1
|
Yang X, Chen M, Wang S, Hu X, Zhou J, Yuan H, Zhu E, Wang B. Cortactin controls bone homeostasis through regulating the differentiation of osteoblasts and osteoclasts. Stem Cells 2024; 42:662-674. [PMID: 38655781 DOI: 10.1093/stmcls/sxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Cortactin (CTTN), a cytoskeletal protein and substrate of Src kinase, is implicated in tumor aggressiveness. However, its role in bone cell differentiation remains unknown. The current study revealed that CTTN was upregulated during osteoblast and adipocyte differentiation. Functional experiments demonstrated that CTTN promoted the in vitro differentiation of mesenchymal stem/progenitor cells into osteogenic and adipogenic lineages. Mechanistically, CTTN was able to stabilize the protein level of mechanistic target of rapamycin kinase (mTOR), leading to the activation of mTOR signaling. In-depth investigation revealed that CTTN could bind with casitas B lineage lymphoma-c (c-CBL) and counteract the function of c-CBL, a known E3 ubiquitin ligase responsible for the proteasomal degradation of mTOR. Silencing c-Cbl alleviated the impaired differentiation of osteoblasts and adipocytes caused by CTTN siRNA, while silencing mTOR mitigated the stimulation of osteoblast and adipocyte differentiation induced by CTTN overexpression. Notably, transplantation of CTTN-silenced bone marrow stromal cells (BMSCs) into the marrow of mice led to a reduction in trabecular bone mass, accompanied by a decrease in osteoblasts and an increase in osteoclasts. Furthermore, CTTN-silenced BMSCs expressed higher levels of receptor activator of nuclear factor κB ligand (RANKL) than control BMSCs did and promoted osteoclast differentiation when cocultured with bone marrow-derived osteoclast precursor cells. This study provides evidence that CTTN favors osteoblast differentiation by counteracting the c-CBL-induced degradation of mTOR and inhibits osteoclast differentiation by downregulating the expression of RANKL. It also suggests that maintaining an appropriate level of CTTN expression may be advantageous for maintaining bone homeostasis.
Collapse
Affiliation(s)
- Xiaoli Yang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Meng Chen
- Department of hematology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Shuang Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Xingli Hu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| |
Collapse
|
2
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
3
|
Song H, Tian X, He L, Liu D, Li J, Mei Z, Zhou T, Liu C, He J, Jia X, Yang Z, Yan C, Han Y. CREG1 deficiency impaired myoblast differentiation and skeletal muscle regeneration. J Cachexia Sarcopenia Muscle 2024; 15:587-602. [PMID: 38272853 PMCID: PMC10995283 DOI: 10.1002/jcsm.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND CREG1 (cellular repressor of E1A-stimulated genes 1) is a protein involved in cellular differentiation and homeostasis regulation. However, its role in skeletal muscle satellite cells differentiation and muscle regeneration is poorly understood. This study aimed to investigate the role of CREG1 in myogenesis and muscle regeneration. METHODS RNA sequencing data (GSE8479) was analysed from the Gene Expression Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi). We generated Creg1 knockdown and skeletal muscle satellite cells specific Creg1 overexpression mice mediated by adeno-associated virus serotype 9 (AAV9), skeletal muscle mature myofibre Creg1 knockout mice (myoblast/Creg1MKO), and control mice Creg1flox/flox (Creg1fl/fl) as in vivo models. The mice were injected into tibialis anterior (TA) muscle with 100 μL of 10 μM cardiotoxin to establish a muscle regeneration model. Creg1fl/fl and Creg1MKO mice were treated with AAV-sh-C-Cbl (2 × 1010 genomic copies/mouse) to silence C-Cbl in the TA muscle. 293T and C2C12 cells were transfected with plasmids using lipofectamine RNAi MAX in vitro. Mass spectrometry analyses and RNA sequencing transcriptomic assay were performed. RESULTS We analysed the transcriptional profiles of the skeletal muscle biopsies from healthy older (N = 25) and younger (N = 26) adult men and women in GSE8479 database, and the results showed that Creg1 was associated with human sarcopenia. We found that Creg1 knockdown mice regenerated less newly formed fibres in response to cardiotoxin injection (~30% reduction, P < 0.01); however, muscle satellite cells specific Creg1 overexpression mice regenerated more newly formed fibres (~20% increase, P < 0.05). AMPKa1 is known as a key mediator in the muscle regeneration process. Our results revealed that CREG1 deficiency inhibited AMPKa1 signalling through C-CBL E3-ubiquitin ligase-mediated AMPKa1 degradation (P < 0.01). C-CBL-mediated AMPKa1 ubiquitination was attributed to the K48-linked polyubiquitination of AMPKa1 at K396 and that the modification played an important role in the regulation of AMPKa1 protein stability. We also found that Creg1MKO mice regenerated less newly formed fibres compared with Creg1fl/fl mice (~30% reduction, P < 0.01). RNA-seq analysis showed that CREG1 deletion in impaired muscles led to the upregulation of inflammation and DKK3 expression. The TA muscles of Creg1MKO mice were injected with AAV-vector or AAV-shC-Cbl, silencing C-CBL (P < 0.01) in the skeletal muscles of Creg1MKO mice significantly improved muscle regeneration induced by CTX injury (P < 0.01). CONCLUSIONS Our findings suggest that CREG1 may be a potential therapeutic target for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Haixu Song
- Department of Cardiology, Cardiovascular Research Institute, State Key Laboratory of Frigid Zone Cardiovascular DiseaseGeneral Hospital of Northern Theater CommandShenyangChina
| | - Xiaoxiang Tian
- Department of Cardiology, Cardiovascular Research Institute, State Key Laboratory of Frigid Zone Cardiovascular DiseaseGeneral Hospital of Northern Theater CommandShenyangChina
| | - Lianqi He
- Department of Cardiology, Cardiovascular Research Institute, State Key Laboratory of Frigid Zone Cardiovascular DiseaseGeneral Hospital of Northern Theater CommandShenyangChina
| | - Dan Liu
- Department of Cardiology, Cardiovascular Research Institute, State Key Laboratory of Frigid Zone Cardiovascular DiseaseGeneral Hospital of Northern Theater CommandShenyangChina
| | - Jiayin Li
- Department of Cardiology, Cardiovascular Research Institute, State Key Laboratory of Frigid Zone Cardiovascular DiseaseGeneral Hospital of Northern Theater CommandShenyangChina
| | - Zhu Mei
- Department of Cardiology, Cardiovascular Research Institute, State Key Laboratory of Frigid Zone Cardiovascular DiseaseGeneral Hospital of Northern Theater CommandShenyangChina
| | - Ting Zhou
- Department of Cardiology, Cardiovascular Research Institute, State Key Laboratory of Frigid Zone Cardiovascular DiseaseGeneral Hospital of Northern Theater CommandShenyangChina
| | - Chunying Liu
- Department of Cardiology, Cardiovascular Research Institute, State Key Laboratory of Frigid Zone Cardiovascular DiseaseGeneral Hospital of Northern Theater CommandShenyangChina
| | - Jiaqi He
- Department of Cardiology, Cardiovascular Research Institute, State Key Laboratory of Frigid Zone Cardiovascular DiseaseGeneral Hospital of Northern Theater CommandShenyangChina
| | - Xiaodong Jia
- Department of Cardiology, Cardiovascular Research Institute, State Key Laboratory of Frigid Zone Cardiovascular DiseaseGeneral Hospital of Northern Theater CommandShenyangChina
| | - Zheming Yang
- Department of Cardiology, Cardiovascular Research Institute, State Key Laboratory of Frigid Zone Cardiovascular DiseaseGeneral Hospital of Northern Theater CommandShenyangChina
| | - Chenghui Yan
- Department of Cardiology, Cardiovascular Research Institute, State Key Laboratory of Frigid Zone Cardiovascular DiseaseGeneral Hospital of Northern Theater CommandShenyangChina
| | - Yaling Han
- Department of Cardiology, Cardiovascular Research Institute, State Key Laboratory of Frigid Zone Cardiovascular DiseaseGeneral Hospital of Northern Theater CommandShenyangChina
| |
Collapse
|
4
|
Kim MJ, Piao M, Li Y, Lee SH, Lee KY. Deubiquitinase USP17 Regulates Osteoblast Differentiation by Increasing Osterix Protein Stability. Int J Mol Sci 2023; 24:15257. [PMID: 37894935 PMCID: PMC10607737 DOI: 10.3390/ijms242015257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Deubiquitinases (DUBs) are essential for bone remodeling by regulating the differentiation of osteoblast and osteoclast. USP17 encodes for a deubiquitinating enzyme, specifically known as ubiquitin-specific protease 17, which plays a critical role in regulating protein stability and cellular signaling pathways. However, the role of USP17 during osteoblast differentiation has not been elusive. In this study, we initially investigated whether USP17 could regulate the differentiation of osteoblasts. Moreover, USP17 overexpression experiments were conducted to assess the impact on osteoblast differentiation induced by bone morphogenetic protein 4 (BMP4). The positive effect was confirmed through alkaline phosphatase (ALP) expression and activity studies since ALP is a representative marker of osteoblast differentiation. To confirm this effect, Usp17 knockdown was performed, and its impact on BMP4-induced osteoblast differentiation was examined. As expected, knockdown of Usp17 led to the suppression of both ALP expression and activity. Mechanistically, it was observed that USP17 interacted with Osterix (Osx), which is a key transcription factor involved in osteoblast differentiation. Furthermore, overexpression of USP17 led to an increase in Osx protein levels. Thus, to investigate whether this effect was due to the intrinsic function of USP17 in deubiquitination, protein stabilization experiments and ubiquitination analysis were conducted. An increase in Osx protein levels was attributed to an enhancement in protein stabilization via USP17-mediated deubiquitination. In conclusion, USP17 participates in the deubiquitination of Osx, contributing to its protein stabilization, and ultimately promoting the differentiation of osteoblasts.
Collapse
Affiliation(s)
| | | | | | - Sung Ho Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; (M.J.K.); (M.P.); (Y.L.)
| | - Kwang Youl Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; (M.J.K.); (M.P.); (Y.L.)
| |
Collapse
|
5
|
Dong Y, Chen Y, Ma G, Cao H. The role of E3 ubiquitin ligases in bone homeostasis and related diseases. Acta Pharm Sin B 2023; 13:3963-3987. [PMID: 37799379 PMCID: PMC10547920 DOI: 10.1016/j.apsb.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.
Collapse
Affiliation(s)
| | | | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| |
Collapse
|
6
|
Tang L, Li B, Su Q, Chen X, He R. Identification of hub genes and therapeutic drugs in osteonecrosis of the femoral head through integrated bioinformatics analysis and literature mining. Sci Rep 2023; 13:11972. [PMID: 37488209 PMCID: PMC10366127 DOI: 10.1038/s41598-023-39258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a multifactorial disease leading to severely limited function. By far, the etiology and pathogenesis of ONFH are not fully understood, and surgery is the only effective way to treat ONFH. This study aims to identify hub genes and therapeutic drugs in ONFH. Two gene expression profiles were downloaded from the gene expression omnibus database, and the hub genes and candidate drugs for ONFH were identified through integrated bioinformatics analysis and cross-validated by literature mining. A total of 159 DEGs were identified. PTGS2, LRRK2, ANXA5, IGF1R, MCL1, TIMP2, LYN, CD68, CBL, and RUNX2 were validated as 10 hub genes, which has considerable implications for future genetic research and related research fields of ONFH. Our findings indicate that 85 drugs interact with ONFH, with most drugs exhibiting a positive impact on ONFH by promoting osteogenesis and angiogenesis or inhibiting microcirculation embolism, rather than being anti-inflammatory. Our study provides novel insights into the pathogenesis, prevention, and treatment of ONFH.
Collapse
Affiliation(s)
- Lan Tang
- Department of Orthopedic, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou City, 310001, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Bin Li
- Department of Orthopedic, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou City, 310001, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Qiuming Su
- Department of Hepatopancreatobiliary Surgery, The First People's Hospital of Kunming, Calmette Hospital, Kunming City, Yunnan Province, China
| | - Xi Chen
- Department of Orthopedic, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou City, 310001, Zhejiang Province, People's Republic of China
- Department of Epidemiology and Statistics, School of Public Health, Medical College, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Rongxin He
- Department of Orthopedic, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou City, 310001, Zhejiang Province, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
7
|
Wang JS, Tokavanich N, Wein MN. SP7: from Bone Development to Skeletal Disease. Curr Osteoporos Rep 2023; 21:241-252. [PMID: 36881265 PMCID: PMC10758296 DOI: 10.1007/s11914-023-00778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the different roles of the transcription factor SP7 in regulating bone formation and remodeling, discuss current studies in investigating the causal relationship between SP7 mutations and human skeletal disease, and highlight potential therapeutic treatments that targeting SP7 and the gene networks that it controls. RECENT FINDINGS Cell-type and stage-specific functions of SP7 have been identified during bone formation and remodeling. Normal bone development regulated by SP7 is strongly associated with human bone health. Dysfunction of SP7 results in common or rare skeletal diseases, including osteoporosis and osteogenesis imperfecta with different inheritance patterns. SP7-associated signaling pathways, SP7-dependent target genes, and epigenetic regulations of SP7 serve as new therapeutic targets in the treatment of skeletal disorders. This review addresses the importance of SP7-regulated bone development in studying bone health and skeletal disease. Recent advances in whole genome and exome sequencing, GWAS, multi-omics, and CRISPR-mediated activation and inhibition have provided the approaches to investigate the gene-regulatory networks controlled by SP7 in bone and the therapeutic targets to treat skeletal disease.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
8
|
Pan Y, Tang Y, Gu H, Ge W. Ubiquitin modification in osteogenic differentiation and bone formation: From mechanisms to clinical significance. Front Cell Dev Biol 2022; 10:1033223. [PMID: 36340031 PMCID: PMC9634082 DOI: 10.3389/fcell.2022.1033223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 01/03/2024] Open
Abstract
The ubiquitin-proteasome system is an important pathway for mediating posttranslational modification and protein homeostasis and exerts a wide range of functions in diverse biological processes, including stem cell differentiation, DNA repair, and cell cycle regulation. Many studies have shown that ubiquitination modification plays a critical role in regulating the osteogenic differentiation of stem cells and bone formation through various mechanisms. This review summarizes current progress on the effects and mechanisms of ubiquitin modification on transcription factors and signaling pathways involved in osteogenic differentiation. Moreover, the review highlights the latest advances in the clinical application of drugs in bone tissue engineering. A thorough understanding of ubiquitin modifications may provide promising therapeutic targets for stem cell-based bone tissue engineering.
Collapse
Affiliation(s)
- Yuan Pan
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yiman Tang
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hang Gu
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Wenshu Ge
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
9
|
E3 Ubiquitin Ligases: Potential Therapeutic Targets for Skeletal Pathology and Degeneration. Stem Cells Int 2022; 2022:6948367. [PMID: 36203882 PMCID: PMC9532118 DOI: 10.1155/2022/6948367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination-proteasome system (UPS) is crucial in regulating a variety of cellular processes including proliferation, differentiation, and survival. Ubiquitin protein ligase E3 is the most critical molecule in the UPS system. Dysregulation of the UPS system is associated with many conditions. Over the past few decades, there have been an increasing number of studies focusing on the UPS system and how it affects bone metabolism. Multiple E3 ubiquitin ligases have been found to mediate osteogenesis or osteolysis through a variety of pathways. In this review, we describe the mechanisms of UPS, especially E3 ubiquitin ligases on bone metabolism. To date, many E3 ubiquitin ligases have been found to regulate osteogenesis or osteoclast differentiation. We review the classification of these E3 enzymes and the mechanisms that influence upstream and downstream molecules and transduction pathways. Finally, this paper reviews the discovery of the relevant UPS inhibitors, drug molecules, and noncoding RNAs so far and prospects the future research and treatment.
Collapse
|
10
|
He Q, Lin J, Zhou F, Cai D, Yan Y, Shan Y, Zhang S, Li T, Yao X, Ouyang H. “Musical dish” efficiently induces osteogenic differentiation of mesenchymal stem cells through music derived micro‐stretch with variable frequency. Bioeng Transl Med 2022; 7:e10291. [PMID: 35600662 PMCID: PMC9115692 DOI: 10.1002/btm2.10291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Nonuniform microstretching (NUMS) naturally occurs in real bone tissues in vivo, but its profound effects have not been identified yet. In order to explore the biological effects of NUMS and static stretch (uniform stretch [US]) on cells, a new “musical dish” device was developed. Musical signal was used to provide NUMS to cells. More stress fibers, arranging along the long axis of cells, were formed throughout the cells under NUMS, compared with US and untreated control group, although cell morphology did not show any alteration. Whole transcriptome sequencing revealed enhanced osteogenic differentiation of cells after NUMS treatment. Cells in the NUMS group showed a higher expression of bone‐related genes, while genes related to stemness and other lineages were down‐regulated. Our results give insights into the biological effects of NUMS and US on stem cell osteogenic differentiation, suggesting beneficial effects of micromechanical stimulus for osteogenesis. The newly developed device provides a basis for the development of NUMS derived rehabilitation technology to promote bone healing.
Collapse
Affiliation(s)
- Qiulin He
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine Hangzhou China
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine Hangzhou China
| | - Fanghao Zhou
- Center for X‐Mechanics, Department of Engineering Mechanics Zhejiang University Hangzhou China
| | - Dandan Cai
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine Hangzhou China
| | - Yiyang Yan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine Hangzhou China
| | - Yejie Shan
- Center for X‐Mechanics, Department of Engineering Mechanics Zhejiang University Hangzhou China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine Hangzhou China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou China
| | - Tiefeng Li
- Center for X‐Mechanics, Department of Engineering Mechanics Zhejiang University Hangzhou China
| | - Xudong Yao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine Yiwu China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Department of Sports Medicine Zhejiang University School of Medicine Hangzhou China
- Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine Hangzhou China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou China
| |
Collapse
|
11
|
Epigenetic modifications of histones during osteoblast differentiation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194780. [PMID: 34968769 DOI: 10.1016/j.bbagrm.2021.194780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/30/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022]
Abstract
In bone biology, epigenetics plays a key role in mesenchymal stem cells' (MSCs) commitment towards osteoblasts. It involves gene regulatory mechanisms governed by chromatin modulators. Predominant epigenetic mechanisms for efficient osteogenic differentiation include DNA methylation, histone modifications, and non-coding RNAs. Among these mechanisms, histone modifications critically contribute to altering chromatin configuration. Histone based epigenetic mechanisms are an essential mediator of gene expression during osteoblast differentiation as it directs the bivalency of the genome. Investigating the importance of histone modifications in osteogenesis may lead to the development of epigenetic-based remedies for genetic disorders of bone. Hence, in this review, we have highlighted the importance of epigenetic modifications such as post-translational modifications of histones, including methylation, acetylation, phosphorylation, ubiquitination, and their role in the activation or suppression of gene expression during osteoblast differentiation. Further, we have emphasized the future advancements in the field of epigenetics towards orthopaedical therapeutics.
Collapse
|
12
|
Iskandarani L, McHattie T, Robaire B, Hales BF. Effects of Bisphenols A, AF, and S on Endochondral Ossification and the Transcriptome of Murine Limb Buds. Toxicol Sci 2021; 187:234-253. [PMID: 34850234 DOI: 10.1093/toxsci/kfab145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bisphenols are a family of chemicals commonly used to produce polycarbonate plastics and epoxy resins. Exposure to bisphenol A (BPA) is associated with a variety of adverse effects; thus, many alternatives to BPA, such as BPAF and BPS, are now emerging in consumer products. We have determined the effects of three bisphenols on endochondral ossification and the transcriptome in a murine limb bud culture system. Embryonic forelimbs were cultured in the presence of vehicle, BPA, BPAF, or BPS. BPA (≥ 10 μM), BPAF (≥ 1 μM) and BPS (≥ 50 μM) reduced the differentiation of hypertrophic chondrocytes and osteoblasts. Chondrogenesis was suppressed by exposure to ≥ 50 μM BPA, ≥ 5 μM BPAF, or 100 μM BPS and osteogenesis was almost completely arrested at 100 μM BPA or 10 μM BPAF. RNA sequencing analyses revealed that the total number of differentially expressed genes increased with time and the concentration tested. BPA exposure differentially regulated 635 genes, BPAF affected 554 genes, while BPS affected 95 genes. Although the genes that were differentially expressed overlapped extensively, each bisphenol also induced chemical-specific alterations in gene expression. BPA and BPAF-treated limbs exhibited a downregulation of RhoGDI signalling genes. Exposure to BPA and BPS resulted in the upregulation of key genes involved in cholesterol biosynthesis, while exposure to BPAF induced an upregulation of genes involved in bone formation and in the p53 signalling pathway. These data suggest that BPAF may be more detrimental to endochondral ossification than BPA, while BPS is of comparable toxicity to BPA.
Collapse
Affiliation(s)
- Lama Iskandarani
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Tessa McHattie
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
13
|
Shen J, Fu B, Li Y, Wu Y, Sang H, Zhang H, Lin H, Liu H, Huang W. E3 Ubiquitin Ligase-Mediated Regulation of Osteoblast Differentiation and Bone Formation. Front Cell Dev Biol 2021; 9:706395. [PMID: 34513836 PMCID: PMC8430030 DOI: 10.3389/fcell.2021.706395] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is an essential pathway that regulates the homeostasis and function of intracellular proteins and is a crucial protein-degradation system in osteoblast differentiation and bone formation. Abnormal regulation of ubiquitination leads to osteoblast differentiation disorders, interfering with bone formation and ultimately leading to osteoporosis. E3 ubiquitin ligases (E3) promote addition of a ubiquitin moiety to substrate proteins, specifically recognizing the substrate and modulating tyrosine kinase receptors, signaling proteins, and transcription factors involved in the regulation of osteoblast proliferation, differentiation, survival, and bone formation. In this review, we summarize current progress in the understanding of the function and regulatory effects of E3 ligases on the transcription factors and signaling pathways that regulate osteoblast differentiation and bone formation. A deep understanding of E3 ligase-mediated regulation of osteoblast differentiation provides a scientific rationale for the discovery and development of novel E3-targeting therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Jianlin Shen
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Bowen Fu
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanfang Li
- Department of Pediatric Surgery, Affiliated Hospital of Putian University, Putian, China
| | - Yanjiao Wu
- Department of Orthopedics, Shunde Hospital of Southern Medical University, Guangzhou, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Heshi Zhang
- Department of Vessel and Breast, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Haibin Lin
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Wenhua Huang
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
14
|
Liu Q, Li M, Wang S, Xiao Z, Xiong Y, Wang G. Recent Advances of Osterix Transcription Factor in Osteoblast Differentiation and Bone Formation. Front Cell Dev Biol 2020; 8:601224. [PMID: 33384998 PMCID: PMC7769847 DOI: 10.3389/fcell.2020.601224] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
With increasing life expectations, more and more patients suffer from fractures either induced by intensive sports or other bone-related diseases. The balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption is the basis for maintaining bone health. Osterix (Osx) has long been known to be an essential transcription factor for the osteoblast differentiation and bone mineralization. Emerging evidence suggests that Osx not only plays an important role in intramembranous bone formation, but also affects endochondral ossification by participating in the terminal cartilage differentiation. Given its essentiality in skeletal development and bone formation, Osx has become a new research hotspot in recent years. In this review, we focus on the progress of Osx's function and its regulation in osteoblast differentiation and bone mass. And the potential role of Osx in developing new therapeutic strategies for osteolytic diseases was discussed.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Mao Li
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Shiyi Wang
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yuanyuan Xiong
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guangwei Wang
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
15
|
Hoshikawa S, Shimizu K, Watahiki A, Chiba M, Saito K, Wei W, Fukumoto S, Inuzuka H. Phosphorylation-dependent osterix degradation negatively regulates osteoblast differentiation. FASEB J 2020; 34:14930-14945. [PMID: 32931083 DOI: 10.1096/fj.202001340r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023]
Abstract
Proteasome inhibitors exert an anabolic effect on bone formation with elevated levels of osteoblast markers. These findings suggest the important role of the proteasomal degradation of osteogenic regulators, while the underlying molecular mechanisms are not fully understood. Here, we report that the proteasome inhibitors bortezomib and ixazomib markedly increased protein levels of the osteoblastic key transcription factor osterix/Sp7 (Osx). Furthermore, we revealed that Osx was targeted by p38 and Fbw7 for proteasomal degradation. Mechanistically, p38-mediated Osx phosphorylation at S73/77 facilitated Fbw7 interaction to trigger subsequent Osx ubiquitination. Consistent with these findings, p38 knockdown or pharmacological p38 inhibition resulted in Osx protein stabilization. Treatment with p38 inhibitors following osteogenic stimulation efficiently induced osteoblast differentiation through Osx stabilization. Conversely, pretreatment of p38 inhibitor followed by osteogenic challenge impaired osteoblastogenesis via suppressing Osx expression, suggesting that p38 exerts dual but opposite effects in the regulation of Osx level to fine-tune its activity during osteoblast differentiation. Furthermore, Fbw7-depleted human mesenchymal stem cells and primary mouse calvarial cells resulted in increased osteogenic capacity. Together, our findings unveil the molecular mechanisms underlying the Osx protein stability control and suggest that targeting the Osx degradation pathway could help enhance efficient osteogenesis and bone matrix regeneration.
Collapse
Affiliation(s)
- Seira Hoshikawa
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kouhei Shimizu
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Asami Watahiki
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Mitsuki Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Hiroyuki Inuzuka
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
16
|
Yan H, Hales BF. Effects of Organophosphate Ester Flame Retardants on Endochondral Ossification in Ex Vivo Murine Limb Bud Cultures. Toxicol Sci 2020; 168:420-429. [PMID: 30561715 DOI: 10.1093/toxsci/kfy301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phasing out the usage of polybrominated diphenyl ether (PBDE) flame retardants (FRs) in consumer products led to their widespread replacement with organophosphate ester (OPE) FRs, despite scarce safety data. PBDE exposures were associated with the suppression of endochondral ossification but little is known about the effects of OPEs on bones. Here, we used a novel ex vivo murine limb bud culture system to compare the effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) with those of several OPEs. Gestation day 13 embryos were collected from transgenic CD1 mice expressing fluorescent markers for the major stages of endochondral ossification: COL2A1-ECFP (chondrogenesis), COL10A1-mCherry (early osteogenesis), and COL1A1-YFP (late osteogenesis). Limbs were excised and cultured for 6 days in the presence of vehicle, BDE-47, or an OPE FR: triphenyl phosphate (TPHP), tert-butylphenyl diphenyl phosphate (BPDP), tris(methylphenyl) phosphate (TMPP), or isopropylated triphenyl phosphate (IPPP). BDE-47 (50 μM) decreased the extent of chondrogenesis in the digits and COL1A1-YFP expression in the radius and ulna relative to control. In comparison, concentrations of ≥1 μM of all 4 OPEs limited chondrogenesis; osteogenesis (both COL10A1-mCherry and COL1A1-YFP fluorescence) was markedly inhibited at concentrations ≥3 μM. The expression of Sox9, the master regulator of chondrogenesis, was altered by BDE-47, TPHP, and BPDP. BDE-47 exposure had minimal impact on the expression of Runx2 and Sp7, which drive osteogenesis, whereas TPHP and BPDP both suppressed the expression of these transcription factors. These data suggest that OPE FRs may be more detrimental to bone formation than their brominated predecessors.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
17
|
Chen K, Wan X, Zhao L, Zhao S, Peng L, Yang W, Yuan J, Zhu L, Mo Z. Cbl Proto-Oncogene B (CBLB) c.197A>T Mutation Induces Mild Metabolic Dysfunction in Partial Type I Multiple Symmetric Lipomatosis (MSL). Diabetes Metab Syndr Obes 2020; 13:3535-3549. [PMID: 33116705 PMCID: PMC7547790 DOI: 10.2147/dmso.s273780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/11/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Multiple symmetric lipomatosis (MSL) is a rare disease showing chronic progression of multiple, symmetrical, and non-encapsulated subcutaneous lipoma. The cause of the disease remains unknown. PATIENTS AND METHODS This study reported and summarized 13 sporadic cases of Type I MSL patients in terms of histopathology and cellular and molecular biology and assessed the CBLB c.197A>T mutation in the IRS1-PI3K-Akt pathway. RESULTS The clinical data showed that these 13 Type I patients were all male with a mean age of 57.0 ± 6.6 years old and consumed alcohol heavily. The laboratory tests revealed that most of the patients had hyperuricemia, diabetes, hyperinsulinemia, or insulin resistance; however, their blood lipid levels were close to a normal range. The imaging data exhibited lipomas that only occurred subcutaneously but not viscerally, ie, Types Ia (15.4%), Ib (30.8%), and Ic (53.8%). The molecular analyses of adipocytes of isoprenaline stimulated human adipose tissue-derived mesenchymal stromal cells (hADSCs) isolated from the adipose tissue lipoma-like masses (ATLLM) demonstrated that these adipocytes did not express UCP-1. The Cbl proto-oncogene B (CBLB), an E3 ubiquitin-protein ligase, was associated with insulin resistance and obesity and was mutated (ie, CBLB c.197A>T) in four MSL patients after the whole genome and Sanger sequencing of the blood samples. Furthermore, the CBLB c.197A>T mutation induced hADSC resistance to insulin by inactivation of the IRS-1-PI3K-AKT pathway. CONCLUSION This study analyzed clinical, histopathological, and cellular and molecular biological characterizations of 13 Type I MSL patients and identified the CBLB c.197A>T heterozygous mutation that could be responsible for MSL metabolic dysfunction or even MSL development.
Collapse
Affiliation(s)
- Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan410013, People’s Republic of China
| | - Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan410013, People’s Republic of China
| | - Liling Zhao
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan410013, People’s Republic of China
| | - Shaoli Zhao
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan410013, People’s Republic of China
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, Hunan410005, People’s Republic of China
| | - Wenjun Yang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan410013, People’s Republic of China
| | - Jingjing Yuan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan410013, People’s Republic of China
| | - Liyong Zhu
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan410013, People’s Republic of China
| | - Zhaohui Mo
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan410013, People’s Republic of China
- Correspondence: Zhaohui Mo Tel/Fax +86 731 88618006 Email
| |
Collapse
|
18
|
Gwon D, Hong J, Jang CY. c-Cbl Acts as an E3 Ligase Against DDA3 for Spindle Dynamics and Centriole Duplication during Mitosis. Mol Cells 2019; 42:840-849. [PMID: 31722512 PMCID: PMC6939656 DOI: 10.14348/molcells.2019.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022] Open
Abstract
The spatiotemporal mitotic processes are controlled qualitatively by phosphorylation and qualitatively by ubiquitination. Although the SKP1-CUL1-F-box protein (SCF) complex and the anaphase-promoting complex/cyclosome (APC/C) mainly mediate ubiquitin-dependent proteolysis of mitotic regulators, the E3 ligase for a large portion of mitotic proteins has yet to be identified. Here, we report c-Cbl as an E3 ligase that degrades DDA3, a protein involved in spindle dynamics. Depletion of c-Cbl led to increased DDA3 protein levels, resulting in increased recruitment of Kif2a to the mitotic spindle, a concomitant reduction in spindle formation, and chromosome alignment defects. Furthermore, c-Cbl depletion induced centrosome over-duplication and centriole amplification. Therefore, we concluded that c-Cbl controls spindle dynamics and centriole duplication through its E3 ligase activity against DDA3.
Collapse
Affiliation(s)
- Dasom Gwon
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Jihee Hong
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Chang-Young Jang
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310,
Korea
| |
Collapse
|
19
|
Chen L, Song Z, Wu J, Huang Q, Shen Z, Wei X, Lin Z. LncRNA DANCR sponges miR-216a to inhibit odontoblast differentiation through upregulating c-Cbl. Exp Cell Res 2019; 387:111751. [PMID: 31805275 DOI: 10.1016/j.yexcr.2019.111751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022]
Abstract
Enhanced odontoblast differentiation of human dental pulp cells (hDPCs) is considered a keystone in dentin-pulp complex formation. We have revealed lncRNA DANCR was implicated in this differentiation program, however, its mechanism in odontoblast differentiation of hDPCs remains further explored. In this study, by employing loss-of-function approach, we identified downregulation of DANCR drived odontoblast differentiaion of hDPCs. Bioinformatics analysis was utilized to show that DANCR contained binding site for miR-216a and an inverse correlation between DANCR and miR-216a was obtained. Dual luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) were applied to further confirm that DANCR conferred its functions by directly binding to miR-216a. Notably, miR-216a was able to bind to the 3'-UTR of c-Cbl and repressed its expression. In addition, the protein level of c-CBL was significantly downregulated during hDPCs differentiation, while c-Cbl overexpression inhibited odontoblast differentiation of hDPCs. Moreover, downregulation of miR-216a efficiently reversed the suppression of c-Cbl level and odontoblast differentiation induced by knockdown of DANCR. Taken together, these analyses indicated that DANCR positively regulated the expression of c-Cbl, through sponging miR-216a, and inhibited odontoblast differentiation of hDPCs. Our results will extend the field of clinical application for cell-based therapy in regenerative medicine.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Zhi Song
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Jinyan Wu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Qiting Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Zongshan Shen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Zhengmei Lin
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| |
Collapse
|
20
|
MicroRNA-891b is an independent prognostic factor of pancreatic cancer by targeting Cbl-b to suppress the growth of pancreatic cancer cells. Oncotarget 2018; 7:82338-82353. [PMID: 27494897 PMCID: PMC5347695 DOI: 10.18632/oncotarget.11001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 06/01/2016] [Indexed: 01/18/2023] Open
Abstract
Growing evidence has revealed that microRNAs could regulate the proliferation of pancreatic ductal adenocarcinoma (PDAC) cells and predict the prognosis of PDAC. Here the comparative microRNA expression profiles of the good and poor prognosis groups were performed by microRNA microarray. MicroRNA-891b (miR-891b) was screened and validated to be a prognostic predictor of PDAC in the initial group and further evaluated to be an independent predictor for the overall survival of resectable PDACs in an independent cohort. By a series of cellular and animal experiments, as well as clinical specimen analyses, miR-891b was confirmed to target the Cbl-b gene, promot the expression of tumor suppressor p21 protein and inhibit the proliferation of PDAC cells. The results provide a theoretical basis for the study of miR-891b as an independent prognostic predictor of PDAC and the role of miR-891b/Cbl-b pathway in this prediction, as well as the identification of new targets for PDAC.
Collapse
|
21
|
Hu Z, Wang H, Wang Y, Zhou H, Shi F, Zhao J, Zhang S, Cao X. Genome‑wide analysis and prediction of functional long noncoding RNAs in osteoblast differentiation under simulated microgravity. Mol Med Rep 2017; 16:8180-8188. [PMID: 28990099 PMCID: PMC5779904 DOI: 10.3892/mmr.2017.7671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/17/2017] [Indexed: 01/12/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been regarded as important regulators in numerous biological processes during cell development. However, the holistic lncRNA expression pattern and potential functions during osteoblast differentiation under simulated microgravity remain unknown. In the present study, a high throughput microarray assay was performed to detect lncRNA and mRNA expression profiles during MC3TC-E1 pre-osteoblast cell osteo-differentiation under simulated microgravity. The expression of 857 lncRNAs and 2,264 mRNAs was significantly altered when MC3T3-E1 cells were exposed to simulated microgravity. A relatively consistent distribution pattern on the chromosome and a co-expression network were observed between the differentially-expressed lncRNAs and mRNAs. Genomic context analysis further identified 132 differentially-expressed lncRNAs and nearby coding gene pairs. Subsequently, 3 lncRNAs were screened out for their possible function in osteoblast differentiation, based on their co-expression association and potential cis-acting regulatory pattern with the deregulated mRNAs. The present study aimed to provide a comprehensive understanding of and a foundation for future studies into lncRNA function in mechanical signal-mediated osteoblast differentiation.
Collapse
Affiliation(s)
- Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Han Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hua Zhou
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jiangdong Zhao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
22
|
Melatonin promotes osteoblast differentiation by regulating Osterix protein stability and expression. Sci Rep 2017; 7:5716. [PMID: 28720849 PMCID: PMC5515917 DOI: 10.1038/s41598-017-06304-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
Although the biological role of melatonin in osteogenic differentiation has been suggested, the mechanism of osteoblast differentiation remains unclear. Thus, the present study investigated the underlying molecular mechanisms based on osteoblast-specific transcription factors. We found that melatonin enhanced BMP-4-induced osteogenic differentiation and increased the expression of osteogenic markers, especially Osterix, which is an essential transcription factor for the differentiation of preosteoblasts into mature osteoblasts in the late stage of osteoblast differentiation. Melatonin treatment increased the expression of Osterix during osteoblast differentiation and stabilized its expression by the inhibition of ubiquitin-proteasome-mediated degradation of Osterix, leading to up-regulated Osterix transcriptional activity on the osteogenic promoter and promoting alkaline phosphatase activity and bone mineralization. Furthermore, treatment with protein kinase A (PKA) inhibitor H89 and protein kinase C (PKC) inhibitor Go6976 blocked the melatonin-induced transcriptional activity and phosphorylation of Osterix, indicating that melatonin regulates Osterix expression via the PKA and PKC signaling pathways. Overall, these findings suggest that melatonin directly regulates the late stage of osteoblast differentiation by enhancing Osterix expression; this provides further evidence of melatonin as a potent agent for treating osteoporosis.
Collapse
|
23
|
Han Y, Jin Y, Lee SH, Khadka DB, Cho WJ, Lee KY. Berberine bioisostere Q8 compound stimulates osteoblast differentiation and function in vitro. Pharmacol Res 2017; 119:463-475. [DOI: 10.1016/j.phrs.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
|
24
|
Liu J, Liang C, Guo B, Wu X, Li D, Zhang Z, Zheng K, Dang L, He X, Lu C, Peng S, Pan X, Zhang BT, Lu A, Zhang G. Increased PLEKHO1 within osteoblasts suppresses Smad-dependent BMP signaling to inhibit bone formation during aging. Aging Cell 2017; 16:360-376. [PMID: 28083909 PMCID: PMC5334543 DOI: 10.1111/acel.12566] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence indicates that the dysregulation of protein ubiquitination plays a crucial role in aging‐associated diseases. Smad‐dependent canonical BMP signaling pathway is indispensable for osteoblastic bone formation, which could be disrupted by the ubiquitination and subsequent proteasomal degradation of Smad1/5, the key molecules for BMP signaling transduction. However, whether the dysregulation of Smad1/5 ubiquitination and disrupted BMP signaling pathway is responsible for the age‐related bone formation reduction is still underexplored. Pleckstrin homology domain‐containing family O member 1 (PLEKHO1) is a previously identified ubiquitination‐related molecule that could specifically target the linker region between the WW domains of Smurf1 to promote the ubiquitination of Smad1/5. Here, we found an age‐related increase in the expression of PLEKHO1 in bone specimens from either fractured patients or aging rodents, which was associated with the age‐related reduction in Smad‐dependent BMP signaling and bone formation. By genetic approach, we demonstrated that loss of Plekho1 in osteoblasts could promote the Smad‐dependent BMP signaling and alleviated the age‐related bone formation reduction. In addition, osteoblast‐specific Smad1 overexpression had beneficial effect on bone formation during aging, which could be counteracted after overexpressing Plekho1 within osteoblasts. By pharmacological approach, we showed that osteoblast‐targeted Plekho1 siRNA treatment could enhance Smad‐dependent BMP signaling and promote bone formation in aging rodents. Taken together, it suggests that the increased PLEKHO1 could suppress Smad‐dependent BMP signaling to inhibit bone formation during aging, indicating the translational potential of targeting PLEKHO1 in osteoblast as a novel bone anabolic strategy for reversing established osteoporosis during aging.
Collapse
Affiliation(s)
- Jin Liu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Integrated Bioinfomedicine and Translational Science; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Precision Medicine and Innovative Drug Discovery; Hong Kong Baptist University; Hong Kong SAR China
| | - Chao Liang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Integrated Bioinfomedicine and Translational Science; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Precision Medicine and Innovative Drug Discovery; Hong Kong Baptist University; Hong Kong SAR China
| | - Baosheng Guo
- Institute for Advancing Translational Medicine in Bone & Joint Diseases; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Integrated Bioinfomedicine and Translational Science; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Precision Medicine and Innovative Drug Discovery; Hong Kong Baptist University; Hong Kong SAR China
| | - Xiaohao Wu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Integrated Bioinfomedicine and Translational Science; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Precision Medicine and Innovative Drug Discovery; Hong Kong Baptist University; Hong Kong SAR China
| | - Defang Li
- Institute for Advancing Translational Medicine in Bone & Joint Diseases; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Integrated Bioinfomedicine and Translational Science; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Precision Medicine and Innovative Drug Discovery; Hong Kong Baptist University; Hong Kong SAR China
| | - Zongkang Zhang
- School of Chinese Medicine; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong SAR China
| | - Kang Zheng
- Institute for Advancing Translational Medicine in Bone & Joint Diseases; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Basic Research in Clinical Medicine; China Academy of Chinese Medical Sciences; Beijing China
| | - Lei Dang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Integrated Bioinfomedicine and Translational Science; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Precision Medicine and Innovative Drug Discovery; Hong Kong Baptist University; Hong Kong SAR China
| | - Xiaojuan He
- Institute for Advancing Translational Medicine in Bone & Joint Diseases; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Integrated Bioinfomedicine and Translational Science; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Precision Medicine and Innovative Drug Discovery; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Basic Research in Clinical Medicine; China Academy of Chinese Medical Sciences; Beijing China
| | - Changwei Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Department of Orthopaedics; Xi'an Third Hospital; Xi'an, Chinajing China
| | - Songlin Peng
- Institute for Advancing Translational Medicine in Bone & Joint Diseases; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Department of Spine Surgery; Shenzhen People's Hospital; Ji Nan University Second College of Medicine; Shenzhen China
| | - Xiaohua Pan
- Institute for Advancing Translational Medicine in Bone & Joint Diseases; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Department of Orthopaedics and Traumatology; Bao'an Hospital Affiliated to Southern Medical University & Shenzhen 8th People Hospital; Shenzhen China
| | - Bao-Ting Zhang
- School of Chinese Medicine; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong SAR China
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Integrated Bioinfomedicine and Translational Science; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Precision Medicine and Innovative Drug Discovery; Hong Kong Baptist University; Hong Kong SAR China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Integrated Bioinfomedicine and Translational Science; School of Chinese Medicine; Hong Kong Baptist University; Hong Kong SAR China
- Institute of Precision Medicine and Innovative Drug Discovery; Hong Kong Baptist University; Hong Kong SAR China
| |
Collapse
|
25
|
Scanlon V, Soung DY, Adapala NS, Morgan E, Hansen MF, Drissi H, Sanjay A. Role of Cbl-PI3K Interaction during Skeletal Remodeling in a Murine Model of Bone Repair. PLoS One 2015; 10:e0138194. [PMID: 26393915 PMCID: PMC4578922 DOI: 10.1371/journal.pone.0138194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022] Open
Abstract
Mice in which Cbl is unable to bind PI3K (YF mice) display increased bone volume due to enhanced bone formation and repressed bone resorption during normal bone homeostasis. We investigated the effects of disrupted Cbl-PI3K interaction on fracture healing to determine whether this interaction has an effect on bone repair. Mid-diaphyseal femoral fractures induced in wild type (WT) and YF mice were temporally evaluated via micro-computed tomography scans, biomechanical testing, histological and histomorphometric analyses. Imaging analyses revealed no change in soft callus formation, increased bony callus formation, and delayed callus remodeling in YF mice compared to WT mice. Histomorphometric analyses showed significantly increased osteoblast surface per bone surface and osteoclast numbers in the calluses of YF fractured mice, as well as increased incorporation of dynamic bone labels. Furthermore, using laser capture micro-dissection of the fracture callus we found that cells lacking Cbl-PI3K interaction have higher expression of Osterix, TRAP, and Cathepsin K. We also found increased expression of genes involved in propagating PI3K signaling in cells isolated from the YF fracture callus, suggesting that the lack of Cbl-PI3K interaction perhaps results in enhanced PI3K signaling, leading to increased bone formation, but delayed remodeling in the healing femora.
Collapse
Affiliation(s)
- Vanessa Scanlon
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Do Yu Soung
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Naga Suresh Adapala
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Elise Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
| | - Marc F. Hansen
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Hicham Drissi
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
- * E-mail: (AS); (HD)
| | - Archana Sanjay
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
- * E-mail: (AS); (HD)
| |
Collapse
|
26
|
Boeckx C, Benítez-Burraco A. Osteogenesis and neurogenesis: a robust link also for language evolution. Front Cell Neurosci 2015; 9:291. [PMID: 26283924 PMCID: PMC4516893 DOI: 10.3389/fncel.2015.00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/15/2015] [Indexed: 12/30/2022] Open
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research Barcelona, Spain ; Linguistics, Universitat de Barcelona Barcelona, Spain
| | | |
Collapse
|