1
|
Ma C, Gao J, Liang J, Wang F, Xu L, Bu J, He B, Liu G, Niu R, Liu G. CCL12 induces trabecular bone loss by stimulating RANKL production in BMSCs during acute lung injury. Exp Mol Med 2023; 55:818-830. [PMID: 37009797 PMCID: PMC10167364 DOI: 10.1038/s12276-023-00970-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 04/04/2023] Open
Abstract
In the last three years, the capacity of health care systems and the public health policies of governments worldwide were challenged by the spread of SARS-CoV-2. Mortality due to SARS-CoV-2 mainly resulted from the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Moreover, millions of people who survived ALI/ARDS in SARS-CoV-2 infection suffer from multiple lung inflammation-induced complications that lead to disability and even death. The lung-bone axis refers to the relationship between lung inflammatory diseases (COPD, asthma, and cystic fibrosis) and bone diseases, including osteopenia/osteoporosis. Compared to chronic lung diseases, the influence of ALI on the skeleton has not been investigated until now. Therefore, we investigated the effect of ALI on bone phenotypes in mice to elucidate the underlying mechanisms. In vivo bone resorption enhancement and trabecular bone loss were observed in LPS-induced ALI mice. Moreover, chemokine (C-C motif) ligand 12 (CCL12) accumulated in the serum and bone marrow. In vivo global ablation of CCL12 or conditional ablation of CCR2 in bone marrow stromal cells (BMSCs) inhibited bone resorption and abrogated trabecular bone loss in ALI mice. Furthermore, we provided evidence that CCL12 promoted bone resorption by stimulating RANKL production in BMSCs, and the CCR2/Jak2/STAT4 axis played an essential role in this process. Our study provides information regarding the pathogenesis of ALI and lays the groundwork for future research to identify new targets to treat lung inflammation-induced bone loss.
Collapse
Affiliation(s)
- Chao Ma
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Juan Gao
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Feizhen Wang
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Long Xu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Jinhui Bu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Bo He
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Guangpu Liu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Ru Niu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Guangwang Liu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China.
| |
Collapse
|
2
|
The roles of osteoprotegerin in cancer, far beyond a bone player. Cell Death Dis 2022; 8:252. [PMID: 35523775 PMCID: PMC9076607 DOI: 10.1038/s41420-022-01042-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
Osteoprotegerin (OPG), also known as tumor necrosis factor receptor superfamily member 11B (TNFRSF11B), is a member of the tumor necrosis factor (TNF) receptor superfamily. Characterized by its ability to bind to receptor activator of nuclear factor kappa B ligand (RANKL), OPG is critically involved in bone remodeling. Emerging evidence implies that OPG is far beyond a bone-specific modulator, and is involved in multiple physiological and pathological processes, such as immunoregulation, vascular function, and fibrosis. Notably, numerous preclinical and clinical studies have been conducted to assess the participation of OPG in tumorigenesis and cancer development. Mechanistic studies have demonstrated that OPG is involved in multiple hallmarks of cancer, including tumor survival, epithelial to mesenchymal transition (EMT), neo-angiogenesis, invasion, and metastasis. In this review, we systematically summarize the basis and advances of OPG from its molecular structure to translational applications. In addition to its role in bone homeostasis, the physiological and pathological impacts of OPG on human health and its function in cancer progression are reviewed, providing a comprehensive understanding of OPG. We aim to draw more attention to OPG in the field of cancer, and to propose it as a promising diagnostic or prognostic biomarker as well as potential therapeutic target for cancer.
Collapse
|
3
|
Liu HC, Chiang CC, Lin CH, Chen CS, Wei CW, Lin SY, Yiang GT, Yu YL. Anti-cancer therapeutic benefit of red guava extracts as a potential therapy in combination with doxorubicin or targeted therapy for triple-negative breast cancer cells. Int J Med Sci 2020; 17:1015-1022. [PMID: 32410830 PMCID: PMC7211147 DOI: 10.7150/ijms.40131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/25/2020] [Indexed: 12/24/2022] Open
Abstract
Guava extracts purified from leaf and bark have many bio-active molecules with anti-cancer activities. In addition, lycopene-rich extracts obtained from red guava fruit can induce apoptosis in estrogen receptor-positive breast cancers. Triple-negative breast cancer (TNBC) lacks estrogen receptors, progesterone receptors and human epidermal growth factor receptor 2 (HER2) and, therefore, hormone therapy and targeted therapy are not used in the clinic. The purpose of this study was to determine whether red guava fruit extracts can affect the proliferation of TNBC cells. In this study, cell viability was determined by using the MTT assay. Apoptosis and necrosis were analyzed using flow cytometry. Cleaved caspase-3 and PARP were analyzed by western blotting. We found that red guava extracts can, through caspase-3 activation and PARP cleavage signaling, induce apoptotic and necrotic death in TNBC cells. Our results thus show the therapeutic benefit of red guava extracts as a potential cancer treatment for TNBC in combination with doxorubicin or targeted therapy.
Collapse
Affiliation(s)
- Hsiao-Chun Liu
- Department of Nursing, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.,Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan
| | - Chien-Chuan Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,enter for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Ching-Hsiang Lin
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.,Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chien-Sheng Chen
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.,Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan
| | - Shu-Yu Lin
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.,Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,enter for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan.,Drug Development Center, China Medical University, Taichung 404, Taiwan.,Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
4
|
Li S, Wu Y, Jiang G, Tian X, Hong J, Chen S, Yan R, Feng G, Cheng Z. Intratendon delivery of leukocyte-rich platelet-rich plasma at early stage promotes tendon repair in a rabbit Achilles tendinopathy model. J Tissue Eng Regen Med 2019; 14:452-463. [PMID: 31840415 DOI: 10.1002/term.3006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/30/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022]
Abstract
Tendinopathy is a great obstacle in clinical practice due to its poor regenerative capacity. The influence of different stages of tendinopathy on effects of leukocyte-rich platelet-rich plasma (Lr-PRP) has not been elucidated. The aim of this study is to investigate the optimal time point for delivery of Lr-PRP on tendinopathy. A tendinopathy model was established by local collagenase injection on the rabbit Achilles tendon. Then after collagenase induction, following treatments were applied randomly on the lesion: (a) 200 μl of Lr-PRP at 1 week (PRP-1 group), (b) 200 μl of saline at 1 week (Saline-1 group), (c) 200 μl of Lr-PRP at 4 weeks (PRP-2 group), and (d) 200 μl of saline at 4 weeks (Saline-2 group). Six weeks after collagenase induction, outcomes were assessed by magnetic resonance imaging, cytokine quantification, gene expression, histology, and transmission electron microscopy. Our results demonstrated that PRP-1 group had the least cross-sectional area and lesion percent of the involved tendon, as well as the lowest signal intensity in magnetic resonance imaging among all groups. However, the PRP-2 group showed larger cross-sectional area than saline groups. Enzyme-linked immunosorbent assay indicated that PRP-1 group had a higher level of interleukin-10 but lower level of interleukin-6 when compared with PRP-2 and saline groups. Meanwhile, the highest expression of collagen (Col) 1 in PRP-1 and Col 3, matrix metalloproteinase (MMP)-1, and MMP-3 in PRP-2 was found. Histologically, the PRP-1 showed better general scores than PRP-2, and no significant difference was found between the PRP-2 and saline groups. For transmission electron microscopy, PRP-1 had the largest mean collagen fibril diameter, and the PRP-2 group showed even smaller mean collagen fibril diameter than saline groups. In conclusion, intratendon delivery of Lr-PRP at early stage showed beneficial effect for repair of tendinopathy but not at late stage. For translation of our results to clinical circumstances, further studies are still needed.
Collapse
Affiliation(s)
- Sihao Li
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Yifan Wu
- Department of Surgery, Zhejiang University Hospital, Zhejiang University, Hangzhou, China
| | - Guangyao Jiang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xiulian Tian
- Department of Neurology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Shiming Chen
- Department of Surgery, Shaoxing Second Hospital, Shaoxing, China
| | - Ruijian Yan
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Gang Feng
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Zhiyuan Cheng
- Institute of Microelectronics and Nanoelectronics, Key Lab. of Advanced Micro/Nano Electronics Devices & Smart Systems of Zhejiang, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
The influence of TRAIL, adiponectin and sclerostin alterations on bone loss in BDL-induced cirrhotic rats and the effect of opioid system blockade. Life Sci 2019; 233:116706. [DOI: 10.1016/j.lfs.2019.116706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 12/31/2022]
|
6
|
Ethiraj P, Sambandam Y, Hathaway-Schrader JD, Haque A, Novince CM, Reddy SV. RANKL triggers resistance to TRAIL-induced cell death in oral squamous cell carcinoma. J Cell Physiol 2019; 235:1663-1673. [PMID: 31309556 DOI: 10.1002/jcp.29086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/21/2019] [Indexed: 12/29/2022]
Abstract
Oral squamous cell carcinoma (OSCC) occurs as a malignancy of the oral cavity. RANK ligand (RANKL) is essential for osteoclast formation/bone resorption. Recently, we showed autoregulation of receptor activator of nuclear factor-κB ligand (RANKL) stimulates OSCC cell proliferation. OSCC cells show resistance to tumor necrosis factor related apoptosis inducing ligand (TRAIL) treatment. Therefore, we hypothesize that RANKL promotes resistance for TRAIL induction of OSCC apoptotic cell death. In this study, SCC14A and SCC74A cells cultured with TRAIL revealed high-level expression of RANKL which increased resistance to TRAIL inhibition of tumor cell proliferation. RANKL stimulation inhibited terminal deoxynucleotidyl transferase dUTP nick end labeling positive staining in TRAIL-treated cells. CRISPR/Cas-9 knockout of RANKL (RANKL-KO) increased caspase-9, caspase-3 activity and cytochrome c release in OSCC cells. RANKL inhibited proapoptotic proteins BAD and BAX expression. TRAIL treatment suppressed the SQSTM1/p62 and RANKL restored the expression. Interestingly, RANKL alone significantly increased proteasome activity. RANKL-KO in OSCC cells inhibited autophagic activity as evidenced by decreased light chain 3B-II and beclin-1 expression. Thus, RANKL stimulation of OSCC tumor cells triggered resistance for TRAIL-induced OSCC cell death. Taken together, blockade of RANKL may inhibit OSCC tumor progression and enhance the potential of TRAIL induced OSCC tumor cell apoptosis.
Collapse
Affiliation(s)
- Purushoth Ethiraj
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Yuvaraj Sambandam
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Sakamuri V Reddy
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
7
|
Shaker OG, Senousy MA. Association of SNP-SNP Interactions Between RANKL, OPG, CHI3L1, and VDR Genes With Breast Cancer Risk in Egyptian Women. Clin Breast Cancer 2018; 19:e220-e238. [PMID: 30309792 DOI: 10.1016/j.clbc.2018.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Genetic susceptibility for breast cancer (BC) is still poorly understood. A combination of multiple low-penetrant alleles of cancer-related genes and gene-gene interactions (epistasis) contributes to BC risk. Genetic variants in receptor activator of nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), chitinase-3-like protein 1 (CHI3L1), and vitamin D receptor (VDR) genes are implicated in breast carcinogenesis; however, the influence of their epistatic effects on BC susceptibility has not yet been studied. We investigated the association of single nucleotide polymorphism (SNP)-SNP interactions and haplotypes of 6 SNPs in these 4 genes with the genetic predisposition of BC in Egyptian women. PATIENTS AND METHODS Data of 115 BC patients and 120 cancer-free controls were studied. Association tests were conducted using logistic regression models. RESULTS Individual SNPs showed weak statistical significance with BC susceptibility. The interactions between RANKL-rs9533156 and OPG-rs2073618; OPG-rs2073618 with CHI3L1-rs4950928, VDR-rs2228570 and VDR-rs1544410; OPG-rs2073617 and VDR-rs1544410; VDR-rs2228570 and VDR-rs1544410 were strongly associated with increased BC risk after adjustment for multiple comparisons. No SNPs were in strong linkage disequilibrium. The TCTCTG-rs9533156-rs2073618-rs2073617-rs4950928-rs2228570-rs1544410 haplotype was significantly associated with increased BC risk (adjusted odds ratio = 8.33; 95% confidence interval, 1.32-52.46; P = .025) compared with controls. TCCCTG haplotype stratified BC patients according to estrogen receptor/progesterone receptor status. TCTCTA was positively associated, and TCTCTG and TGTCTG haplotypes inversely correlated with bone metastasis. Bioinformatic analysis revealed 13 proteins commonly interacting with our 4 genes; the most significant was signal transducer and activator of transcription 5B. CONCLUSION Our results suggested that a stronger combined effect of SNPs in RANKL, OPG, CHI3L1, and VDR genes via gene-gene interaction may help predict BC risk and prognosis.
Collapse
Affiliation(s)
- Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
8
|
Qing T, Yamin Z, Guijie W, Yan J, Zhongyang S. STAT6 silencing induces hepatocellular carcinoma-derived cell apoptosis and growth inhibition by decreasing the RANKL expression. Biomed Pharmacother 2017; 92:1-6. [DOI: 10.1016/j.biopha.2017.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 12/22/2022] Open
|
9
|
Vitamin D Modulation of TRAIL Expression in Human Milk and Mammary Epithelial Cells. Sci Rep 2017; 7:4362. [PMID: 28659589 PMCID: PMC5489519 DOI: 10.1038/s41598-017-04521-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/26/2017] [Indexed: 12/19/2022] Open
Abstract
The vitamin D levels in mothers affect the health status of both the mother and breastfeeding infant. Vitamin D deficient mothers’ infants are prone to rickets. While tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been implicated in cellular growth/apoptosis, immune cell function and bone-resorbing osteoclast formation, the expression of TRAIL in human milk as a function of vitamin D status in mothers remains unknown. We hypothesized that vitamin D deficiency alters TRAIL protein levels in human breast milk and mammary epithelial cells. Milk from vitamin D deficient mothers showed high levels of TRAIL (α and β) proteins compared to milk from vitamin D replete women. Western blot analysis of total cell lysate obtained from normal human mammary epithelial (HME-1) cells treated with variable doses (0–20 nM) of vitamin D for 24 h demonstrated that low levels (0.5 to 5 nM) significantly increased the TRAIL α but no change in β expression. In contrast, vitamin D at 20 nM concentration suppressed the expression of both TRAIL α and β proteins. Consistently, vitamin D regulated TRAIL mRNA expression in HME-1 cells. Our results indicate that vitamin D status in mothers modulates TRAIL expression in breast milk, which may have implications for both mother and infant health.
Collapse
|
10
|
Siegmund D, Lang I, Wajant H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J 2016; 284:1131-1159. [PMID: 27865080 DOI: 10.1111/febs.13968] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
Since their identification more than 20 years ago, the death receptors CD95, TRAILR1, and TRAILR2 have been intensively studied with respect to their cell death-inducing activities. These receptors, however, can also trigger a variety of cell death-independent cellular responses reaching from the activation of proinflammatory gene transcription programs over the stimulation of proliferation and differentiation to induction of cell migration. The cell death-inducing signaling mechanisms of CD95 and the TRAIL death receptors are well understood. In contrast, despite the increasing recognition of the biological and pathophysiological relevance of the cell death-independent activities of CD95, TRAILR1, and TRAILR2, the corresponding signaling mechanisms are less understood and give no fully coherent picture. This review is focused on the cell death-independent activities of CD95 and the TRAIL death receptors and addresses mainly three questions: (a) how are these receptors linked to noncell death pathways at the molecular level, (b) which factors determine the balance of cell death and cell death-independent activities of CD95 and the TRAIL death receptors at the cellular level, and (c) what are the consequences of the cell death-independent functions of these receptors for their role in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Daniela Siegmund
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| |
Collapse
|
11
|
Yang J, Li G, Zhang K. Pro-survival effects by NF-κB, Akt and ERK(1/2) and anti-apoptosis actions by Six1 disrupt apoptotic functions of TRAIL-Dr4/5 pathway in ovarian cancer. Biomed Pharmacother 2016; 84:1078-1087. [PMID: 27780136 DOI: 10.1016/j.biopha.2016.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/08/2016] [Accepted: 10/09/2016] [Indexed: 01/12/2023] Open
Abstract
Apoptotic signaling provoked by death receptors, DR4 and DR5, are generally considered to promote cell death and chemosensitivity in multiple cancers, but this view is being thrown into doubt with recent findings that up-regulated DR4 and DR5 in advanced stages of ovarian cancer are associated with the poor prognosis. For this conflict, two reasonable explanations have been proposed: one is that DR4 and DR5 not exclusively mediate apoptotic pathway, but also favor survival signal; another is that apoptotic signals by DR4 and DR5 are disrupted by some regulators. This study identified these two speculations in TRAIL-resistant (SKOV-3ip1 and A2780) or sensitive (OVCAR-3) ovarian cancer cells. Activation of DR4 and DR5 using their specific ligand, TRAIL, activated pro-survival factors including NF-κB, Akt and ERK(1/2) in ovarian cancer SKOV-3ip1 and A2780 cells. Pharmacological inhibition of their activities potentiated TRAIL cytotoxicity, reducing cell viability and increasing apoptosis. Six1, a homeobox transcription factor, had higher expression in SKOV-3ip1 and A2780 cells than in OVCAR-3 cells. Silencing Six1 raised levels of apoptotic factors including cleaved Bid, caspase-8 and caspase-3, and overrode the TRAIL-resistance. Co-treatment with Six1 knockdown and peptidyl O-glycosyltransferase 14 overexpression showed additive effects on apoptosis signal, leading to increased apoptosis in SKOV-3ip1 and A2780 cells. This study demonstrated that pro-survival effects by NF-κB, Akt and ERK(1/2) and anti-apoptosis actions by Six1 disrupt apoptotic functions of TRAIL-Dr4/5 pathway in ovarian cancer, which may explain why up-regulated DR4 and DR5 in ovarian cancer are associated with poor prognosis and low survival ratio of the patients.
Collapse
Affiliation(s)
- Juan Yang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central south University, No. 126, Xian Jia Hu Road, Yue Lu District, Changsha, Hunan, 410006, China
| | - Guiyuan Li
- Cancer Research Institute, Xiangya School of Medicine, The Central South University, No 87, Xiang Ya Road, Kaifu District, Changsha, 410078, China.
| | - Keqiang Zhang
- Cancer Research Institute, Xiangya School of Medicine, The Central South University, No 87, Xiang Ya Road, Kaifu District, Changsha, 410078, China
| |
Collapse
|
12
|
Sundaram K, Sambandam Y, Shanmugarajan S, Rao DS, Reddy SV. Measles virus nucleocapsid protein modulates the Signal Regulatory Protein-β1 (SIRPβ1) to enhance osteoclast differentiation in Paget's disease of bone. Bone Rep 2016; 7:26-32. [PMID: 28840181 PMCID: PMC5558424 DOI: 10.1016/j.bonr.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 10/28/2022] Open
Abstract
Paget's disease of bone (PDB) is a chronic localized bone disorder in an elderly population. Environmental factors such as paramyxovirus are implicated in PDB and measles virus nucleocapsid protein (MVNP) has been shown to induce pagetic osteoclasts (OCLs). However, the molecular mechanisms underlying MVNP stimulation of OCL differentiation in the PDB are unclear. We therefore determined the MVNP regulated gene expression profiling during OCL differentiation. Agilent microarray analysis of gene expression identified high levels of SIRPβ1 (353-fold) expression in MVNP transduced human bone marrow mononuclear cells stimulated with RANKL. Real-time PCR analysis further confirmed that MVNP alone upregulates SIRPβ1 mRNA expression in these cells. Also, bone marrow mononuclear cells derived from patients with PDB showed high levels of SIRPβ1 mRNA expression compared to normal subjects. We further show that MVNP increases SIRPβ1 interaction with DAP12 adaptor protein in the presence and absence of RANKL stimulation. shRNA knockdown of SIRPβ1 expression in normal human bone marrow monocytes decreased the levels of MVNP enhanced p-Syk and c-Fos expression. In addition, SIRPβ1 knockdown significantly decreased MVNP stimulated dendritic cell-specific transmembrane protein (DC-STAMP) and connective tissue growth factor (CTGF) mRNA expression during OCL differentiation. Furthermore, we demonstrated the contribution of SIRPβ1 in MVNP induced OCL formation and bone resorption. Thus, our results suggest that MVNP modulation of SIRPβ1 provides new insights into the molecular mechanisms which control high bone turnover in PDB.
Collapse
Affiliation(s)
- Kumaran Sundaram
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Yuvaraj Sambandam
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | | | | | - Sakamuri V Reddy
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
13
|
Microgravity Induction of TRAIL Expression in Preosteoclast Cells Enhances Osteoclast Differentiation. Sci Rep 2016; 6:25143. [PMID: 27142480 PMCID: PMC4855152 DOI: 10.1038/srep25143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/12/2016] [Indexed: 11/24/2022] Open
Abstract
Evidence indicates that astronauts experience significant bone loss in space. We previously showed that simulated microgravity (μXg) using the NASA developed rotary cell culture system (RCCS) enhanced bone resorbing osteoclast (OCL) differentiation. However, the mechanism by which μXg increases OCL formation is unclear. RANK/RANKL signaling pathway is critical for OCL differentiation. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been shown to increase osteoclastogenesis. We hypothesize that TRAIL may play an important role in μXg enhanced OCL differentiation. In this study, we identified by RT profiler PCR array screening that μXg induces high levels of TRAIL expression in murine preosteoclast cells in the absence of RANKL stimulation compared to ground based (Xg) cultures. We further identified that μXg elevated the adaptor protein TRAF-6 and fusion genes OC-STAMP and DC-STAMP expression in preosteoclast cells. Interestingly, neutralizing antibody against TRAIL significantly reduced μXg induced OCL formation. We further identified that over-expression of pTRAIL in RAW 264.7 cells enhanced OCL differentiation. These results indicate that TRAIL signaling plays an important role in the μXg increased OCL differentiation. Therefore, inhibition of TRAIL expression could be an effective countermeasure for μXg induced bone loss.
Collapse
|
14
|
Dufresne SS, Boulanger-Piette A, Bossé S, Frenette J. Physiological role of receptor activator nuclear factor-kB (RANK) in denervation-induced muscle atrophy and dysfunction. ACTA ACUST UNITED AC 2016; 3:e13231-e13236. [PMID: 27547781 PMCID: PMC4991940 DOI: 10.14800/rci.1323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The bone remodeling and homeostasis are mainly controlled by the receptor-activator of nuclear factor kB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin (OPG) pathway. While there is a strong association between osteoporosis and skeletal muscle dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology remains elusive. Our recent article published in the American Journal of Physiology (Cell Physiology) showed that RANK is also expressed in fully differentiated C2C12 myotubes and skeletal muscles. We used the Cre-Lox approach to inactivate muscle RANK (RANKmko) and showed that RANK deletion preserves the force of denervated fast-twitch EDL muscles. However, RANK deletion had no positive impact on slow-twitch Sol muscles. In addition, denervating RANKmko EDL muscles induced an increase in the total calcium concentration ([CaT]), which was associated with a surprising decrease in SERCA activity. Interestingly, the levels of STIM-1, which mediates Ca2+ influx following the depletion of SR Ca2+ stores, were markedly higher in denervated RANKmko EDL muscles. We speculated that extracellular Ca2+ influx mediated by STIM-1 may be important for the increase in [CaT] and the gain of force in denervated RANKmko EDL muscles. Overall, these findings showed for the first time that the RANKL/RANK interaction plays a role in denervation-induced muscle atrophy and dysfunction.
Collapse
Affiliation(s)
- Sébastien S Dufresne
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Antoine Boulanger-Piette
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Sabrina Bossé
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada; Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| |
Collapse
|