link biglycan with osteoblast maturation starting during embryonic development that later affects bone integrity and strength. Biglycan gene deletion reduced the inflammatory response after fracture, leading to impaired periosteal expansion and callus formation. Using a novel 3D scaffold with PDCs, we found that biglycan could be important for the cartilage phase preceding bone formation. The absence of biglycan led to accelerated bone development with high levels of osteopontin, which appeared to be detrimental to the structural integrity of the bone. Collectively, our study identifies biglycan as an influencing factor in PDCs activation during bone development and bone regeneration after fracture.
Collapse
Affiliation(s)
- Reut Shainer
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Vardit Kram
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Tina M. Kilts
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Li Li
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Andrew D. Doyle
- NIDCR Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Inbal Shainer
- Department Genes-Circuits-Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Daniel Martin
- NIDCD/NIDCR Genomics and Computational Biology Core, National Institutes of Health, Bethesda, MD, United States
| | - Carl G. Simon
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt, Germany
| | - Marian F. Young
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
27
|
Sun X, Yang J, Ma J, Wang T, Zhao X, Zhu D, Jin W, Zhang K, Sun X, Shen Y, Xie N, Yang F, Shang X, Li S, Zhou X, He C, Zhang D, Wang J. Three-dimensional bioprinted BMSCs-laden highly adhesive artificial periosteum containing gelatin-dopamine and graphene oxide nanosheets promoting bone defect repair. Biofabrication 2023; 15. [PMID: 36716493 DOI: 10.1088/1758-5090/acb73e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
The periosteum is a connective tissue membrane adhering to the surface of bone tissue that primarily provides nutrients and regulates osteogenesis during bone development and injury healing. However, building an artificial periosteum with good adhesion properties and satisfactory osteogenesis for bone defect repair remains a challenge, especially using three-dimensional (3D) bioprinting. In this study, dopamine was first grafted onto the molecular chain of gelatin usingN-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride andN-hydroxysuccinimide (NHS) to activate the carboxyl group and produce modified gelatin-dopamine (GelDA). Next, a methacrylated gelatin, methacrylated silk fibroin, GelDA, and graphene oxide nanosheet composite bioink loaded with bone marrow mesenchymal stem cells was prepared and used for bioprinting. The physicochemical properties, biocompatibility, and osteogenic roles of the bioink and 3D bioprinted artificial periosteum were then systematically evaluated. The results showed that the developed bioink showed good thermosensitivity and printability and could be used to build 3D bioprinted artificial periosteum with satisfactory cell viability and high adhesion. Finally, the 3D bioprinted artificial periosteum could effectively enhance osteogenesis bothin vitroandin vivo. Thus, the developed 3D bioprinted artificial periosteum can prompt new bone formation and provides a promising strategy for bone defect repair.
Collapse
Affiliation(s)
- Xin Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Jin Yang
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Jie Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xue Zhao
- Department of Radiology, Huangpu Branch of Shanghai Ninth People's Hospital, affiliated to Shanghai Jiao Tong University, No. 58 Puyu East Road, Shanghai 200011, People's Republic of China
| | - Dan Zhu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai 201999, People's Republic of China
| | - Wenjie Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xuzhou Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Yuling Shen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Neng Xie
- Shanghai Evaluation and Verification Center for Medical Devices and Cosmetics, No. 210 Nanchang Road, Shanghai 200020, People's Republic of China
| | - Fei Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xiushuai Shang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Shuai Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Xiaojun Zhou
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Chuanglong He
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Deteng Zhang
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, Shandong, People's Republic of China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China.,School of Rehabilitation Medicine, Weifang Medical University, No. 7166 Baotong West Street, Weifang 261053, Shangdong, People's Republic of China
| |
Collapse
|
28
|
Khojasteh A, Safiaghdam H, Nokhbatolfoghahaei H, Mohaghegh S. Periosteum as a covering vascular flap in posterior mandibular augmentation: A retrospective cohort study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101352. [PMID: 36494077 DOI: 10.1016/j.jormas.2022.101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To analyze the impact of creating periosteal vascular flaps on the amount of bone augmentation following inlay bone grafting (IBG) and cortical autogenous tenting (CAT). MATERIALS AND METHODS This was a retrospective cohort study enrolling a sample cohort of patients presented to a private clinic in 2015 and 2019 for posterior mandibular ridge augmentation before dental implant placement. The predictor variables were surgical methods: CAT vs. CAT in conjunction with periosteal flap (CATP) vs. IBG vs. IBG in conjunction with periosteal flap (IBGP). The primary outcome variables were supra bundle bone (SBB) superior to the inferior alveolar canal (ΔH) and crestal width difference (ΔW) at a 4-month follow-up. Appropriate statistics were computed at 0.05 significance level. RESULTS A total of 29 cases (10 males and 19 females) with a mean age of 57.96±7.14 years were included. A total of 33 sites were augmented through CATP, 16 sites through IBGP, 33 sites through CAT, and 11 sites through IBG techniques. All patients healed uneventfully without permanent neurosensory changes, and adequate horizontal (ΔW:3.33±0.71 mm) and vertical (ΔH:5.10±2.04 mm) bone dimensions were restored that allowed implant placement. Using periosteal vascular flaps significantly increased bone augmentation in both vertical and horizontal dimensions (P < 0.01). CONCLUSION Periosteal vascular flaps can increase the efficacy of mandibular augmentation techniques and decrease post-surgical complications.
Collapse
Affiliation(s)
- Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cranio-Maxillofacial Surgery/University Hospital, Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Hannaneh Safiaghdam
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadra Mohaghegh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Wang Y, Ren J, Hou G, Ge X. NFATC1 and NFATC2 expression patterns in human osteochondromas. Heliyon 2023; 9:e13018. [PMID: 36747924 PMCID: PMC9898645 DOI: 10.1016/j.heliyon.2023.e13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Background Our previous study in genetic mouse models found that NFATc1 and NFATc2 suppress osteochondroma formation from entheseal progenitors. However, it remains unclear whether NFAT signaling is also involved in human osteochondromagenesis. As the first step in addressing this question, the current study aimed to determine the expression patterns of NFATC1 and NFATC2 in human osteochondroma samples. Methods Immunohistochemistry (IHC) was used to examine and analyze NFATC1 and NFATC2 expression in human osteochondroma samples. The human periosteum was used to map the expression of NFATC1 under physiological conditions by IHC. Furthermore, human periosteal progenitors were isolated and identified from the periosteal tissues of bone fracture healing patients. The expression of NFATC1 in human periosteal progenitors was characterized by Western blotting compared to human bone marrow stromal cells (BMSC). Results The IHC results showed that the expression of NFATC1 was undetectable in most human osteochondromas cells, and only a small proportion of osteochondroma cells, especially clonally grown chondrocytes, showed positive staining of NFATC1. NFATC2 expression was also undetectable in most chondrocytes in human osteochondromas. The mouse and human periosteum showed a comparable ratio of NFATC1 positive cells (9.56 ± 0.80% vs 11.04 ± 2.05%, P = 0.3101). Furthermore, Western blotting analysis revealed that NFATC1 expression was highly enriched in human periosteal progenitors compared to BMSC. Conclusions NFATC1 and NFATC2 are undetectable in most human osteochondroma chondrocytes. The expression pattern of NFATC1 in human osteochondromas and the normal periosteum suggests that NFAT signaling could be suppressed during human osteochondromagenesis.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Stomatology, Xuanwu Hospital Capital Medical University, Beijing, China,National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jiangdong Ren
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopaedics of Guangdong Province), Guangzhou, Guangdong, China
| | - Guojin Hou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Xianpeng Ge
- Department of Stomatology, Xuanwu Hospital Capital Medical University, Beijing, China,National Clinical Research Center for Geriatric Diseases, Beijing, China,Corresponding author. Department of Stomatology, Xuanwu Hospital Capital Medical University, Beijing, China.
| |
Collapse
|
30
|
Su Y, Zeng L, Deng R, Ye B, Tang S, Xiong Z, Sun T, Ding Q, Su W, Jing X, Gao Q, Wang X, Qiu Z, Chen K, Quan D, Guo X. Endogenous Electric Field-Coupled PD@BP Biomimetic Periosteum Promotes Bone Regeneration through Sensory Nerve via Fanconi Anemia Signaling Pathway. Adv Healthc Mater 2023; 12:e2203027. [PMID: 36652677 DOI: 10.1002/adhm.202203027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Indexed: 01/20/2023]
Abstract
To treat bone defects, repairing the nerve-rich periosteum is critical for repairing the local electric field. In this study, an endogenous electric field is coupled with 2D black phosphorus electroactive periosteum to explore its role in promoting bone regeneration through nerves. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to characterize the electrically active biomimetic periosteum. Here, the in vitro effects exerted by the electrically active periosteum on the transformation of Schwann cells into the repair phenotype, axon initial segment (AIS) and dense core vesicle (DCV) of sensory neurons, and bone marrow mesenchymal stem cells are assessed using SEM, immunofluorescence, RNA-sequencing, and calcium ion probes. The electrically active periosteum stimulates Schwann cells into a neuroprotective phenotype via the Fanconi anemia pathway, enhances the AIS effect of sensory neurons, regulates DCV transport, and releases neurotransmitters, promoting the osteogenic transformation of bone marrow mesenchymal stem cells. Microcomputed tomography and other in vivo techniques are used to study the effects of the electrically active periosteum on bone regeneration. The results show that the electrically active periosteum promotes nerve-induced osteogenic repair, providing a potential clinical strategy for bone regeneration.
Collapse
Affiliation(s)
- Yanlin Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Lian Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Rongli Deng
- PCFM Lab, School of Chemistry and School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510000, China
| | - Bing Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Shuo Tang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 510127, China
| | - Zekang Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qiuyue Ding
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Weijie Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qing Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiumei Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100000, China
| | - Zhiye Qiu
- Allgens Medical Technology Co., Ltd., Beijing, 100000, China
| | - Kaifang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daping Quan
- PCFM Lab, School of Chemistry and School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510000, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
31
|
Mancinelli L, Intini G. Age-associated declining of the regeneration potential of skeletal stem/progenitor cells. Front Physiol 2023; 14:1087254. [PMID: 36818437 PMCID: PMC9931727 DOI: 10.3389/fphys.2023.1087254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Bone fractures represent a significant health burden worldwide, mainly because of the rising number of elderly people. As people become older, the risk and the frequency of bone fractures increase drastically. Such increase arises from loss of skeletal integrity and is also associated to a reduction of the bone regeneration potential. Central to loss of skeletal integrity and reduction of regeneration potential are the skeletal stem/progenitor cells (SSPCs), as they are responsible for the growth, regeneration, and repair of the bone tissue. However, the exact identity of the SSPCs has not yet been determined. Consequently, their functions, and especially dysfunctions, during aging have never been fully characterized. In this review, with the final goal of describing SSPCs dysfunctions associated to aging, we first discuss some of the most recent findings about their identification. Then, we focus on how SSPCs participate in the normal bone regeneration process and how aging can modify their regeneration potential, ultimately leading to age-associated bone fractures and lack of repair. Novel perspectives based on our experience are also provided.
Collapse
Affiliation(s)
- Luigi Mancinelli
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States.,Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Giuseppe Intini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States.,Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States.,Department of Medicine (Hematology/Oncology), University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,University of Pittsburgh UPMC Hillman Cancer Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Yufei T, Bingfeng W, Jiayi L, Hu L, Wenli L, Lin X. Distinct osteogenic effect of different periosteum derived cells via Hippo-YAP cascade signaling. Cell Cycle 2023; 22:183-199. [PMID: 35983614 PMCID: PMC9817120 DOI: 10.1080/15384101.2022.2111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 01/11/2023] Open
Abstract
Periosteum is expected for bone repairing due to excellent regenerative potential. PDCs are the main source of cells for promoting bone repair. However, PDCs from different sites have been confirmed to be site specific due to their distinct embryonic origin and the methods of bone formation. Hippo-YAP pathway is proved to play a critical role in fate decision of mesenchymal stem cells. The effect of Hippo-YAP on PDCs has not been reported so far. Hence, we aim to explore the differences of PDCs from mandible and femur along with their possible responses to YAP signaling. mPDCs and fPDCs were obtained and tested through flow cytometry for identification. Follow-up results illustrated mPDCs was cubic shape and with better proliferation while fPDCs preferred slender cell shape with worse cell viability compared with mPDCs. mPDCs was superior to fPDCs in ALP activity, related mRNA expression and calcium deposits in late stage. Interestingly, downregulation of YAP promoted the ALP activity, related mRNA expression and calcium deposits of fPDCs while hindered that of mPDCs in vitro. Moreover, implant animal model in mandible and femur were constructed for evaluation in vivo. Histological results were similar to the results in vitro. We speculate this may result from their different embryonic origin and the way of bone formation. Taken together, results available suggested that mPDCs may serve as more optimal seed cells for tissue engineering compared with fPDCs; however, considering their different response to YAP signaling, to ensure sufficient YAP expression in mPDCs and appropriate declining YAP expression in fPDCs may establish better osteogenesis.
Collapse
Affiliation(s)
- Tang Yufei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wu Bingfeng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Jiayi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Long Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lai Wenli
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiang Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Mechanical strain induces ex vivo expansion of periosteum. PLoS One 2022; 17:e0279519. [PMID: 36584151 PMCID: PMC9803115 DOI: 10.1371/journal.pone.0279519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/02/2022] [Indexed: 12/31/2022] Open
Abstract
Segmental bone defects present complex clinical challenges. Nonunion, malunion, and infection are common sequalae of autogenous bone grafts, allografts, and synthetic bone implants due to poor incorporation with the patient's bone. The current project explores the osteogenic properties of periosteum to facilitate graft incorporation. As tissue area is a natural limitation of autografting, mechanical strain was implemented to expand the periosteum. Freshly harvested, porcine periosteum was strained at 5 and 10% per day for 10 days with non-strained and free-floating samples serving as controls. Total tissue size, viability and histologic examination revealed that strain increased area to a maximum of 1.6-fold in the 10% daily strain. No change in tissue anatomy or viability via MTT or Ki67 staining and quantification was observed among groups. The osteogenic potential of the mechanical expanded periosteum was then examined in vivo. Human cancellous allografts were wrapped with 10% per day strained, fresh, free-floating, or no porcine periosteum and implanted subcutaneously into female, athymic mice. Tissue was collected at 8- and 16-weeks. Gene expression analysis revealed a significant increase in alkaline phosphatase and osteocalcin in the fresh periosteum group at 8-weeks post implantation compared to all other groups. Values among all groups were similar at week 16. Additionally, histological assessment with H&E and Masson-Goldner Trichrome staining showed that all periosteal groups outperformed the non-periosteal allograft, with fresh periosteum demonstrating the highest levels of new tissue mineralization at the periosteum-bone interface. Overall, mechanical expansion of the periosteum can provide increased area for segmental healing via autograft strategies, though further studies are needed to explore culture methodology to optimize osteogenic potential.
Collapse
|
34
|
A novel feature for monitoring the enzymatic harvesting process of adherent cell cultures based on lens-free imaging. Sci Rep 2022; 12:22202. [PMID: 36564377 PMCID: PMC9789138 DOI: 10.1038/s41598-022-22561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
Adherent cell cultures are often dissociated from their culture vessel (and each other) through enzymatic harvesting, where the detachment response is monitored by an operator. However, this approach is lacking standardisation and reproducibility, and prolonged exposure or too high concentrations can affect the cell's viability and differentiation potential. Quantitative monitoring systems are required to characterise the cell detachment response and objectively determine the optimal time-point to inhibit the enzymatic reaction. State-of-the-art methodologies rely on bulky imaging systems and/or features (e.g. circularity) that lack robustness. In this study, lens-free imaging (LFI) technology was used to develop a novel cell detachment feature. Seven different donors were cultured and subsequently harvested with a (diluted) enzymatic harvesting solution after 3, 5 and 7 days of culture. Cell detachment was captured with the LFI set-up over a period of 20 min (every 20 s) and by optimising the reconstruction of the LFI intensity images, a new feature could be identified. Bright regions in the intensity image were identified as detaching cells and using image analysis, a method was developed to automatically extract this feature, defined as the percentage of detached cell regions. Next, the method was quantitatively and qualitatively validated on a diverse set of images. Average absolute error values of 1.49%, 1.34% and 1.97% were obtained for medium to high density and overconfluent cultures, respectively. The detachment response was quantified for all conditions and the optimal time for enzyme inhibition was reached when approximately 92.5% of the cells were detached. On average, inhibition times of 9.6-11.1 and 16.2-17.2 min were obtained for medium to high density and overconfluent cultures, respectively. In general, overconfluent cultures detached much slower, while their detachment rate was also decreased by the diluted harvesting solution. Moreover, several donors exhibited similar trends in cell detachment behaviour, with two clear outliers. Using the novel feature, measurements can be performed with an increased robustness, while the compact LFI design could pave the way for in situ monitoring in a variety of culture vessels, including bioreactors.
Collapse
|
35
|
Sun H, Zhou X, Zhang Y, Zhang L, Yu X, Ye Z, Laurencin CT. Bone Implants (Bone Regeneration and Bone Cancer Treatments). BIOFABRICATION FOR ORTHOPEDICS 2022:265-321. [DOI: 10.1002/9783527831371.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
36
|
Guo A, Zheng Y, Zhong Y, Mo S, Fang S. Effect of chitosan/inorganic nanomaterial scaffolds on bone regeneration and related influencing factors in animal models: A systematic review. Front Bioeng Biotechnol 2022; 10:986212. [PMID: 36394038 PMCID: PMC9643585 DOI: 10.3389/fbioe.2022.986212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 09/19/2023] Open
Abstract
Bone tissue engineering (BTE) provides a promising alternative for transplanting. Due to biocompatibility and biodegradability, chitosan-based scaffolds have been extensively studied. In recent years, many inorganic nanomaterials have been utilized to modify the performance of chitosan-based materials. In order to ascertain the impact of chitosan/inorganic nanomaterial scaffolds on bone regeneration and related key factors, this study presents a systematic comparison of various scaffolds in the calvarial critical-sized defect (CSD) model. A total of four electronic databases were searched without publication date or language restrictions up to April 2022. The Animal Research Reporting of In Vivo Experiments 2.0 guidelines (ARRIVE 2.0) were used to assess the quality of the included studies. Moreover, the risk of bias (RoB) was evaluated via the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool. After the screening, 22 studies were selected. None of these studies achieved high quality or had a low RoB. In the available studies, scaffolds reconstructed bone defects in radically different extensions. Several significant factors were identified, including baseline characteristics, physicochemical properties of scaffolds, surgery details, and scanning or reconstruction parameters of micro-computed tomography (micro-CT). Further studies should focus on not only improving the osteogenic performance of the scaffolds but also increasing the credibility of studies through rigorous experimental design and normative reports.
Collapse
Affiliation(s)
| | | | | | - Shuixue Mo
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Shanbao Fang
- College of Stomatology, Guangxi Medical University, Nanning, China
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW The periosteum, the outer layer of bone, is a major source of skeletal stem/progenitor cells (SSPCs) for bone repair. Here, we discuss recent findings on the characterization, role, and regulation of periosteal SSPCs (pSSPCs) during bone regeneration. RECENT FINDINGS Several markers have been described for pSSPCs but lack tissue specificity. In vivo lineage tracing and transcriptomic analyses have improved our understanding of pSSPC functions during bone regeneration. Bone injury activates pSSPCs that migrate, proliferate, and have the unique potential to form both bone and cartilage. The injury response of pSSPCs is controlled by many signaling pathways including BMP, FGF, Notch, and Wnt, their metabolic state, and their interactions with the blood clot, nerve fibers, blood vessels, and macrophages in the fracture environment. Periosteal SSPCs are essential for bone regeneration. Despite recent advances, further studies are required to elucidate pSSPC heterogeneity and plasticity that make them a central component of the fracture healing process and a prime target for clinical applications.
Collapse
Affiliation(s)
- Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Céline Colnot
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.
| |
Collapse
|
38
|
Effects of Exercise or Mechanical Stimulation on Bone Development and Bone Repair. Stem Cells Int 2022; 2022:5372229. [PMID: 36213684 PMCID: PMC9534715 DOI: 10.1155/2022/5372229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
The development and regeneration of the bone are tightly regulated by mechanical cues. Multiple cell types, including osteoblasts, osteocytes, osteoclasts, mesenchymal stem cells (MSCs), and recently found skeletal stem cells (SSCs), are responsible for efficient bone development and injury repair. The immune cells in the environment interact with bone cells to maintain homeostasis and facilitate bone regeneration. Investigation of the mechanism by which these cells sense and respond to mechanical signals in bone is fundamental for optimal clinical intervention in bone injury healing. We discuss the effects of exercise programs on fracture healing in animal models and human patients, which encouragingly suggest that carefully designed exercise prescriptions can improve the result of fracture healing during the remodeling phase. However, additional clinical tracing and date accumulation are still required for the pervasive application of exercise prescriptions to improve fracture healing.
Collapse
|
39
|
Tower RJ, Bancroft AC, Chowdary AR, Barnes S, Edwards NJ, Pagani CA, Dawson LA, Levi B. Single-cell mapping of regenerative and fibrotic healing responses after musculoskeletal injury. Stem Cell Reports 2022; 17:2334-2348. [PMID: 36150381 PMCID: PMC9561541 DOI: 10.1016/j.stemcr.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
After injury, a cascade of events repairs the damaged tissue, including expansion and differentiation of the progenitor pool and redeposition of matrix. To guide future wound regeneration strategies, we compared single-cell sequencing of regenerative (third phalangeal element [P3]) and fibrotic (second phalangeal element [P2]) digit tip amputation (DTA) models as well as traumatic heterotopic ossification (HO; aberrant). Analyses point to a common initial response to injury, including expansion of progenitors, redeposition of matrix, and activation of transforming growth factor β (TGF-β) and WNT pathways. Surprisingly, fibrotic P2 DTA showed greater transcriptional similarity to HO than to regenerative P3 DTA, suggesting that gene expression more strongly correlates with healing outcome than with injury type or cell origin. Differential analysis and immunostaining revealed altered activation of inflammatory pathways, such as the complement pathway, in the progenitor cells. These data suggests that common pathways are activated in response to damage but are fine tuned within each injury. Modulating these pathways may shift the balance toward regenerative outcomes. Regenerative and fibrotic injuries share common early response mechanisms Transcriptomes correlate with healing outcome more than injury type or cell source Matrix composition after injury-induced tissue repair is highly injury type dependent Inflammatory cascades are activated in immune and mesenchymal cells
Collapse
Affiliation(s)
- Robert J Tower
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Alec C Bancroft
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashish R Chowdary
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Spencer Barnes
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Bioinformatics Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicole J Edwards
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chase A Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
40
|
Yang D, Ortinau L, Jeong Y, Park D. Advances and challenges in intravital imaging of craniofacial and dental progenitor cells. Genesis 2022; 60:e23498. [PMID: 35980285 PMCID: PMC10015615 DOI: 10.1002/dvg.23498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
Craniofacial and appendicular bone homeostasis is dynamically regulated by a balance between bone formation and resorption by osteoblasts and osteoclasts, respectively. Despite the developments in multiple imaging techniques in bone biology, there are still technical challenges and limitations in the investigation of spatial/anatomical location of rare stem/progenitor cells and their molecular regulation in tooth and craniofacial bones of living animals. Recent advances in live animal imaging techniques for the craniofacial and dental apparatus can provide new insights in real time into bone stem/progenitor cell dynamics and function in vivo. Here, we review the current inventions and applications of the noninvasive intravital imaging technique and its practical uses and limitations in the analysis of stem/progenitor cells in craniofacial and dental apparatus in vivo. Furthermore, we also explore the potential applications of intravital microscopy in the dental field.
Collapse
Affiliation(s)
- Dongwook Yang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Laura Ortinau
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Youngjae Jeong
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Dongsu Park
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
41
|
Yang Y, Rao J, Liu H, Dong Z, Zhang Z, Bei HP, Wen C, Zhao X. Biomimicking design of artificial periosteum for promoting bone healing. J Orthop Translat 2022; 36:18-32. [PMID: 35891926 PMCID: PMC9283802 DOI: 10.1016/j.jot.2022.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Background Periosteum is a vascularized tissue membrane covering the bone surface and plays a decisive role in bone reconstruction process after fracture. Various artificial periosteum has been developed to assist the allografts or bionic bone scaffolds in accelerating bone healing. Recently, the biomimicking design of artificial periosteum has attracted increasing attention due to the recapitulation of the natural extracellular microenvironment of the periosteum and has presented unique capacity to modulate the cell fates and ultimately enhance the bone formation and improve neovascularization. Methods A systematic literature search is performed and relevant findings in biomimicking design of artificial periosteum have been reviewed and cited. Results We give a systematical overview of current development of biomimicking design of artificial periosteum. We first summarize the universal strategies for designing biomimicking artificial periosteum including biochemical biomimicry and biophysical biomimicry aspects. We then discuss three types of novel versatile biomimicking artificial periosteum including physical-chemical combined artificial periosteum, heterogeneous structured biomimicking periosteum, and healing phase-targeting biomimicking periosteum. Finally, we comment on the potential implications and prospects in the future design of biomimicking artificial periosteum. Conclusion This review summarizes the preparation strategies of biomimicking artificial periosteum in recent years with a discussion of material selection, animal model adoption, biophysical and biochemical cues to regulate the cell fates as well as three types of latest developed versatile biomimicking artificial periosteum. In future, integration of innervation, osteochondral regeneration, and osteoimmunomodulation, should be taken into consideration when fabricating multifunctional artificial periosteum. The Translational Potential of this Article: This study provides a holistic view on the design strategy and the therapeutic potential of biomimicking artificial periosteum to promote bone healing. It is hoped to open a new avenue of artificial periosteum design with biomimicking considerations and reposition of the current strategy for accelerated bone healing.
Collapse
Affiliation(s)
- Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jingdong Rao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Huaqian Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Zhifei Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Zhen Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
42
|
Physiological Mineralization during In Vitro Osteogenesis in a Biomimetic Spheroid Culture Model. Cells 2022; 11:cells11172702. [PMID: 36078105 PMCID: PMC9454617 DOI: 10.3390/cells11172702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Bone health-targeting drug development strategies still largely rely on inferior 2D in vitro screenings. We aimed at developing a scaffold-free progenitor cell-based 3D biomineralization model for more physiological high-throughput screenings. MC3T3-E1 pre-osteoblasts were cultured in α-MEM with 10% FCS, at 37 °C and 5% CO2 for up to 28 days, in non-adherent V-shaped plates to form uniformly sized 3D spheroids. Osteogenic differentiation was induced by 10 mM β-glycerophosphate and 50 µg/mL ascorbic acid. Mineralization stages were assessed through studying expression of marker genes, alkaline phosphatase activity, and calcium deposition by histochemistry. Mineralization quality was evaluated by Fourier transformed infrared (FTIR) and scanning electron microscopic (SEM) analyses and quantified by micro-CT analyses. Expression profiles of selected early- and late-stage osteoblast differentiation markers indicated a well-developed 3D biomineralization process with strongly upregulated Col1a1, Bglap and Alpl mRNA levels and type I collagen- and osteocalcin-positive immunohistochemistry (IHC). A dynamic biomineralization process with increasing mineral densities was observed during the second half of the culture period. SEM–Energy-Dispersive X-ray analyses (EDX) and FTIR ultimately confirmed a native bone-like hydroxyapatite mineral deposition ex vivo. We thus established a robust and versatile biomimetic, and high-throughput compatible, cost-efficient spheroid culture model with a native bone-like mineralization for improved pharmacological ex vivo screenings.
Collapse
|
43
|
Deckers T, Hall GN, Papantoniou I, Aerts JM, Bloemen V. A platform for automated and label-free monitoring of morphological features and kinetics of spheroid fusion. Front Bioeng Biotechnol 2022; 10:946992. [PMID: 36091464 PMCID: PMC9461702 DOI: 10.3389/fbioe.2022.946992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spheroids are widely applied as building blocks for biofabrication of living tissues, where they exhibit spontaneous fusion toward an integrated structure upon contact. Tissue fusion is a fundamental biological process, but due to a lack of automated monitoring systems, the in-depth characterization of this process is still limited. Therefore, a quantitative high-throughput platform was developed to semi-automatically select doublet candidates and automatically monitor their fusion kinetics. Spheroids with varying degrees of chondrogenic maturation (days 1, 7, 14, and 21) were produced from two different cell pools, and their fusion kinetics were analyzed via the following steps: (1) by applying a novel spheroid seeding approach, the background noise was decreased due to the removal of cell debris while a sufficient number of doublets were still generated. (2) The doublet candidates were semi-automatically selected, thereby reducing the time and effort spent on manual selection. This was achieved by automatic detection of the microwells and building a random forest classifier, obtaining average accuracies, sensitivities, and precisions ranging from 95.0% to 97.4%, from 51.5% to 92.0%, and from 66.7% to 83.9%, respectively. (3) A software tool was developed to automatically extract morphological features such as the doublet area, roundness, contact length, and intersphere angle. For all data sets, the segmentation procedure obtained average sensitivities and precisions ranging from 96.8% to 98.1% and from 97.7% to 98.8%, respectively. Moreover, the average relative errors for the doublet area and contact length ranged from 1.23% to 2.26% and from 2.30% to 4.66%, respectively, while the average absolute errors for the doublet roundness and intersphere angle ranged from 0.0083 to 0.0135 and from 10.70 to 13.44°, respectively. (4) The data of both cell pools were analyzed, and an exponential model was used to extract kinetic parameters from the time-series data of the doublet roundness. For both cell pools, the technology was able to characterize the fusion rate and quality in an automated manner and allowed us to demonstrate that an increased chondrogenic maturity was linked with a decreased fusion rate. The platform is also applicable to other spheroid types, enabling an increased understanding of tissue fusion. Finally, our approach to study spheroid fusion over time will aid in the design of controlled fabrication of “assembloids” and bottom-up biofabrication of living tissues using spheroids.
Collapse
Affiliation(s)
- Thomas Deckers
- Measure, Model and Manage Bioresponses (M3-BIORES), Department of Biosystems, KU Leuven, Leuven, Belgium
- Surface and Interface Engineered Materials (SIEM), Group T Leuven Campus, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Gabriella Nilsson Hall
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology—Hellas (FORTH), Patras, Greece
| | - Jean-Marie Aerts
- Measure, Model and Manage Bioresponses (M3-BIORES), Department of Biosystems, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Veerle Bloemen
- Surface and Interface Engineered Materials (SIEM), Group T Leuven Campus, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- *Correspondence: Veerle Bloemen,
| |
Collapse
|
44
|
Decoene I, Herpelinck T, Geris L, Luyten FP, Papantoniou I. Engineering bone-forming callus organoid implants in a xenogeneic-free differentiation medium. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.892190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The field of tissue engineering aspires to provide clinically relevant solutions for patients through the integration of developmental engineering principles with a bottom-up manufacturing approach. However, the manufacturing of cell-based advanced therapy medicinal products is hampered by protocol complexity, lack of non-invasive critical quality controls, and dependency on animal-derived components for tissue differentiation. We investigate a serum-free, chemically defined, xeno- and lipid-free chondrogenic differentiation medium to generate bone-forming callus organoids. Our results show an increase in microtissue homogeneity during prolonged differentiation and the high quality of in vivo bone-forming organoids. The low protein content of the culture medium potentially allows for the monitoring of relevant secreted biomarkers as (critical) quality attributes. Together, we envisage that this xeno- and lipid-free chondrogenic medium is compatible with industrial scale-up and automation while facilitating the implementation of non-invasive imaging and the use of quality control parameters based on secreted biomarkers.
Collapse
|
45
|
Julien A, Perrin S, Martínez-Sarrà E, Kanagalingam A, Carvalho C, Luka M, Ménager M, Colnot C. Skeletal Stem/Progenitor Cells in Periosteum and Skeletal Muscle Share a Common Molecular Response to Bone Injury. J Bone Miner Res 2022; 37:1545-1561. [PMID: 35652423 PMCID: PMC9543664 DOI: 10.1002/jbmr.4616] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 11/07/2022]
Abstract
Bone regeneration involves skeletal stem/progenitor cells (SSPCs) recruited from bone marrow, periosteum, and adjacent skeletal muscle. To achieve bone reconstitution after injury, a coordinated cellular and molecular response is required from these cell populations. Here, we show that SSPCs from periosteum and skeletal muscle are enriched in osteochondral progenitors, and more efficiently contribute to endochondral ossification during fracture repair as compared to bone-marrow stromal cells. Single-cell RNA sequencing (RNAseq) analyses of periosteal cells reveal the cellular heterogeneity of periosteum at steady state and in response to bone fracture. Upon fracture, both periosteal and skeletal muscle SSPCs transition from a stem/progenitor to a fibrogenic state prior to chondrogenesis. This common activation pattern in periosteum and skeletal muscle SSPCs is mediated by bone morphogenetic protein (BMP) signaling. Functionally, Bmpr1a gene inactivation in platelet-derived growth factor receptor alpha (Pdgfra)-derived SSPCs impairs bone healing and decreases SSPC proliferation, migration, and osteochondral differentiation. These results uncover a coordinated molecular program driving SSPC activation in periosteum and skeletal muscle toward endochondral ossification during bone regeneration. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Anais Julien
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | | | | | | | - Marine Luka
- Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Université de Paris, Paris, France.,Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Mickaël Ménager
- Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Université de Paris, Paris, France.,Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Céline Colnot
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| |
Collapse
|
46
|
Decellularised Cartilage ECM Culture Coatings Drive Rapid and Robust Chondrogenic Differentiation of Human Periosteal Cells. Bioengineering (Basel) 2022; 9:bioengineering9050203. [PMID: 35621481 PMCID: PMC9137502 DOI: 10.3390/bioengineering9050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
The control of cell behaviour in an effort to create highly homogeneous cultures is becoming an area of intense research, both to elucidate fundamental biology and for regenerative applications. The extracellular matrix (ECM) controls many cellular processes in vivo, and as such is a rich source of cues that may be translated in vitro. Herein, we describe the creation of cell culture coatings from porcine decellularised hyaline cartilage through enzymatic digestion. Surprisingly, heat-mediated sterilisation created a coating with the capacity to rapidly and robustly induce chondrogenic differentiation of human periosteal cells. This differentiation was validated through the alteration of cell phenotype from a fibroblastic to a cuboidal/cobblestone chondrocyte-like appearance. Moreover, chondrogenic gene expression further supported this observation, where cells cultured on heat sterilised ECM-coated plastic displayed higher expression of COL2A1, ACAN and PRG4 (p < 0.05) compared to non-coated plastic cultures. Interestingly, COL2A1 and ACAN expression in this context were sensitive to initial cell density; however, SOX9 expression appeared to be mainly driven by the coating independent of seeding density. The creation of a highly chondrogenic coating may provide a cost-effective solution for the differentiation and/or expansion of human chondrocytes aimed towards cartilage repair strategies.
Collapse
|
47
|
Ghosh YA, Gupta R, Al Maruf DA, Cheng K, Mukherjee P, Clark JR. "Surgical technique: A novel pedicled periosteal scapular flap to facilitate bone growth in an Ovine model". J Plast Reconstr Aesthet Surg 2022; 75:1497-1520. [PMID: 35140043 DOI: 10.1016/j.bjps.2022.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Vascularised periosteum can used for reconstructing bony defects due to its intrinsic osteogenic properties. This osteogenic potential can be harnessed as a vascularised flap to induce bone growth of complex constructs in-vivo. The authors aimed to use a novel pedicled periosteal flap from the scapula to induce bone growth in a critical sized construct. METHODS Eight sheep were used as live animal models. A novel periosteal flap was raised from the infraspinous fossa of each animal and wrapped around non-vascularised autologous bone graft. The constructs were allowed to incubate between 1 and 84 days before harvest. Analysis of the flap was done via histopathology using haematoxylin and eosin staining. RESULTS All flaps were viable at the conclusion of surgery. Seven flaps showed variable thickening with matrix deposition. One flap was devitalised at time of harvest. CONCLUSION The novel periosteal scapular flap described is a promising technique to induce bone growth in complex constructs.
Collapse
Affiliation(s)
- Yohaann A Ghosh
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse Cancer Centre, 119-143, Missenden Road, Sydney, NSW 2050, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| | - Ruta Gupta
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse Cancer Centre, 119-143, Missenden Road, Sydney, NSW 2050, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Ds Abdullah Al Maruf
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse Cancer Centre, 119-143, Missenden Road, Sydney, NSW 2050, Australia
| | - Kai Cheng
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse Cancer Centre, 119-143, Missenden Road, Sydney, NSW 2050, Australia; Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Payal Mukherjee
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse Cancer Centre, 119-143, Missenden Road, Sydney, NSW 2050, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jonathan R Clark
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse Cancer Centre, 119-143, Missenden Road, Sydney, NSW 2050, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
48
|
Chen R, Baron R, Gori F. Sfrp4 and the Biology of Cortical Bone. Curr Osteoporos Rep 2022; 20:153-161. [PMID: 35182301 PMCID: PMC9098678 DOI: 10.1007/s11914-022-00727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Periosteal apposition and endosteal remodeling regulate cortical bone expansion and thickness, both critical determinants of bone strength. Yet, the cellular characteristics and local or paracrine factors that regulate the periosteum and endosteum remain largely elusive. Here we discuss novel insights in cortical bone growth, expansion, and homeostasis, provided by the study of Secreted Frizzled Receptor Protein 4 (Sfrp4), a decoy receptor for Wnt ligands. RECENT FINDINGS SFRP4 loss-of function mutations cause Pyle disease, a rare skeletal disorder characterized by cortical bone thinning and increased fragility fractures despite increased trabecular bone density. On the endosteal surface, Sfrp4-mediated repression of non-canonical Wnt signaling regulates endosteal resorption. On the periosteum, Sfrp4 identifies as a critical functional mediator of periosteal stem cell/progenitor expansion and differentiation. Analysis of signaling pathways regulating skeletal stem cells/progenitors provides an opportunity to advance our understanding of the mechanisms involved in cortical bone biology.
Collapse
Affiliation(s)
- Ruiying Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
49
|
Ding Y, Mo C, Geng J, Li J, Sun Y. Identification of Periosteal Osteogenic Progenitors in Jawbone. J Dent Res 2022; 101:1101-1109. [PMID: 35319300 DOI: 10.1177/00220345221084200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Unlike long bones, jawbone development is mainly accomplished by intramembranous ossification resulting from the differentiation of periosteal progenitor cells. However, the spatiotemporal ontogeny of periosteal progenitor cells during jawbone development and repair remains elusive. In this study, we mapped the transcriptional landscape of the human jawbone periosteum at single-cell resolution and identified a cathepsin K (Ctsk)+ periosteal subset. Lineage tracing analysis indicated that Ctsk-Cre-labeled periosteal cells could make contributions to jawbone development. However, different from the periosteal-specific location of Ctsk+ cells in long bone, we also identified Ctsk+ stromal cells in jawbone marrow and implied the heterogeneity of jawbone Ctsk+ hierarchy. In further analysis of the periosteal progenitor cell subset of heterogeneous Ctsk+ hierarchy, we identified a unique Ctsk+Ly6a+ subset of cells. The additional marker Ly6a helped to further confine the progenitor subset to the jawbone periosteum and was nearly undetectable in the bone marrow. Defects in the jawbone could activate the migration and osteogenic differentiation of Ctsk+Ly6a+ cells. Local ablation of Ctsk+ cells by diphtheria reduced the number of Ctsk+Ly6a+ cells and delayed the repair of the bone defect. Taken together, we identify a novel periosteal osteogenic progenitor subset that is active in jawbone osteogenesis and healing.
Collapse
Affiliation(s)
- Y Ding
- Department of Implantology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - C Mo
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - J Geng
- Department of Implantology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - J Li
- Department of Implantology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Y Sun
- Department of Implantology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| |
Collapse
|
50
|
Bone Healing Materials in the Treatment of Recalcitrant Nonunions and Bone Defects. Int J Mol Sci 2022; 23:ijms23063352. [PMID: 35328773 PMCID: PMC8952383 DOI: 10.3390/ijms23063352] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
The usual treatment for bone defects and recalcitrant nonunions is an autogenous bone graft. However, due to the limitations in obtaining autogenous bone grafts and the morbidity associated with their procurement, various bone healing materials have been developed in recent years. The three main treatment strategies for bone defects and recalcitrant nonunions are synthetic bone graft substitutes (BGS), BGS combined with bioactive molecules, and BGS and stem cells (cell-based constructs). Regarding BGS, numerous biomaterials have been developed to prepare bone tissue engineering scaffolds, including biometals (titanium, iron, magnesium, zinc), bioceramics (hydroxyapatite (HA)), tricalcium phosphate (TCP), biopolymers (collagen, polylactic acid (PLA), polycaprolactone (PCL)), and biocomposites (HA/MONs@miR-34a composite coating, Bioglass (BG)-based ABVF-BG (antibiotic-releasing bone void filling) putty). Bone tissue engineering scaffolds are temporary implants that promote tissue ingrowth and new bone regeneration. They have been developed to improve bone healing through appropriate designs in terms of geometric, mechanical, and biological performance. Concerning BGS combined with bioactive molecules, one of the most potent osteoinductive growth factors is bone morphogenetic proteins (BMPs). In recent years, several natural (collagen, fibrin, chitosan, hyaluronic acid, gelatin, and alginate) and synthetic polymers (polylactic acid, polyglycolic acid, polylactic-coglycolide, poly(e-caprolactone) (PCL), poly-p-dioxanone, and copolymers consisting of glycolide/trimethylene carbonate) have been investigated as potential support materials for bone tissue engineering. Regarding BGS and stem cells (cell-based constructs), the main strategies are bone marrow stromal cells, adipose-derived mesenchymal cells, periosteum-derived stem cells, and 3D bioprinting of hydrogels and cells or bioactive molecules. Currently, significant research is being performed on the biological treatment of recalcitrant nonunions and bone defects, although its use is still far from being generalized. Further research is needed to investigate the efficacy of biological treatments to solve recalcitrant nonunions and bone defects.
Collapse
|