1
|
Mo L, Wang Z, Jiang M, Zhou C, Ma C, Fan Y, He W, Chen Z, Liu Y. The pathomechanism of bone marrow edema in the femoral head necrosis with pericollapse stage. Sci Rep 2025; 15:1166. [PMID: 39774126 PMCID: PMC11707338 DOI: 10.1038/s41598-024-83376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Bone marrow edema (BME), a notable manifestation during the progression of osteonecrosis of the femoral head (ONFH), exhibits significant associations with femoral head collapse, pain, and prognosis, howeverits' pathogenesis remains underexplored. In this study, specimens from patients undergoing total hip arthroplasty (THA) were analyzed. The results revealed significantly higher Visual Analog Scale (VAS) scores and CT low-density area ratio in the BME group compared to the control group. Furthermore, Sirius Red staining exhibited fibrotic tissue in both necrotic and sclerotic areas, with more pronounced effects in the BME group. Meanwhile, data-independent Acquisition (DIA) proteomics technology was utilized to identify differentially expressed proteins (DEPs) within bone tissue. 141, 299 and 852 DEPs were identified in femoral neck, necrotic and sclerotic regions, respectively. Immune responses, inflammatory reactions and oxidative stress were markedly altered in ONFH cases with BME. In bone tissue, the levels of malondialdehyde (MDA) and proteins associated with osteoclast activity were found to be elevated in the BME group. In conclusion, BME in ONFH at pericollapse stage is associated with inflammation, fibrosis, heightened oxidative stress and increased osteoclast activity. These factors collectively elevated the risk of collapse or re-collapse. Targeted interventions aimed at neutralizing these risk factors show potential in slowing down the progression of the disease.
Collapse
Affiliation(s)
- Liang Mo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine / Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhangzheng Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine / Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengyu Jiang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine / Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chi Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine / Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chao Ma
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinuo Fan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine / Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
- Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhenqiu Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine / Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
- Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yuhao Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine / Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
- Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Fang S, He T, You M, Zhu H, Chen P. Glucocorticoids promote steroid-induced osteonecrosis of the femoral head by down-regulating serum alpha-2-macroglobulin to induce oxidative stress and facilitate SIRT2-mediated BMP2 deacetylation. Free Radic Biol Med 2024; 213:208-221. [PMID: 38142952 DOI: 10.1016/j.freeradbiomed.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Our study investigated the possible molecular mechanism of glucocorticoid in steroid-induced osteonecrosis of the femoral head (SINFH) through regulating serum alpha-2-macroglobulin and SIRT2-mediated BMP2 deacetylation. Essential genes involved in glucocorticoid-induced SINFH were screened by transcriptome sequencing and analyzed by bioinformatics, followed by identifying downstream regulatory targets. Rat bone marrow mesenchymal stem cells were isolated and treated with methylprednisolone (MP) for in vitro cell experiments. Besides, a glucocorticoid-induced rat ONFH was established using the treatment of MP and LPS. ChIP-PCR detected the enrichment of SIRT2 in the promoter region of BMP2, and the deacetylation modification of SIRT2 on BMP2 was determined. Bioinformatics analysis revealed that glucocorticoids may induce ONFH through the SIRT2/BMP2 axis. In vitro cell experiments showed that glucocorticoids up-regulated SIRT2 expression in BMSCs by inducing oxidative stress, thereby promoting cell apoptosis. The up-regulation of SIRT2 expression may be due to the decreased ability of α2 macroglobulin to inhibit oxidative stress, and the addition of NOX protein inhibitor DPI could significantly inhibit SIRT2 expression. SIRT2 could promote histone deacetylation of the BMP2 promoter and inhibit its expression. In vitro cell experiments further indicated that knocking down SIRT2 could protect BMSC from oxidative stress and cell apoptosis induced by glucocorticoids by promoting BMP2 expression. In addition, animal experiments conducted also demonstrated that the knockdown of SIRT2 could improve glucocorticoid-induced ONFH through up-regulating BMP2 expression. Glucocorticoids could induce oxidative stress by down-regulating serum α2M to promote SIRT2-mediated BMP2 deacetylation, leading to ONFH.
Collapse
Affiliation(s)
- Shanhong Fang
- Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China; Fujian Orthopaedics Research Institute, Fuzhou, 350000, PR China; Fujian Orthopedic Bone and Joint Disease and Sports Rehabilitation Clinical Medical Research Center, Fuzhou, 350000, PR China
| | - Tianmin He
- Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China
| | - Mengqiang You
- Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China
| | - Huixin Zhu
- Nursing Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China; Nursing Department, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China
| | - Peng Chen
- Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China; Fujian Orthopaedics Research Institute, Fuzhou, 350000, PR China; Fujian Orthopedic Bone and Joint Disease and Sports Rehabilitation Clinical Medical Research Center, Fuzhou, 350000, PR China.
| |
Collapse
|
3
|
Meng Q, Wang Y, Yuan T, Su Y, Li Z, Sun S. Osteoclast: The novel whistleblower in osteonecrosis of the femoral head. GENE REPORTS 2023; 33:101833. [DOI: 10.1016/j.genrep.2023.101833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Liu Y, Mo L, Lu H, Wei Y, Zhang J, Bennett S, Xu J, Zhou C, Fang B, Chen Z. Dragon blood resin ameliorates steroid-induced osteonecrosis of femoral head through osteoclastic pathways. Front Cell Dev Biol 2023; 11:1202888. [PMID: 37675145 PMCID: PMC10477996 DOI: 10.3389/fcell.2023.1202888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Objective: Dragon's Blood resin (DBR) is a traditional medicinal substance renowned for its diverse pharmacological effects, which consists of potent anti-inflammatory, antioxidant and angiogenic properties. This study aimed to elucidate its therapeutic mechanism in alleviating steroid-induced osteonecrosis of the femoral head (SIONFH). Methods: Techniques such as SPR and LC-MS were employed to identify and analyze the target proteins of DBR in bone marrow macrophages (BMMs). In vitro, BMMs were treated with RANKL and DBR, and TRAcP staining and actin belt staining were utilized to assess osteoclast activity. The inhibitory effects and underlying mechanisms of DBR on osteoclastogenesis and reactive oxygen species (ROS) generation were determined using real-time PCR, western blotting and immunofluorescence staining. An in vivo SIONFH rat model was set up to assess the curative impacts of DBR using micro-CT scanning and pathological staining. Results: Bioinformatic tools revealed a pivotal role of osteoclast differentiation in SIONFH. Proteomic analysis identified 164 proteins binding in BMMs. In vitro assessments demonstrated that DBR hindered osteoclastogenesis by modulating the expression of specific genes and proteins, along with antioxidant proteins including TRX1 and Glutathione Reductase. Notably, the resin effectively inhibited the expression of crucial proteins, such as the phosphorylation of JNK and the nuclear localization of p65 within the TRAF6/JNK and NFκB signaling pathways. In vivo experiments further confirmed that DBR mitigated the onset of SIONFH in rats by curbing osteoclast and ROS activities. Conclusion: These findings underscore the potential of Dragon's Blood as an effective administration for early-stage SIONFH, shedding light on its therapeutic influence on ROS-mediated osteoclastic signaling pathways.
Collapse
Affiliation(s)
- Yuhao Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Mo
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongduo Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yangwenxiang Wei
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahao Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Samuel Bennett
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Shenzhen institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chi Zhou
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Fang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenqiu Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Cao H, Shi K, Long J, Liu Y, Li L, Ye T, Huang C, Lai Y, Bai X, Qin L, Wang X. PDGF-BB prevents destructive repair and promotes reparative osteogenesis of steroid-associated osteonecrosis of the femoral head in rabbits. Bone 2023; 167:116645. [PMID: 36539110 DOI: 10.1016/j.bone.2022.116645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Destructive repair characterized by inadequate angiogenesis and osteogenesis is the main pathological progression in steroid-associated osteonecrosis of the femoral head (SONFH). Platelet-derived growth factor-BB (PDGF-BB) is an "angiogenesis and osteogenesis coupling" factor that has been used for the treatment of bone defects in clinic. This study was designed to analyze the ability of PDGF-BB for preventing destructive repair and promoting reparative osteogenesis in SONFH. Steroid-associated osteonecrosis (SAON) was induced and triggered destructive repair of the femoral head by repeated lipopolysaccharide (LPS) and methylprednisolone (MPS) injections in rabbits. At 2, 4, and 6 weeks after induction, recombinant human PDGF-BB, neutralizing PDGF-BB antibody, or saline was intramedullary injected into the proximal femora. At week 6 after SAON induction, the proximal femora were dissected for bone architecture and histological analysis. C3H10T1/2 cells and HUVECs were used for further mechanistic investigation. After PDGF-BB treatment, type H vessels and leptin receptor-positive (LepR+) mesenchymal stem cells (MSCs) increased in the affected femoral head, and more osteoblastic osteogenesis along the bone surfaces but scattered adipocytes in bone marrow tissue than that in the SAON group. PDGF-BB treatment prevented destructive repair progression and led to 50-70 % of osteonecrotic femoral heads undergoing reparative osteogenesis. In particular, we found that PDGF-BB could mediate MSC self-renewal and maintain their osteogenic potency by activating PDGFR/Akt/GSK3β/CERB signaling in the presence of steroids. Moreover, PDGF-BB also stabled the newly formed vascular tubes by recruiting MSCs for improving intraosseous vascular integration. PDGF-BB may be a candidate for the promotion of reparative osteogenesis in SONFH.
Collapse
Affiliation(s)
- Huijuan Cao
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Keda Shi
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Jing Long
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Yanzhi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical University, Zhanjiang, PR China
| | - Lingli Li
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Tianluo Ye
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Cuishan Huang
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Yuxiao Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Xueling Bai
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Ling Qin
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong.
| | - Xinluan Wang
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
6
|
He MC, Zhang J, Chen XJ, Shen YS, Fang B, Qin YX, He W, Wei QS. Osteoclastic activity was associated with the development of steroid-induced osteonecrosis of femoral head. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:1036-1046. [PMID: 32667225 DOI: 10.1080/21691401.2020.1774596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study is focussed on evaluating and comparing two mediators of osteoclast, osteoprotegerin (OPG) and nuclear factor-κB ligand (RANKL), in plasma and tissue levels in patients with steroid-induced osteonecrosis of femoral head (SIONFH). Subjects were included in this cross-sectional case-control study in 2016. Bone histomorphology, immunohistochemistry, Western blotting, OPG and RANKL plasma levels, post-hoc statistical power and receiver-operating characteristic (ROC) curves were evaluated. Eighty-six patients diagnosed with SIONFH and 51 healthy subjects were included. OPG expression levels in bone samples increased with ARCO stage, and RANKL expression levels decreased with ARCO stages. Plasma OPG and RANKL levels were significantly higher in the SIONFH group compared with the healthy control group. The plasma OPG level and ratio of OPG and RANKL were positively associated with ARCO stages and significantly higher in stages III and IV. Plasma RANKL levels were negatively associated with ARCO stage and were significantly higher in ARCO stages II and III. Plasma OPG and RANKL may represent potential biomarkers during SIONFH at different stages. Higher plasma OPG levels indicated late-stage SIONFH, and higher plasma RANKL levels indicated early stage. Our findings may provide a clue for the development of diagnostic tools and therapies for SIONFH.
Collapse
Affiliation(s)
- Min-Cong He
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jin Zhang
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Xiao-Jun Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ying-Shan Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Bin Fang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Wei He
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.,Institute of Hip Joint, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qiu-Shi Wei
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.,Institute of Hip Joint, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| |
Collapse
|
7
|
Li W, Xiao H. Scutellaria barbata D. Don Polysaccharides Inhibit High Glucose-Induced Proliferation and Angiogenesis of Retinal Vascular Endothelial Cells. Diabetes Metab Syndr Obes 2021; 14:2431-2440. [PMID: 34103952 PMCID: PMC8180288 DOI: 10.2147/dmso.s296164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The traditional Chinese medicine Scutellaria barbata D. Don (S. barbata) has been reported to exhibit anti-cancer and anti-inflammation activities. The ethanol extract of S. barbata has been confirmed to attenuate diabetic retinopathy (DR). This study aimed to investigate the effects and underlying mechanisms of the polysaccharides isolated from S. barbata (PSB) on the proliferation and angiogenesis of retinal vascular endothelial cells (RVECs) in DR. METHODS Human RVECs (HRVECs) were cultured in normal glucose (NG, 5.5 mM), mannitol (MA, 30 mM), high glucose (HG, 30 mM) and HG plus 40 μg/mL PSB, respectively. Then, cell proliferation, migration and angiogenesis were evaluated. The cell proliferation was also estimated in the presence of SLIGKV, which was used to induce the phosphorylation of ERK (p-ERK). RESULTS PSB reduced normal and HG-induced HRVECs cell viability in a concentration-dependent manner. The protein expression of proliferating cell nuclear antigen (PCNA) and proliferating antigen KI67 (Ki67), the migration rate and tube formation ability, which were increased by HG treatment, were significantly decreased by PSB. PSB also inhibited the phosphorylation of Raf, MEK and ERK in HG-stimulated HRVECs. Moreover, the application of SLIGKV recovered cell viability and the expression of p-ERK, PCNA and Ki67, in HG plus PSB-treated cells. Finally, the HG-enhanced expression of VE-cadherin, Frizzed, β-catenin, MMP-2 and MMP-9 was all reversed by PSB. CONCLUSION PSB could inhibit HG-induced HRVECs proliferation, migration and neovascularization, and these effects might work through blocking the activation of MEK/ERK pathway and VEGF/VE-cadherin axis.
Collapse
Affiliation(s)
- Wenjun Li
- Department of Ophthalmology, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China
| | - Hongxia Xiao
- Department of Ophthalmology, Jingmen NO.2 People’s Hospital, Jingmen, 448000, People’s Republic of China
- Correspondence: Hongxia Xiao Email
| |
Collapse
|
8
|
Shi GS, Li YY, Luo YP, Jin JF, Sun YX, Zheng LZ, Lai YX, Li L, Fu GH, Qin L, Chen SH. Bioactive PLGA/tricalcium phosphate scaffolds incorporating phytomolecule icaritin developed for calvarial defect repair in rat model. J Orthop Translat 2020; 24:112-120. [PMID: 32775203 PMCID: PMC7390784 DOI: 10.1016/j.jot.2020.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 02/09/2023] Open
Abstract
Background/objectives For treatment of large bone defects challenging in orthopaedic clinics, bone graft substitutes are commonly used for the majority of surgeons. It would be proposed in the current study that our bioactive scaffolds could additionally serve as a local delivery system for therapeutic small molecule agents capable of providing support to enhance biological bone repair. Methods In this study, composite scaffolds made of poly (lactic-co-glycolic acid) (PLGA) and tricalcium phosphate (TCP) named by P/T was fabricated by a low-temperature rapid prototyping technique. For optimizing the scaffolds, the phytomolecule icaritin (ICT) was incorporated into P/T scaffolds called P/T/ICT. The osteogenic efficacies of the two groups of scaffolds were compared in a successfully established calvarial defect model in rats. Bone regeneration was evaluated by X-ray, micro-computerised tomography (micro-CT), and histology at weeks 4 and/or 8 post-implantation. In vitro induction of osteogenesis and osteoclastogenesis was established for identification of differentiation potentials evoked by icaritin in primary cultured precursor cells. Results The results of radiographies and decalcified histology demonstrated more area and volume fractions of newly formed bone within bone defect sites implanted with P/T/ICT scaffold than that with P/T scaffold. Undecalcified histological results presented more osteoid and mineralized bone tissues, and also more active bone remodeling in P/T/ICT group than that in P/T group. The results of histological staining in osteoclast-like cells and newly formed vessels indicated favorable biocompatibility, rapid bioresorption and more new vessel growth in P/T/ICT scaffolds in contrast to P/T scaffolds. Based on in vitro induction, the results presented that icaritin could significantly facilitate osteogenic differentiation, while suppressed adipogenic differentiation. Meanwhile, icaritin demonstrated remarkable inhibition of osteoclastogenic differentiation. Conclusion The finding that P/T/ICT composite scaffold can enhance bone regeneration in calvarial bone defects through facilitating effective bone formation and restraining excessive bone resorption. The translational potential of this article The osteogenic bioactivity of icaritin facilitated PLGA/TCP/icartin composite scaffold to exert significant bone regeneration in calvarial defects in rat model. It might form an optimized foundation for potential clinical validation in bone defects application.
Collapse
Affiliation(s)
- Guang-Sen Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ying-Ying Li
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ya-Ping Luo
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jian-Feng Jin
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, PR China
| | - Yu-Xin Sun
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li-Zhen Zheng
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu-Xiao Lai
- Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Long Li
- Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Guo-Hui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ling Qin
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Shi-Hui Chen
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Ying J, Wang P, Ding Q, Shen J, O'Keefe RJ, Chen D, Tong P, Jin H. Peripheral Blood Stem Cell Therapy Does Not Improve Outcomes of Femoral Head Osteonecrosis With Cap-Shaped Separated Cartilage Defect. J Orthop Res 2020; 38:269-276. [PMID: 31520480 DOI: 10.1002/jor.24471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023]
Abstract
A combination treatment with porous tantalum rod implantation and intra-arterial infusion of peripheral blood stem cells (PBSCs) provides a promise for treating early and intermediate stages of osteonecrosis of the femoral head (ONFH). However, its clinical indications and application restrictions remain unclear. This study aims to determine the clinical, histological, and radiological outcomes of a combination treatment using mechanical support and a targeted intra-arterial infusion of PBSCs for painful ONFH with a cap-shaped separation (CSS) cartilage defect. Compared with the standard pain management (control group), this combination treatment did not improve the Harris Hip Score (HHS) at 36 months. Micro-CT and histologic analyses showed severe focal destruction in all CSS-ONFH femoral heads in both the combination and control groups. Femoral heads showed a higher percentage of bone lesions in the combination treatment group than in the control group. There was no significant difference in osteoclast number in the subchondral bone areas between the two groups. A high level of expression of inflammatory cytokines, including tumor necrosis factor-α and interleukin-1β, was detected in blood vessels around the subchondral bone in both groups. The RANKL/OPG (receptor activator of the nuclear factor-kB ligand/osteoprotegerin) ratio was also similar between the control and combination treatment groups. Our results indicate that this combination treatment is not an effective method for the treatment of patients with painful CSS-ONFH. Moreover, this combination treatment did not inhibit inflammatory osteoclastogenesis in patients with more advanced disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:269-276, 2020.
Collapse
Affiliation(s)
- Jun Ying
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, China.,Department of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, China.,Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri
| | - Pinger Wang
- Department of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, China
| | - Quanwei Ding
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, China.,Department of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, China
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, 60612
| | - Peijian Tong
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang Province, China
| | - Hongting Jin
- Department of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, China
| |
Collapse
|
10
|
LncRNA-MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR-125b/VE-cadherin axis. Biosci Rep 2019; 39:BSR20181469. [PMID: 30988072 PMCID: PMC6522718 DOI: 10.1042/bsr20181469] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/07/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Diabetic retinopathy (DR) is currently the leading cause of blindness and visual disability in adults with diabetes mellitus (DM). Neovascularization has been identified as an important clinical property in DR, however, the exact mechanisms in DR neovascularization are still unclear and need further elucidation. Methods: Quantitative real-time PCR (qRT-PCR) was conducted to detect the expression level of long non-coding RNA (lncRNA)-metastasis associated lung adenocarcinoma transcript 1 (MALAT1), miR-125b and vascular endothelial-cadherin (VE-cadherin) in human retina microvascular endothelial cells (hRMECs) treated with high glucose (HG). Luciferase assay was used to detect interaction of MALAT1 with miR-125b and miR-125b with VE-cadherin. MTT assay, transwell assay, tube formation assay and vascular permeability assay were conducted to detect the cell viability, migration tube formation ability and permeability of hRMECs, respectively. ELISA was used to examine the release of VE-cadherin and vascular endothelial growth factor (VEGF). Western blotting was used to access the protein expression of VE-cadherin, VEGF, β-catenin, matrix metalloproteinase (MMP) 2 (MMP2) and MMP9. Results: MALAT1 and VE-cadherin were up-regulated while miR-125b was down-regulated in hRMECs treated with HG. MALAT1 could competitively bind to miR-125b against VE-cadherin at the site of 3′-untranslated region (3′-UTR), leading to the up-regulation of VE-cadherin. Knockdown of MALAT1 inhibited the proliferation, migration, tube formation and vascular permeability of hRMECs induced by HG through up-regulating miR-125b. Furthermore, we found the deletion of MALAT1 suppressed the VE-cadherin/β-catenin complex and neovascularization related proteins expression, which was up-regulated by HG. Conclusion: Knockdown of MALAT1 inhibited cell proliferation, migration and angiogenesis of hRMECs via suppressing the VE-cadherin/β-catenin complex through targeting miR-125b. Inhibition of MALAT1 may serve as a potential target for anti-angiogenic therapy for DR.
Collapse
|
11
|
Li T, Zhang Y, Wang R, Xue Z, Li S, Cao Y, Liu D, Niu Y, Mao X, Wang X, Li W, Guo Q, Guo M, Lin N, Chen W. Discovery and validation an eight-biomarker serum gene signature for the diagnosis of steroid-induced osteonecrosis of the femoral head. Bone 2019; 122:199-208. [PMID: 30853659 DOI: 10.1016/j.bone.2019.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is difficult to be diagnosed at the early stages when it can be administrated effectively. Yet, to date no study has been performed to identify diagnostic biomarkers and to develop diagnostic models for SONFH. In the current study, a total of 60 SONFH patients with Association Research Circulation Osseous (ARCO) stages I-IV, and 20 controls were enrolled and divided into the discovery and validation cohorts. The serum samples were collected and the gene expression profiles were detected by microarray analysis based on the discovery cohort. Then, eight genes (BIRC3, CBL, CCR5, LYN, PAK1, PTEN, RAF1 and TLR4) were identified as the candidate serum biomarkers of SONFH due to the significant differential expression patterns and the topological importance in the interaction network of SONFH-related differentially expressed genes. Functionally, these candidate serum biomarkers were significantly involved into several pathological processes during SONFH progression, such as the immune regulation and inflammation, bone metabolism and angiogenesis. After that, a prediction model for the diagnosis of SONFH was constructed using Partial least squares regression based on the serum levels of the candidate biomarkers. Notably, both the 10-fold cross-validation and the independent dataset test demonstrated the good performance of this model. In conclusion, our study discovered eight promising serum biomarkers and developed the multi-biomarker-based prediction model as a new, potential and non-invasive diagnostic tool for the detection of SONFH, as well as benefit the administration of SONFH in a daily clinical setting.
Collapse
Affiliation(s)
- Taixian Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rongtian Wang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Zhipeng Xue
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Shangzhu Li
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300041, China
| | - Yuju Cao
- Zhengzhou Traditional Chinese Medicine Traumatology Hospital, Zhengzhou 450000, China
| | - Daobing Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Yanfang Niu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Xia Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyue Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Minqun Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Weiheng Chen
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China.
| |
Collapse
|
12
|
Wang C, Meng H, Wang Y, Zhao B, Zhao C, Sun W, Zhu Y, Han B, Yuan X, Liu R, Wang X, Wang A, Guo Q, Peng J, Lu S. Analysis of early stage osteonecrosis of the human femoral head and the mechanism of femoral head collapse. Int J Biol Sci 2018; 14:156-164. [PMID: 29483834 PMCID: PMC5821037 DOI: 10.7150/ijbs.18334] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/21/2017] [Indexed: 12/17/2022] Open
Abstract
We explored the mechanism of early stage osteonecrotic femoral head collapse by analyzing and comparing different regions in human osteonecrotic femoral head samples. Eight osteonecrotic femoral heads (ARCO II-III) were obtained from patients undergoing total hip arthroplasty. Bone structure was observed and evaluated by micro-computed tomography (CT) scans and pathology. Osteoblast and osteoclast activities were detected by tartrate-resistant acid phosphatase, alkaline phosphatase, and immunofluorescent staining. Some trabeculae had microfractures in the subchondral bone and necrotic region, which had lower bone mineral density, as well as trabecular thickness and number, but greater osteoclast activity. A sclerotic band had already appeared in certain samples which had greater trabecular thickness and number, bone mineral density, and osteoblast activity. The appearance of the femoral head did not change significantly in the early stage of osteonecrosis of the femoral head. However, osteoblast and osteoclast activities had already changed in different regions of the osteonecrotic femoral head, which may lead to eventual collapse of the femoral head. Therefore, osteonecrosis of the femoral head must be treated during the early stage. In addition, osteoblast activity should be promoted and osteoclast activity inhibited as early as possible to prevent collapse of an osteonecrotic femoral head.
Collapse
Affiliation(s)
- Cheng Wang
- Institute of Orthopedics,Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital.,Department of orthopedics. Peking University Third Hospital
| | - Haoye Meng
- Institute of Orthopedics,Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital
| | - Yu Wang
- Institute of Orthopedics,Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital
| | - Bin Zhao
- Institute of Orthopedics,Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital.,Department of Orthopedics, General Hospital of Chinese people's armed police force
| | - Chenyang Zhao
- College of Life Science, University of Chinese Academy of Sciences
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center
| | - Yun Zhu
- Institute of Orthopedics,Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital
| | - Bingxing Han
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center
| | - Xueling Yuan
- Institute of Orthopedics,Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital
| | - Ruoxi Liu
- Institute of Orthopedics,Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital
| | - Xin Wang
- Department of Orthopedics, Urumqi General Hospital of Lanzhou Military Command
| | - Aiyuan Wang
- Institute of Orthopedics,Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital
| | - Quanyi Guo
- Institute of Orthopedics,Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital
| | - Jiang Peng
- Institute of Orthopedics,Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital.,Department of orthopedics. Peking University Third Hospital.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center.,Department of Orthopedics, General Hospital of Chinese people's armed police force.,Department of Orthopedics, Urumqi General Hospital of Lanzhou Military Command.,College of Life Science, University of Chinese Academy of Sciences
| | - Shibi Lu
- Institute of Orthopedics,Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital
| |
Collapse
|
13
|
Chen S, Zheng L, Zhang J, Wu H, Wang N, Tong W, Xu J, Huang L, Zhang Y, Yang Z, Lin G, Wang X, Qin L. A novel bone targeting delivery system carrying phytomolecule icaritin for prevention of steroid-associated osteonecrosis in rats. Bone 2018; 106:52-60. [PMID: 29030232 DOI: 10.1016/j.bone.2017.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 01/06/2023]
Abstract
One of the effective strategies for prevention of steroid-associated osteonecrosis (SAON) is to inhibit bone resorption and fat formation and promote bone formation at osteonecrotic sensitive skeletal sites. We identified a novel phytomolecule that showed positive effects on osteogenesis, anti-bone resorption and anti-adipogenesis in vitro and also developed a bone-targeting delivery system (BTDS) for in vivo experimental study. The study investigated if our innovative synthesized BTDS carrying this phytomolecule would be able to effectively prevent SAON in a rat model. SAON was induced by combined injections of lipopolysaccharide and methylprednisolone. SAON rats were divided into four groups, one SAON untreated control group and three SAON treatment groups with different types of delivery systems (Asp8-liposome-icaritin, liposome-icaritin and Asp8-liposome) for two weeks. SAON lesions were identified and osteoclasts activity, osteogenesis and adipogenesis at these sites were evaluated by immunohistochemistry. Ex vitro study was also designed to evaluate the osteogenic and adipogenic potential of the isolated bone marrow stromal cells (BMSCs) via real-time PCR and histochemical staining. Our results showed that as a bone surface-specific BTDS, Asp8-liposome-icaritin effectively prevented steroids-treated rats from SAON with significantly decreased osteocytes apoptosis, down-regulated osteoclatsogenesis and up-regulated osteogenesis. However, both liposome-icaritin and Asp8-liposome treatment did not show significant efficacy for SAON prevention. In summary, this proof-concept-study showed for the first time that the innovative Asp8-liposome-icaritin BTDS was effective for prevention of SAON in terms of bone resorption prevention, adipogenesis suppression, and bone-formation enhancement.
Collapse
Affiliation(s)
- Shihui Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China.; Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Jiayong Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, PR China
| | - Heng Wu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China.; Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, 55455, USA
| | - Nan Wang
- Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Le Huang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Yifeng Zhang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, PR China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Xinluan Wang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China.; Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China..
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, PR China.; Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China..
| |
Collapse
|
14
|
Yang Y, Fang S. Small non-coding RNAs-based bone regulation and targeting therapeutic strategies. Mol Cell Endocrinol 2017; 456:16-35. [PMID: 27888003 PMCID: PMC7116989 DOI: 10.1016/j.mce.2016.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/06/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023]
Abstract
Small non-coding RNAs, which are 20-25 nucleotide ribonucleic acids, have emerged as an important transformation in the biological evolution over almost three decades. microRNAs (miRNAs) and short interfering RNAs (siRNAs) are two significant categories of the small RNAs that exert important effects on bone endocrinology and skeletology. Therefore, clarifying the expression and function of these important molecules in bone endocrine physiology and pathology is of great significance for improving their potential therapeutic value for metabolism-associated bone diseases. In the present review, we highlight the recent advances made in understanding the function and molecular mechanism of these small non-coding RNAs in bone metabolism, especially their potentially therapeutic values in bone-related diseases.
Collapse
Affiliation(s)
- Ying Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Lai Y, Cao H, Wang X, Chen S, Zhang M, Wang N, Yao Z, Dai Y, Xie X, Zhang P, Yao X, Qin L. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials 2017; 153:1-13. [PMID: 29096397 DOI: 10.1016/j.biomaterials.2017.10.025] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
Steroid-associated osteonecrosis (SAON) often requires surgical core decompression (CD) in the early stage for removal of necrotic bone to facilitate repair where bone grafts are needed for filling bone defect and avoiding subsequent joint collapse. In this study, we developed a bioactive composite scaffold incorporated with icariin, a unique phytomolecule that can provide structural and mechanical support and facilitate bone regeneration to fill into bone defects after surgical CD in established SAON rabbit model. An innovative low-temperature 3D printing technology was used to fabricate the poly (lactic-co-glycolic acid)/β-calcium phosphate/icariin (PLGA/TCP/Icariin, PTI) scaffold. The cytocompatibility of the PTI scaffold was tested in vitro, and the osteogenesis properties of PTI scaffolds were assessed in vivo in the SAON rabbit models. Our results showed that the fabricated PTI scaffold had a well-designed biomimic structure that was precisely printed to provide increased mechanical support and stable icariin release from the scaffold for bone regeneration. Furthermore, our in vivo study indicated that the PTI scaffold could enhanced the mechanical properties of new bone tissues and improved angiogenesis within the implanted region in SAON rabbit model than those of PLGA/TCP (PT) scaffold. The underlying osteoblastic mechanism was investigated using MC3T3-E1 cells in vitro and revealed that icariin could facilitate MC3T3-E1 cells ingrowth into the PTI scaffold and regulate osteoblastic differentiation. The PTI scaffold exhibited superior biodegradability, biocompatibility, and osteogenic capability compared with those of PT scaffold. In summary, the PTI composite scaffold which incorporated bioactive phyto-compounds is a promising potential strategy for bone tissue engineering and regeneration in patients with challenging SAON.
Collapse
Affiliation(s)
- Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Huijuan Cao
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Shenzhen Bioactive Materials Engineering Lab for Medicine, Shenzhen 518055, PR China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - Shukui Chen
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Ming Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Nan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhihong Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xinhui Xie
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, PR China; The Department of Orthopedics, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Peng Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Shenzhen Bioactive Materials Engineering Lab for Medicine, Shenzhen 518055, PR China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
16
|
Liu D, Zhang Y, Li X, Li J, Yang S, Xing X, Fan G, Yokota H, Zhang P. eIF2α signaling regulates ischemic osteonecrosis through endoplasmic reticulum stress. Sci Rep 2017; 7:5062. [PMID: 28698612 PMCID: PMC5505953 DOI: 10.1038/s41598-017-05488-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/15/2017] [Indexed: 12/25/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) primarily results from ischemia/hypoxia to the femoral head, and one of the cellular manifestations is the endoplasmic reticulum (ER) stress. To understand possible linkage of ischemic osteonecrosis to the ER stress, a surgery-induced animal model was employed and salubrinal was administered to evaluate the role of ER stress. Salubrinal is a synthetic chemical that inhibits de-phosphorylation of eIF2α, and it can suppress cell death from the ER stress at a proper dose. The results indicated that the ER stress was associated with ONFH and salubrinal significantly improved ONFH-induced symptoms such as osteonecrosis, bone loss, reduction in vessel perfusion, and excessive osteoclastogenesis in the femoral head. Salubrinal also protected osteoblast development by upregulating the levels of ATF4, ALP and RUNX2, and it stimulated angiogenesis of endothelial cells through elevating ATF4 and VEGF. Collectively, the results support the notion that the ER stress is an important pathological outcome in the surgery-induced ONFH model, and salubrinal improves ONFH symptoms by enhancing angiogenesis and bone healing via suppressing the ER stress.
Collapse
Affiliation(s)
- Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Department of Pharmacology, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300457, China
| | - Yunlong Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- School of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300457, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxue Xing
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Guanwei Fan
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300457, China.
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China.
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
17
|
Maubert ME, Wigdahl B, Nonnemacher MR. Opinion: Inhibition of Blood-Brain Barrier Repair as a Mechanism in HIV-1 Disease. Front Neurosci 2017; 11:228. [PMID: 28491017 PMCID: PMC5405129 DOI: 10.3389/fnins.2017.00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Monique E Maubert
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| |
Collapse
|
18
|
Gagliano T, Gentilin E, Tagliati F, Benfini K, Di Pasquale C, Feo C, Falletta S, Riva E, degli Uberti E, Zatelli MC. Inhibition of epithelial growth factor receptor can play an important role in reducing cell growth and survival in adrenocortical tumors. Biochem Pharmacol 2015; 98:639-48. [DOI: 10.1016/j.bcp.2015.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022]
|
19
|
Liu D, Li X, Li J, Yang J, Yokota H, Zhang P. Knee loading protects against osteonecrosis of the femoral head by enhancing vessel remodeling and bone healing. Bone 2015; 81:620-631. [PMID: 26416150 PMCID: PMC4641018 DOI: 10.1016/j.bone.2015.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/27/2015] [Accepted: 09/24/2015] [Indexed: 01/13/2023]
Abstract
Osteonecrosis of the femoral head is a serious orthopedic problem. Moderate loads with knee loading promote bone formation, but their effects on osteonecrosis have not been investigated. Using a rat model, we examined a hypothesis that knee loading enhances vessel remodeling and bone healing through the modulation of the fate of bone marrow-derived cells. In this study, osteonecrosis was induced by transecting the ligamentum teres followed by a tight ligature around the femoral neck. For knee loading, 5 N loads were laterally applied to the knee at 15 Hz for 5 min/day for 5 weeks. Changes in bone mineral density (BMD) and bone mineral content (BMC) of the femur were measured by pDEXA, and ink infusion was performed to evaluate vessel remodeling. Femoral heads were harvested for histomorphometry, and bone marrow-derived cells were isolated to examine osteoclast development and osteoblast differentiation. The results showed that osteonecrosis significantly induced bone loss, and knee loading stimulated both vessel remodeling and bone healing. The osteonecrosis group exhibited the lowest trabecular BV/TV (p b 0.001) in the femoral head, and lowest femoral BMD and BMC (both p b 0.01). However, knee loading increased trabecular BV/TV (p b 0.05) as well as BMD (pb 0.05) and BMC (p b 0.01). Osteonecrosis decreased the vessel volume (pb 0.001), vessel number (pb 0.001) and VEGF expression (p b 0.01), and knee loading increased them (pb 0.001, pb 0.001 and p b 0.01). Osteonecrosis activated osteoclast development, and knee loading reduced its formation, migration, adhesion and the level of “pit” formation (pb 0.001, pb 0.01, pb 0.001 and pb 0.001). Furthermore, knee loading significantly increased osteoblast differentiation and CFU-F (both p b 0.001). A significantly positive correlation was observed between vessel remodeling and bone healing (both p b 0.01). These results indicate that knee loading could be effective in repair osteonecrosis of the femoral head in a rat model. This effect might be attributed to promoting vessel remodeling, suppressing osteoclast development, and increasing osteoblast and fibroblast differentiation. In summary, the current study suggests that knee loading might potentially be employed as a non-invasive therapy for osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacology, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jing Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA.
| |
Collapse
|
20
|
Zheng LZ, Cao HJ, Chen SH, Tang T, Fu WM, Huang L, Chow DHK, Wang YX, Griffith JF, He W, Zhou H, Zhao DW, Zhang G, Wang XL, Qin L. Blockage of Src by Specific siRNA as a Novel Therapeutic Strategy to Prevent Destructive Repair in Steroid-Associated Osteonecrosis in Rabbits. J Bone Miner Res 2015; 30:2044-57. [PMID: 25917347 DOI: 10.1002/jbmr.2542] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/15/2022]
Abstract
Vascular hyperpermeability and highly upregulated bone resorption in the destructive repair progress of steroid-associated osteonecrosis (SAON) are associated with a high expression of VEGF and high Src activity (Src is encoded by the cellular sarcoma [c-src] gene). This study was designed to prove our hypothesis that blocking the VEGF-Src signaling pathway by specific Src siRNA is able to prevent destructive repair in a SAON rabbit model. Destructive repair in SAON was induced in rabbits. At 2, 4, and 6 weeks after SAON induction, VEGF, anti-VEGF, Src siRNA, Src siRNA+VEGF, control siRNA, and saline were introduced via intramedullary injection into proximal femora for each group, respectively. Vascularization and permeability were quantified by dynamic contrast-enhanced (DCE) MRI. At week 6 after SAON induction, proximal femurs were dissected for micro-computed tomography (μCT)-based trabecular architecture with finite element analysis (FEA), μCT-based angiography, and histological analysis. Histological evaluation revealed that VEGF enhanced destructive repair, whereas anti-VEGF prevented destructive repair and Src siRNA and Src siRNA+VEGF prevented destructive repair and enhanced reparative osteogenesis. Findings of angiography and histomorphometry were consistent with those determined by DCE MRI. Src siRNA inhibited VEGF-mediated vascular hyperpermeability but preserved VEGF-induced neovascularization. Bone resorption was enhanced in the VEGF group and inhibited in the anti-VEGF, Src siRNA, Src siRNA+VEGF groups as determined by both 3D μCT and 2D histomorphometry. FEA showed higher estimated failure load in the Src siRNA and Src siRNA+VEGF groups when compared to the vehicle control group. Blockage of VEGF-Src signaling pathway by specific Src siRNA was able to prevent steroid-associated destructive repair while improving reconstructive repair in SAON, which might become a novel therapeutic strategy.
Collapse
Affiliation(s)
- Li-zhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hui-juan Cao
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Shi-hui Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Tao Tang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wei-min Fu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Orthopaedics, Zhongshan Hospital of Dalian University, Dalian, PR China
| | - Le Huang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yi-xiang Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - James Francis Griffith
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wei He
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, PR China
| | - Hong Zhou
- Bone Research Program, ANZAC (Australian and New Zealand Army Corps.) Research Institute, University of Sydney, Sydney, Australia
| | - De-wei Zhao
- Department of Orthopaedics, Zhongshan Hospital of Dalian University, Dalian, PR China
| | - Ge Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xin-luan Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| |
Collapse
|