1
|
Kim K, Kim JH, Kim I, Seong S, Koh JT, Kim N. Sestrin2 inhibits RANKL-induced osteoclastogenesis through AMPK activation and ROS inhibition. Free Radic Biol Med 2024; 211:77-88. [PMID: 38101586 DOI: 10.1016/j.freeradbiomed.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Sestrins are stress-responsive proteins with antioxidant properties. They participate in cellular redox balance and protect against oxidative damage. This study investigated the effects of Sestrin2 (Sesn2) on osteoclast differentiation and function. Overexpressing Sesn2 in osteoclast precursor cells significantly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis. This was assessed as reduced expression of various osteoclast markers, including c-Fos, nuclear factor of activated T cells 1 (NFATc1), osteoclast-associated receptor, tartrate-resistant acid phosphatase, and cathepsin K. Conversely, downregulation of Sesn2 produced the opposite effect. Mechanistically, Sesn2 overexpression enhanced AMPK activation and the nuclear translocation of nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2), promoting antioxidant enzymes. Moreover, azithromycin (Azm) induced Sesn2 expression, which suppressed RANKL-induced osteoclast differentiation. Specifically, Azm treatment reduced RANKL-induced production of reactive oxygen species in osteoclasts. Furthermore, intraperitoneal administration of Azm ameliorated RANKL-induced bone loss by reducing osteoclast activity in mice. Taken together, our results suggested that Azm-induced Sesn2 act as a negative regulator of RANKL-induced osteoclast differentiation through the AMPK/NFATc1 signaling pathway. Concisely, targeting Sesn2 can be a potential pharmacological intervention in osteoporosis.
Collapse
Affiliation(s)
- Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
MOTS-c, the Most Recent Mitochondrial Derived Peptide in Human Aging and Age-Related Diseases. Int J Mol Sci 2022; 23:ijms231911991. [PMID: 36233287 PMCID: PMC9570330 DOI: 10.3390/ijms231911991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
MOTS-c, a 16 amino acid mitochondrial derived peptide, is encoded from the 12S rRNA region of the mitochondrial genome. Under stress conditions, MOTS-c translocates to the nucleus where it regulates a wide range of genes in response to metabolic dysfunction. It is colocalized to mitochondria in various tissues and is found in plasma, but the levels decline with age. Since MOTS-c has important cellular functions as well as a possible hormonal role, it has been shown to have beneficial effects on age-related diseases including Diabetes, Cardiovascular diseases, Osteoporosis, postmenopausal obesity and Alzheimer. Aging is characterized by gradual loss of (mitochondrial) metabolic balance, decreased muscle homeostasis and eventual diminished physical capability, which potentially can be reversed with MOTS-c treatment. This review examines the latest findings on biological effects of MOTS-c as a nuclear regulatory peptide and focuses on the role of MOTS-c in aging and age-related disorders, including mechanisms of action and therapeutic potential.
Collapse
|
3
|
Micallef P, Vujičić M, Wu Y, Peris E, Wang Y, Chanclón B, Ståhlberg A, Cardell SL, Wernstedt Asterholm I. C1QTNF3 is Upregulated During Subcutaneous Adipose Tissue Remodeling and Stimulates Macrophage Chemotaxis and M1-Like Polarization. Front Immunol 2022; 13:914956. [PMID: 35720277 PMCID: PMC9202579 DOI: 10.3389/fimmu.2022.914956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 01/08/2023] Open
Abstract
The adipose tissue undergoes substantial tissue remodeling during weight gain-induced expansion as well as in response to the mechanical and immunological stresses from a growing tumor. We identified the C1q/TNF-related protein family member C1qtnf3 as one of the most upregulated genes that encode secreted proteins in tumor-associated inguinal adipose tissue - especially in high fat diet-induced obese mice that displayed 3-fold larger tumors than their lean controls. Interestingly, inguinal adipose tissue C1qtnf3 was co-regulated with several macrophage markers and chemokines and was primarily expressed in fibroblasts while only low levels were detected in adipocytes and macrophages. Administration of C1QTNF3 neutralizing antibodies inhibited macrophage accumulation in tumor-associated inguinal adipose tissue while tumor growth was unaffected. In line with this finding, C1QTNF3 exerted chemotactic actions on both M1- and M2-polarized macrophages in vitro. Moreover, C1QTNF3 treatment of M2-type macrophages stimulated the ERK and Akt pathway associated with increased M1-like polarization as judged by increased expression of M1-macrophage markers, increased production of nitric oxide, reduced oxygen consumption and increased glycolysis. Based on these results, we propose that macrophages are recruited to adipose tissue sites with increased C1QTNF3 production. However, the impact of the immunomodulatory effects of C1QTNF3 in adipose tissue remodeling warrants future investigations.
Collapse
Affiliation(s)
- Peter Micallef
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Milica Vujičić
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Yanling Wu
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Eduard Peris
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Ying Wang
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Belén Chanclón
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
4
|
C1q/TNF-Related Protein 3 Prevents Diabetic Retinopathy via AMPK-Dependent Stabilization of Blood-Retinal Barrier Tight Junctions. Cells 2022; 11:cells11050779. [PMID: 35269401 PMCID: PMC8909652 DOI: 10.3390/cells11050779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/19/2022] Open
Abstract
Background The impairment of the inner blood–retinal barrier (iBRB) increases the pathological development of diabetic retinopathy (DR), a severe complication in diabetic patients. Identifying approaches to preserving iBRB integrity and function is a significant challenge in DR. C1q/tumor necrosis factor-related protein-3 (CTRP3) is a newly discovered adipokine and a vital biomarker, predicting DR severity. We sought to determine whether and how CTRP3 affects the pathological development of non-proliferative diabetic retinopathy (NPDR). Methods To clarify the pathophysiologic progress of the blood–retinal barrier in NPDR and explore its potential mechanism, a mouse Type 2 diabetic model of diabetic retinopathy was used. The capillary leakage was assessed by confocal microscope with fluorescent-labeled protein in vivo. Furthermore, the effect of CTRP3 on the inner blood–retinal barrier (iBRB) and its molecular mechanism was clarified. Results The results demonstrated that CTRP3 protects iBRB integrity and resists the vascular permeability induced by DR. Mechanistically, the administration of CTRP3 activates the AMPK signaling pathway and enhances the expression of Occludin and Claudin-5 (tight junction protein) in vivo and in vitro. Meanwhile, CTRP3 improves the injury of human retinal endothelial cells (HRMECs) induced by high glucose/high lipids (HG/HL), and its protective effects are AMPK-dependent. Conclusions In summary, we report, for the first time, that CTRP3 prevents diabetes-induced retinal vascular permeability via stabilizing the tight junctions of the iBRB and through the AMPK-dependent Occludin/Claudin-5 signaling pathway, thus critically affecting the development of NPDR.
Collapse
|
5
|
Zhang B, Wang Y, Li X, Wang Y, Jia X, Ke J. The clinical significance of serum complement component 1q tumor necrosis factor-related protein 3 and complement component 1q tumor necrosis factor-related protein 9 levels in patients with rheumatoid arthritis. ENVIRONMENTAL DISEASE 2022. [DOI: 10.4103/ed.ed_19_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
6
|
Icaritin inhibits lung cancer-induced osteoclastogenesis by suppressing the expression of IL-6 and TNF-a and through AMPK/mTOR signaling pathway. Anticancer Drugs 2021; 31:1004-1011. [PMID: 32701561 DOI: 10.1097/cad.0000000000000976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bone metastasis is one of the common phenomena in the late stage of lung cancer. Inhibition of bone metastasis can improve the survival of lung cancer patients. However, the current drugs for the treatment of bone metastasis have shown little effect on overall survival. Therefore, there is an urgent necessity to identify novel drugs capable of preventing and treating bone metastasis of lung cancer. Our study determined that icaritin (ICT) can inhibit lung cancer-mediated osteoclastogenesis and induce the apoptosis of osteoclasts. Exposure to ICT increased the activation of adenosine 5'-monophosphate-activated protein kinase (AMPK), reduced the activation of mammalian target of rapamycin (mTOR) and decreased the expression of bcl-2. The bioactivity of ICT on osteoclastogenesis was associated with the regulation of the AMPK/mTOR signaling pathway. Blocking AMPK significantly increased osteoclast differentiation, decreased osteoclast apoptosis and canceled the effects of ICT on the phosphorylation of AMPK as well as the inhibition of mTOR and bcl-2. Furthermore, ICT decreased the levels of IL-6 and TNF-α in osteoclasts, while the AMPK inhibitor compound C significantly abolished the inhibitory effects of ICT on IL-6 and TNF-α. Thus, the present study demonstrated that ICT may be a potential natural agent for the treatment of bone metastasis in patients with lung cancer.
Collapse
|
7
|
Kong M, Gao Y, Guo X, Xie Y, Yu Y. Role of the CTRP family in tumor development and progression. Oncol Lett 2021; 22:723. [PMID: 34429763 PMCID: PMC8371956 DOI: 10.3892/ol.2021.12984] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
C1q tumor necrosis factor-related proteins (CTRPs), which are members of the adipokine superfamily, have gained significant interest in the recent years. CTRPs are homologs of adiponectin with numerous functions and are closely associated with metabolic diseases, such as abnormal glucose and lipid metabolism and diabetes. Previous studies have demonstrated that CTRPs are highly involved in the regulation of numerous physiological and pathological processes, including glycolipid metabolism, protein kinase pathways, cell proliferation, cell apoptosis and inflammation. CTRPs also play important roles in the development and progression of numerous types of tumor, including liver, colon and lung cancers. This observation can be attributed to the fact that diabetes, obesity and insulin resistance are independent risk factors for tumorigenesis. Numerous CTRPs, including CTRP3, CTRP4, CTRP6 and CTRP8, have been reported to be associated with tumor progression by activating multiple signal pathways. CTRPs could therefore be considered as diagnostic markers and therapeutic targets in some cancers. However, the underlying mechanisms of CTRPs in tumorigenesis remain unknown. The present review aimed to determine the roles and underlying mechanisms of CTRPs in tumorigenesis, which may help the development of novel cancer treatments in the future.
Collapse
Affiliation(s)
- Mowei Kong
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yu Gao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiang Guo
- Department of Respiratory, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yuyu Xie
- Department of Dermatology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yamei Yu
- Department of Dermatology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
8
|
The Role of Collagen Triple Helix Repeat-Containing 1 Protein (CTHRC1) in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms22052426. [PMID: 33670905 PMCID: PMC7957534 DOI: 10.3390/ijms22052426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease causing inflammation of joints, cartilage destruction and bone erosion. Biomarkers and new drug targets are actively sought and progressed to improve available options for patient treatment. The Collagen Triple Helix Repeat Containing 1 protein (CTHRC1) may have an important role as a biomarker for rheumatoid arthritis, as CTHRC1 protein concentration is significantly elevated in the peripheral blood of rheumatoid arthritis patients compared to osteoarthritis (OA) patients and healthy individuals. CTHRC1 is a secreted glycoprotein that promotes cell migration and has been implicated in arterial tissue-repair processes. Furthermore, high CTHRC1 expression is observed in many types of cancer and is associated with cancer metastasis to the bone and poor patient prognosis. However, the function of CTHRC1 in RA is still largely undefined. The aim of this review is to summarize recent findings on the role of CTHRC1 as a potential biomarker and pathogenic driver of RA progression. We will discuss emerging evidence linking CTHRC1 to the pathogenic behavior of fibroblast-like synoviocytes and to cartilage and bone erosion through modulation of the balance between bone resorption and repair.
Collapse
|
9
|
Wang L, Li Q, Yan H, Jiao G, Wang H, Chi H, Zhou H, Chen L, Shan Y, Chen Y. Resveratrol Protects Osteoblasts Against Dexamethasone-Induced Cytotoxicity Through Activation of AMP-Activated Protein Kinase. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4451-4463. [PMID: 33122889 PMCID: PMC7591001 DOI: 10.2147/dddt.s266502] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Purpose Glucocorticoids are used for the treatment of inflammatory diseases, but glucocorticoid treatment is associated with bone damage. Resveratrol is a phytoalexin found in many plants, and we investigated its protective role on dexamethasone-induced dysfunction in MC3T3-E1 cells and primary osteoblasts. Materials and Methods MC3T3-E1 cells and primary osteoblasts were treated with dexamethasone in the presence/absence of different doses of resveratrol for 24 or 48 h. Then, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium (MTT) and lactate dehydrogenase (LDH) assays were used to evaluate cell viability. Apoptosis was analyzed by a flow cytometry. An alkaline phosphatase (ALP) activity assay and Alizarin Red S staining were used to study osteoblast differentiation. Expression of osteoblast-related genes was measured by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The AMP-activated protein kinase (AMPK) signaling pathway and mitochondrial expression of superoxide dismutase were evaluated by Western blotting. Intracellular reactive oxygen species (ROS), adenosine triphosphate (ATP) content, mitochondrial-complex activity, and mitochondrial DNA content were measured to evaluate mitochondrial function. Results Resveratrol induced the proliferation and inhibited apoptosis of osteoblasts in the presence of dexamethasone. Resveratrol increased the ALP activity and mineralization of osteoblasts. Resveratrol also attenuated dexamethasone-induced inhibition of mRNA expression of osteogenesis maker genes, including bone morphogenetic protein-2, osteoprotegerin, runt-related transcription factor-2, and bone Gla protein. Resveratrol alleviated dexamethasone-induced mitochondrial dysfunction. Resveratrol strongly stimulated expression of peroxisome proliferator–activated receptor-γ coactivator 1α and sirtuin-3 genes, as well as their downstream target gene superoxide dismutase-2. Resveratrol induced phosphorylation of AMPK and acetyl-CoA carboxylase (ACC). Blockade of AMPK signaling using compound C reversed the protective effects of resveratrol against dexamethasone. Conclusion Resveratrol showed protective effects against dexamethasone-induced dysfunction of osteoblasts by activating AMPK signaling.
Collapse
Affiliation(s)
- Liang Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University Spine and Spine Cord Disease Research Center, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Internal Medicine, Shandong Medical College, Linyi, Shandong, People's Republic of China
| | - Qiushi Li
- Department of Orthopedics, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Haibo Yan
- Department of Internal Medicine, Shandong Medical College, Linyi, Shandong, People's Republic of China
| | - Guangjun Jiao
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Hai Chi
- Department of Traumatic Orthopedics, Shandong Provincial ENT Hospital (Affiliated to Shandong University), Jinan, Shandong, People's Republic of China
| | - Hongming Zhou
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Emergency Trauma Surgery, Linyi Central Hospital, Linyi, Shandong, People's Republic of China
| | - Lu Chen
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yu Shan
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University Spine and Spine Cord Disease Research Center, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
10
|
Effects and Mechanisms of Five Psoralea Prenylflavonoids on Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2128513. [PMID: 32655760 PMCID: PMC7320294 DOI: 10.1155/2020/2128513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
During the aging process, senescent cells gradually accumulate in the organs; they secrete proinflammatory cytokines and other factors, collectively known as the senescence-associated secretory phenotype (SASP). SASP secretions contribute to “inflammaging,” which is a state of chronic, systemic, sterility, low-grade inflammatory microenvironment and a key risk factor in the development of aging-related diseases. Fructus psoraleae is a traditional Chinese medical herb best known for delaying aging and treating osteoporosis. Prenylflavonoids from fructus psoraleae are the main bioactive compounds responsible for its pharmacological applications, such as beaching, bavachinin, bavachalcone, isobavachalcone, and neobavaisoflavone. In previous decades, there have been some promising studies on the pharmacology of fructus psoraleae. Here, we focus on the anti-inflammatory and antiaging diseases of five psoralea prenylflavonoids, such as cardiovascular protection, diabetes and obesity intervention, neuroprotection, and osteoporosis, and discuss the mechanism of these active ingredients for better understanding the material basis and drug application of fructus psoraleae in Chinese medicine.
Collapse
|
11
|
Kwak SC, Jeong DH, Cheon YH, Lee CH, Yoon KH, Kim JY, Lee MS. Securinine suppresses osteoclastogenesis and ameliorates inflammatory bone loss. Phytother Res 2020; 34:3029-3040. [PMID: 32510717 DOI: 10.1002/ptr.6735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Securinine (Sec) is a naturally derived compound separated from the roots of Securinega suffruticosa, which has long been used as a herbal medicine. Sec is widely known as a GABA receptor antagonist, it is also known as an innate immune cell agonist and has been reported to increase macrophage activity and promote monocyte maturation. On the basis of these studies, we investigated the effect of Sec on osteoclast differentiation and bone resorbing function. We have found that Sec inhibits RANKL-induced osteoclast differentiation, fusion, actin ring formation, and bone resorbing function by the inhibition of gene expression associated with each stage. Moreover, Sec significantly suppressed osteoclastogenesis by decreasing the phosphorylation of p38, Akt, JNK, IκB, and PLCγ2, in pathways involved in early osteoclastogenesis as well as through the subsequent suppression of c-Fos and NFATc1. Finally, Sec effectively protected bone loss induced by the excessive inflammatory responses and activity of osteoclasts in vivo by a micro-CT and histological analysis. In conclusion, our findings suggest that Sec may be a promising drug for bone metabolic diseases such as osteoporosis, which is associated with the excessive activity of osteoclasts.
Collapse
Affiliation(s)
- Sung Chul Kwak
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Da Hye Jeong
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan, Republic of Korea
| | - Yoon-Hee Cheon
- Core Research Facility Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea.,Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Chang Hoon Lee
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan, Republic of Korea.,Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Kwon-Ha Yoon
- Department of Radiology, Wonkwang University Hospital, Iksan, Republic of Korea.,Medical Convergence Research Center, Wonkwang University Hospital, Iksan, Republic of Korea
| | - Ju-Young Kim
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Republic of Korea.,Medical Convergence Research Center, Wonkwang University Hospital, Iksan, Republic of Korea
| | - Myeung Su Lee
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan, Republic of Korea.,Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
12
|
Youngstrom DW, Zondervan RL, Doucet NR, Acevedo PK, Sexton HE, Gardner EA, Anderson JS, Kushwaha P, Little HC, Rodriguez S, Riddle RC, Kalajzic I, Wong GW, Hankenson KD. CTRP3 Regulates Endochondral Ossification and Bone Remodeling During Fracture Healing. J Orthop Res 2020; 38:996-1006. [PMID: 31808575 PMCID: PMC7162724 DOI: 10.1002/jor.24553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/24/2019] [Indexed: 02/04/2023]
Abstract
C1q/TNF-related protein 3 (CTRP3) is a cytokine known to regulate a variety of metabolic processes. Though previously undescribed in the context of bone regeneration, high throughput gene expression experiments in mice identified CTRP3 as one of the most highly upregulated genes in fracture callus tissue. Hypothesizing a positive regulatory role for CTRP3 in bone regeneration, we phenotyped skeletal development and fracture healing in CTRP3 knockout (KO) and CTRP3 overexpressing transgenic (TG) mice relative to wild-type (WT) control animals. CTRP3 KO mice experienced delayed endochondral fracture healing, resulting in abnormal mineral distribution, the presence of periosteal marrow compartments, and a nonunion-like state. Decreased osteoclast number was also observed in CTRP3 KO mice, whereas CTRP3 TG mice underwent accelerated callus remodeling. Gene expression profiling revealed a broad impact on osteoblast/osteoclast lineage commitment and metabolism, including arrested progression toward mature skeletal lineages in the KO group. A single systemic injection of CTRP3 protein at the time of fracture was insufficient to phenocopy the chronic TG healing response in WT mice. By associating CTRP3 levels with fracture healing progression, these data identify a novel protein family with potential therapeutic and diagnostic value. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:00-19966, 2020.
Collapse
Affiliation(s)
- Daniel W. Youngstrom
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA;,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA;,Correspondence should be addressed to Dr. Daniel W. Youngstrom:
| | - Robert L. Zondervan
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA;,Department of Physiology, Michigan State University College of Osteopathic Medicine, East Lansing, Michigan, USA
| | - Nicole R. Doucet
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Parker K. Acevedo
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hannah E. Sexton
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Emily A. Gardner
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - JonCarlos S. Anderson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hannah C. Little
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Chen L, Qin L, Liu X, Meng X. CTRP3 Alleviates Ox-LDL-Induced Inflammatory Response and Endothelial Dysfunction in Mouse Aortic Endothelial Cells by Activating the PI3K/Akt/eNOS Pathway. Inflammation 2020; 42:1350-1359. [PMID: 30887395 DOI: 10.1007/s10753-019-00996-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel, certified, adipokine that beneficially regulates metabolism and inflammation in the cardiovascular system. Atherosclerotic plaque rupturing and secondary thrombosis cause vascular disorders, such as myocardial infarction and unstable angina. However, the underlying role of CTRP3 in atherosclerosis remains unclear. In this study, we aimed to elucidate whether and how CTRP3 ameliorates inflammation and endothelial dysfunction caused by oxidized low-density lipoprotein (ox-LDL). We first confirmed that CTRP3 expression was inhibited in ApoE-/- mice, compared to normal mice. Then, pcDNA-CTRP3 and siCTRP3 were transfected into mouse aortic endothelial cells after ox-LDL stimulation, and we observed that enhanced CTRP3 remarkably downregulated CRP, TNF-α, IL-6, CD40, and CD40L. We also observed that overexpression of CTRP3 elevated cell activity and decreased lactated hydrogenase release, accompanied by a marked reduction in cell apoptosis induced by ox-LDL. Meanwhile, overexpressed CTRP3 caused a decrease in Ang II, ICAM-1, and VCAM-1 expression, and it restored the balance between ET-1 and NO. Mechanism analysis confirmed that incremental CTRP3 upregulated p-PI3K, p-Akt, and p-eNOS expression, indicating that CTRP3 facilitated activation of the PI3K/Akt/eNOS pathway. On the contrary, siCTRP3 exerted the opposite effect to this activation. Blocking these pathways using LY294002 or L-NAME attenuated the protective role of CTRP3. Overall, these results suggest that CTRP3 can efficiently inhibit the inflammatory response and endothelial dysfunction induced by ox-LDL in mouse aortic endothelial cells, perhaps by activating the PI3K/Akt/eNOS pathway, indicating a promising strategy against atherosclerosis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Critical Care Medicine, Gansu Provincial Hospital of TCM, No. 418, Guazhou Road, Qilihe District, Lanzhou City, 730050, Gansu, People's Republic of China.
| | - Lijun Qin
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, People's Republic of China
| | - Xin Liu
- Department of Rheumatic Osteopathology, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, People's Republic of China
| | - Xiangyun Meng
- Central Laboratory, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, People's Republic of China
| |
Collapse
|
14
|
Urso K, Caetano-Lopes J, Lee PY, Yan J, Henke K, Sury M, Liu H, Zgoda M, Jacome-Galarza C, Nigrovic PA, Duryea J, Harris MP, Charles JF. A role for G protein-coupled receptor 137b in bone remodeling in mouse and zebrafish. Bone 2019; 127:104-113. [PMID: 31173907 PMCID: PMC6708790 DOI: 10.1016/j.bone.2019.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptor 137b (GPR137b) is an orphan seven-pass transmembrane receptor of unknown function. In mouse, Gpr137b is highly expressed in osteoclasts in vivo and is upregulated during in vitro differentiation. To elucidate the role that GPR137b plays in osteoclasts, we tested the effect of GPR137b deficiency on osteoclast maturation and resorbing activity. We used CRISPR/Cas9 gene editing in mouse-derived ER-Hoxb8 immortalized myeloid progenitors to generate GPR137b-deficient osteoclast precursors. Decreasing Gpr137b in these precursors led to increased osteoclast differentiation and bone resorption activity. To explore the role of GPR137b during skeletal development, we generated zebrafish deficient for the ortholog gpr137ba. Gpr137ba-deficient zebrafish are viable and fertile and do not display overt morphological defects as adults. However, analysis of osteoclast function in gpr137ba-/- mutants demonstrated increased bone resorption. Micro-computed tomography evaluation of vertebral bone mass and morphology demonstrated that gpr137ba-deficiency altered the angle of the neural arch, a skeletal site with high osteoclast activity. Vital staining of gpr137ba-/- fish with calcein and alizarin red indicated that bone formation in the mutants is also increased, suggesting high bone turnover. These results identify GPR137b as a conserved negative regulator of osteoclast activity essential for normal resorption and patterning of the skeleton. Further, these data suggest that coordination of osteoclast and osteoblast activity is a conserved process among vertebrates and may have similar regulation.
Collapse
Affiliation(s)
- K Urso
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - J Caetano-Lopes
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - P Y Lee
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - J Yan
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - K Henke
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - M Sury
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - H Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M Zgoda
- Department of Orthopedics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - C Jacome-Galarza
- Department of Orthopedics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - P A Nigrovic
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - J Duryea
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M P Harris
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - J F Charles
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Orthopedics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Zhao G, Zhang L, Qian D, Sun Y, Liu W. miR-495-3p inhibits the cell proliferation, invasion and migration of osteosarcoma by targeting C1q/TNF-related protein 3. Onco Targets Ther 2019; 12:6133-6143. [PMID: 31447563 PMCID: PMC6684487 DOI: 10.2147/ott.s193937] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/27/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Osteosarcoma (OS) is one of the most common malignant tumors of bone, and microRNAs (miRNAs/miRs) serve critical roles in the progression of human OS. The aim of the present study was to investigate the role of miR-495-3p in OS. Methods: The expression of miR-495-3p in OS tissues and adjacent tissues from 30 patients was measured by reverse transcription-quantitative PCR (RT-qPCR). Human OS cell lines (U-2 OS, MG-63 and Saos-2 cells) and normal osteoplastic cells (hFoB 1.19 cells) were employed to perform the further analysis. The cell proliferation ability of MG-63 cells was measured by Cell Counting Kit-8 assay and colony formation assay. In addition, cell invasion and migration were evaluated by Transwell and scratch wound healing assays, respectively. Flow cytometry was applied to assess cell apoptosis and the cell cycle. Moreover, RT-qPCR and Western blotting were performed to measure mRNA and protein expression. A luciferase reporter assay was used to verify the target gene of miR-495-3p. Furthermore, a xenograft OS model was made to evaluate the effect of miR-495-3p in vivo. Results: The results revealed that miR-495-3p was downregulated in the OS tissues and GBM cell lines. Additionally, miR-495-3p overexpression suppressed the proliferation, migration and invasion of MG-63 cells. Simultaneously, cell apoptosis was promoted, accompanied by cell cycle arrest, after transfecting with miR-495-3p mimics. In addition, the expression levels of cell apoptosis-related proteins were increased, whereas proteins of the cell cycle were decreased. Importantly, C1q/TNF-related protein 3 (CTRP3) was confirmed as a direct target of miR-495-3p. A xenograft tumor model was employed to verify the effects of miR-495-3p on OS. Conclusion: On the basis of these results, we conclude that miR-495-3p overexpression inhibited cell proliferation, migration and invasion by downregulating CTRP3. Therefore, miR-495-3p may act as a tumor suppressor and an underlying target for OS treatment.
Collapse
Affiliation(s)
- Gang Zhao
- Orthopaedics Department, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, People's Republic of China
| | - Liwei Zhang
- Burn and Plastic Surgery Department, Juye County North City Hospital, He Ze, Shandong 274900, People's Republic of China
| | - Dejian Qian
- Orthopaedics Department, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, People's Republic of China
| | - Yifeng Sun
- Orthopaedics Department, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, People's Republic of China
| | - Wei Liu
- Orthopaedics Department, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, People's Republic of China
| |
Collapse
|
16
|
Li Q, Wu J, Xi W, Chen X, Wang W, Zhang T, Yang A, Wang T. Ctrp4, a new adipokine, promotes the differentiation of osteoblasts. Biochem Biophys Res Commun 2019; 512:224-229. [PMID: 30885436 DOI: 10.1016/j.bbrc.2019.03.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 12/20/2022]
Abstract
Recent evidence suggests that adipokines are involved in the regulation of bone metabolism. Ctrp4 is a newly discovered member of the adipokine CTRP family. Studies have shown that Ctrp4 is involved in the regulation of tumor cell inflammatory signaling pathways and acts on the hypothalamus to regulate food intake, but its role in osteoblasts is not yet clear. In this study, we found that the expression of Ctrp4 in bone tissue was significantly decreased in the tail-suspended mouse, while that in ovariectomized-simulated osteoporosis mice decreased similarly, indicating that Ctrp4 was involved in osteogenesis regulation. We further isolated Alp-positive osteoblasts from the femur of tail-suspended rats and confirmed that the expression of Ctrp4, Bglap and Alp was down-regulated in the process of bone loss caused by tail suspension. In the process of inducing osteoblastic differentiation in vitro, Ctrp4 interfering significantly inhibited the expression of Alp and Bglap. In addition, inhibition of Ctrp4 resulted in decreased alkaline phosphatase expression and less alizarin red staining, indicating that Ctrp4 promoted osteogenic differentiation and osteoblasts mineralization. In conclusion, our results suggest that Ctrp4 is involved in bone metabolism regulation and promotes osteoblast differentiation, which may become a potential target for future intervention in bone metabolic diseases.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 710032, PR China; Department of Health Technology Research and Development, SPACEnter Space Science and Technology Institute (Shenzhen), Shamiao Road 4#, Pingdi Street, Longgang District, Shenzhen, 518117, PR China
| | - Jieheng Wu
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Xu Chen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Tianze Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Angang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| | - Tao Wang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| |
Collapse
|
17
|
Dong M, Jin H, Zuo M, Bai H, Wang L, Shi C, Niu W. The potential effect of Bruton's tyrosine kinase in refractory periapical periodontitis. Biomed Pharmacother 2019; 112:108710. [PMID: 30818138 DOI: 10.1016/j.biopha.2019.108710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 01/17/2023] Open
Abstract
To determine the expression of Bruton's tyrosine kinase (BTK) in refractory periapical periodontitis and analyze the relationship between BTK and bone resorption in refractory periapical periodontitis. The mechanism of bone resorption is also discussed. The OneArray Plus expression microarray was used to screen for genes related to refractory periapical periodontitis. Real-time PCR was used to detect the expression of BTK in refractory periapical periodontitis tissues. A model of periapical periodontitis was established by sealing E.faecalis into the pulp of rats. To establish a model of E.faecalis LTA infection of osteoclasts, the relationship between BTK and bone destruction during refractory periapical periodontitis was analyzed. OneArray Plus expression microarray results showed that we found that the expression of 1787 genes in the two samples was different. After validating these samples, we found that BTK was closely related to refractory periapical periodontitis. The results showed that the expression of BTK in refractory periapical periodontitis tissues was higher than that in normal tissues. Immunohistochemistry, enzyme histochemistry and real-time PCR showed that the BTK expression curve in the experimental model resembled a reverse V shape from week 1 to week 4. Osteoclasts were cultured in vitro and treated with E. faecalis LTA. The expression of BTK in the E. faecalis model was greater than that in the control group. BTK played an important role in the progression of refractory periapical periodontitis.
Collapse
Affiliation(s)
- Ming Dong
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Haiwei Jin
- Department of Oral Anatomy and Physiology, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Meina Zuo
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Hua Bai
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Lina Wang
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Chun Shi
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Weidong Niu
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|
18
|
Dong W, Qi M, Wang Y, Feng X, Liu H. Zoledronate and high glucose levels influence osteoclast differentiation and bone absorption via the AMPK pathway. Biochem Biophys Res Commun 2018; 505:1195-1202. [DOI: 10.1016/j.bbrc.2018.10.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 01/29/2023]
|
19
|
Abstract
PURPOSE OF REVIEW To summarize and discuss recent progress and novel signaling mechanisms relevant to bone marrow adipocyte formation and its physiological/pathophysiological implications for bone remodeling. RECENT FINDINGS Skeletal remodeling is a coordinated process entailing removal of old bone and formation of new bone. Several bone loss disorders such as osteoporosis are commonly associated with increased bone marrow adipose tissue. Experimental and clinical evidence supports that a reduction in osteoblastogenesis from mesenchymal stem cells at the expense of adipogenesis, as well as the deleterious effects of adipocyte-derived signaling, contributes to the etiology of osteoporosis as well as bone loss associated with aging, diabetes mellitus, post-menopause, and chronic drug therapy. However, this view is challenged by findings indicating that, in some contexts, bone marrow adipose tissue may have a beneficial impact on skeletal health. Further research is needed to better define the role of marrow adipocytes in bone physiology/pathophysiology and to determine the therapeutic potential of manipulating mesenchymal stem cell differentiation.
Collapse
Affiliation(s)
- Shanmugam Muruganandan
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Christopher J Sinal
- Department of Pharmacology, Dalhousie University, 5850 College Street, Box 15000, Halifax, Nova Scotia, B3H4R2, Canada.
| |
Collapse
|
20
|
Zhao JJ, Wu ZF, Yu YH, Wang L, Cheng L. Effects of interleukin-7/interleukin-7 receptor on RANKL-mediated osteoclast differentiation and ovariectomy-induced bone loss by regulating c-Fos/c-Jun pathway. J Cell Physiol 2018; 233:7182-7194. [PMID: 29663382 DOI: 10.1002/jcp.26548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/12/2018] [Indexed: 11/09/2022]
Abstract
To explore the effects of IL-7/IL-7R on the RANKL-mediated osteoclast differentiation in vitro and OVX-induced bone loss in vivo. BMMs and RAW264.7 were transfected with IL-7, IL-7R siRNA, c-Fos siRNA, and c-jun siRNA and later stimulated by RANKL. TRAP and toluidine blue staining were used to observe osteoclast formation and bone resorption, respectively. HE and TRAP staining were used to detect trabecular bone microstructure and osteoclasts of mice, respectively. qRT-PCR and Western blot analysis were used to examine expression. IL-7 unregulated the expression of CTSK, NFATc1, MMP9, and the phosphorylation of p38 and Akt by activating the c-Fos/c-Jun pathway, which increased osteoclast numbers and bone resorption in RANKL-stimulated macrophages. While IL-7R siRNA and c-Fos siRNA decreased the expression, as well as and the phosphorylation of p38 and Akt.IL-7 decreased the BMD and OPG expression in OVX-induced mice and increased the TRAP positive cells, the mRNA expression of c-fos, c-jun, and RANKL, which was contradictory to IL-7R siRNA, and c-Fos siRNA. Furthermore, IL-7R siRNA and c-Fos siRNA caused thicker trabeculae, increased trabecular number, and decreased osteolysis in OVX mice. IL-7/IL-7R can promote RANKL-mediated osteoclast formation and bone resorption by activating the c-Fos/c-Jun pathway, as well as inducing bone loss in OVX mice.
Collapse
Affiliation(s)
- Ji-Jun Zhao
- Department of Orthopedics, Wuxi People's Hospital, Wuxi, Jiangsu Province, P. R. China
| | - Zhao-Feng Wu
- Department of Orthopedics, Wuxi People's Hospital, Wuxi, Jiangsu Province, P. R. China
| | - Ying-Hao Yu
- Department of Orthopedics, Wuxi People's Hospital, Wuxi, Jiangsu Province, P. R. China
| | - Ling Wang
- Department of Orthopedics, Wuxi People's Hospital, Wuxi, Jiangsu Province, P. R. China
| | - Li Cheng
- Department of Orthopedics, Wuxi People's Hospital, Wuxi, Jiangsu Province, P. R. China
| |
Collapse
|
21
|
Zhang CL, Chen ZJ, Feng H, Zhao Q, Cao YP, Li L, Wang JY, Zhang Y, Wu LL. C1q/tumor necrosis factor-related protein-3 enhances the contractility of cardiomyocyte by increasing calcium sensitivity. Cell Calcium 2017; 66:90-97. [PMID: 28807153 DOI: 10.1016/j.ceca.2017.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/15/2017] [Accepted: 06/25/2017] [Indexed: 01/24/2023]
Abstract
C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine that protects against myocardial infarction-induced cardiac dysfunction through its pro-angiogenic, anti-apoptotic, and anti-fibrotic effects. However, whether CTRP3 can directly affect the systolic and diastolic function of cardiomyocytes remains unknown. Adult rat cardiomyocytes were isolated and loaded with Fura-2AM. The contraction and Ca2+ transient data was collected and analyzed by IonOptix system. 1 and 2μg/ml CTRP3 significantly increased the contraction of cardiomyocytes. However, CTRP3 did not alter the diastolic Ca2+ content, systolic Ca2+ content, Ca2+ transient amplitude, and L-type Ca2+ channel current. To reveal whether CTRP3 affects the Ca2+ sensitivity of cardiomyocytes, the typical phase-plane diagrams of sarcomere length vs. Fura-2 ratio was performed. We observed a left-ward shifting of the late relaxation trajectory after CTRP3 perfusion, as quantified by decreased Ca2+ content at 50% sarcomere relaxation, and increased mean gradient (μm/Fura-2 ratio) during 500-600ms (-0.163 vs. -0.279), 500-700ms (-0.159 vs. -0.248), and 500-800ms (-0.148 vs. -0.243). Consistently, the phosphorylation level of cardiac troponin I at Ser23/24 was reduced by CTRP3, which could be eliminated by preincubation of okadaic acid, a type 2A protein phosphatase inhibitor. In summary, CTRP3 increases the contraction of cardiomyocytes by increasing the myofilament Ca2+ sensitivity. CTRP3 might be a potential endogenous Ca2+ sensitizer that modulates the contractility of cardiomyocytes.
Collapse
Affiliation(s)
- Cheng-Lin Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Zheng-Ju Chen
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Han Feng
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qian Zhao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yang-Po Cao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Li Li
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Jin-Yu Wang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
22
|
Abstract
As the largest endocrine organ, adipose tissue secretes many bioactive molecules that circulate in blood, collectively termed adipokines. Efforts to identify such metabolic regulators have led to the discovery of a family of secreted proteins, designated as C1q tumor necrosis factor (TNF)-related proteins (CTRPs). The CTRP proteins, adiponectin, TNF-alpha, as well as other proteins with the distinct C1q domain are collectively grouped together as the C1q/TNF superfamily. Reflecting profound biological potency, the initial characterization of these adipose tissue-derived CTRP factors finds wide-ranging effects upon metabolism, inflammation, and survival-signaling in multiple tissue types. CTRP3 (also known as CORS26, cartducin, or cartonectin) is a unique member of this adipokine family. In this review we provide a comprehensive overview of the research concerning the expression, regulation, and physiological function of CTRP3. © 2017 American Physiological Society. Compr Physiol 7:863-878, 2017.
Collapse
Affiliation(s)
- Ying Li
- Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Gary L Wright
- Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jonathan M Peterson
- Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA.,College of Public Health, Department of Health Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
23
|
Ma ZG, Yuan YP, Xu SC, Wei WY, Xu CR, Zhang X, Wu QQ, Liao HH, Ni J, Tang QZ. CTRP3 attenuates cardiac dysfunction, inflammation, oxidative stress and cell death in diabetic cardiomyopathy in rats. Diabetologia 2017; 60:1126-1137. [PMID: 28258411 DOI: 10.1007/s00125-017-4232-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/03/2017] [Indexed: 01/03/2023]
Abstract
AIMS/HYPOTHESIS Oxidative stress, inflammation and cell death are closely involved in the development of diabetic cardiomyopathy (DCM). C1q/tumour necrosis factor-related protein-3 (CTRP3) has anti-inflammatory properties but its role in DCM remains largely unknown. The aims of this study were to determine whether CTRP3 could attenuate DCM and to clarify the underlying mechanisms. METHODS Streptozotocin (STZ) was injected intraperitoneally to induce diabetes in Sprague-Dawley rats. Cardiomyocyte-specific CTRP3 overexpression was achieved using an adeno-associated virus system 12 weeks after STZ injection. RESULTS CTRP3 expression was significantly decreased in diabetic rat hearts. Knockdown of CTRP3 in cardiomyocytes at baseline resulted in increased oxidative injury, inflammation and apoptosis in vitro. Cardiomyocyte-specific overexpression of CTRP3 decreased oxidative stress and inflammation, attenuated myocyte death and improved cardiac function in rats treated with STZ. CTRP3 significantly activated AMP-activated protein kinase α (AMPKα) and Akt (protein kinase B) in H9c2 cells. CTRP3 protected against high-glucose-induced oxidative stress, inflammation and apoptosis in vitro. AMPKα deficiency abolished the protective effects of CTRP3 in vitro and in vivo. Furthermore, we found that CTRP3 activated AMPKα via the cAMP-exchange protein directly activated by cAMP (EPAC)-mitogen-activated protein kinase kinase (MEK) pathway. CONCLUSIONS/INTERPRETATION CTRP3 protected against DCM via activation of the AMPKα pathway. CTRP3 has therapeutic potential for the treatment of DCM.
Collapse
Affiliation(s)
- Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Si-Chi Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Wen-Ying Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Chun-Ru Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Jian Ni
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Cardiovascular Research Institute of Wuhan University, Wuhan, People's Republic of China.
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
24
|
Park YE, Musson DS, Naot D, Cornish J. Cell–cell communication in bone development and whole-body homeostasis and pharmacological avenues for bone disorders. Curr Opin Pharmacol 2017; 34:21-35. [DOI: 10.1016/j.coph.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
25
|
Huang Y, Wan G, Tao J. C1q/TNF-related protein-3 exerts the chondroprotective effects in IL-1β-treated SW1353 cells by regulating the FGFR1 signaling. Biomed Pharmacother 2017; 85:41-46. [DOI: 10.1016/j.biopha.2016.11.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022] Open
|
26
|
Tsekoura EK, K C RB, Uludag H. Biomaterials to Facilitate Delivery of RNA Agents in Bone Regeneration and Repair. ACS Biomater Sci Eng 2016; 3:1195-1206. [PMID: 33440509 DOI: 10.1021/acsbiomaterials.6b00387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bone healing after traumatic injuries or pathological diseases remains an important worldwide problem. In search of safer and more effective approaches to bone regeneration and repair, RNA-based therapeutic agents, specifically microRNAs (miRNAs) and short interfering RNA (siRNA), are beginning to be actively explored. In this review, we summarize current attempts to employ miRNAs and siRNAs in preclinical models of bone repair. We provide a summary of current limitations when attempting to utilize bioactive nucleic acids for therapeutic purposes and position the unique aspects of RNA reagents for clinical bone repair. Delivery strategies for RNA reagents are emphasized and nonviral carriers (biomaterial-based) employed to deliver such reagents are reviewed. Critical features of biomaterial carriers and various delivery technologies centered around nanoparticulate systems are highlighted. We conclude with the authors' perspectives on the future of the field, outlining main critical issues important to address as RNA reagents are explored for clinical applications.
Collapse
Affiliation(s)
- Eleni K Tsekoura
- Department of Chemical & Materials Engineering, Faculty of Engineering, ‡Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and §Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Remant Bahadur K C
- Department of Chemical & Materials Engineering, Faculty of Engineering, Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and §Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Hasan Uludag
- Department of Chemical & Materials Engineering, Faculty of Engineering, Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
27
|
Yang Y, Li Y, Ma Z, Jiang S, Fan C, Hu W, Wang D, Di S, Sun Y, Yi W. A brief glimpse at CTRP3 and CTRP9 in lipid metabolism and cardiovascular protection. Prog Lipid Res 2016; 64:170-177. [DOI: 10.1016/j.plipres.2016.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/14/2016] [Accepted: 10/11/2016] [Indexed: 01/19/2023]
|
28
|
Hu XK, Yin XH, Zhang HQ, Guo CF, Tang MX. Liraglutide attenuates the osteoblastic differentiation of MC3T3‑E1 cells by modulating AMPK/mTOR signaling. Mol Med Rep 2016; 14:3662-8. [PMID: 27600753 PMCID: PMC5042760 DOI: 10.3892/mmr.2016.5729] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 07/29/2016] [Indexed: 01/13/2023] Open
Abstract
Liraglutide, a synthetic analogue of glucagon-like peptide-1, is utilized in the treatment of type 2 diabetes and obesity. Liraglutide has been previously demonstrated to prevent osteoblastic differentiation of human vascular smooth muscle cells, resulting in the slowing of arterial calcification, however, its effect on bone formation remains unclear. The present study investigated the effect of liraglutide on osteoblastic differentiation using Alizarin Red S staining, and examined the molecular mechanisms underlying the regulatory effect by western blot analysis. The present study demonstrated that protein expression levels of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were downregulated in MC3T3-E1 cells during osteoblastic differentiation in commercial osteogenic differentiation medium, whereas protein expression levels of transforming growth factor-β (TGF-β) and phosphorylated mammalian target of rapamycin (p-mTOR) increased. Liraglutide was subsequently demonstrated to dose-dependently attenuate the osteoblastic differentiation of MC3T3-E1 cells, to upregulate p-AMPK, and downregulate p-mTOR and TGF-β protein expression levels. Treatment with an AMPK-specific inhibitor, Compound C, eradicated the effect of liraglutide on osteoblastic differentiation, and p-mTOR and TGF-β downregulation. An mTOR activator, MHY1485, also abolished the inhibitory effect of liraglutide on osteoblastic differentiation, and resulted in p-mTOR and TGF-β downregulation, but did not attenuate the liraglutide-induced increase in p-AMPK protein expression levels. The results of the present study demonstrate that liraglutide attenuates osteoblastic differentiation of MC3T3-E1 cells via modulation of AMPK/mTOR signaling. The present study revealed a novel function of liraglutide, which contributes to the understanding of its pharmacological and physiological effects in clinical settings.
Collapse
Affiliation(s)
- Xiong-Ke Hu
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xin-Hua Yin
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hong-Qi Zhang
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chao-Feng Guo
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ming-Xing Tang
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
29
|
Shang W, Zhao LJ, Dong XL, Zhao ZM, Li J, Zhang BB, Cai H. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep 2016; 14:3620-6. [PMID: 27572279 PMCID: PMC5042742 DOI: 10.3892/mmr.2016.5674] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 06/28/2016] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to determine the effects of curcumin on the osteoclastogenic potential of peripheral blood mononuclear cells (PBMCs) obtained from patients with rheumatoid arthritis (RA), and to investigate the underlying molecular mechanisms. PBMCs from patients with RA (n=12) and healthy controls (n=10) were cultured to assess osteoclastogenic potential. The number of tartrate-resistant acid phosphatase-positive osteoclasts differentiated from PBMCs isolated from patients with RA was significantly increased compared with that of the healthy controls. In addition, the osteoclast number in patients with RA was correlated with the clinical indicators, Sharp score (r=0.810; P=0.001) and lumbar T-score (r=−0.685; P=0.014). Furthermore, the resorption area was increased in the RA group compared with the healthy controls. The mRNA and protein expression levels in PBMC-derived osteoclasts treated with curcumin were measured by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Curcumin inhibited the osteoclastogenic potential of PBMCs, potentially by suppressing activation of extracellular signal-regulated kinases 1 and 2, p38 and c-Jun N-terminal kinase, and inhibiting receptor activator of nuclear factor κB (RANK), c-Fos and nuclear factor of activated T cells (NFATc1) expression. The results of the present study demonstrated that curcumin may inhibit the osteoclastogenic potential of PBMCs from patients with RA through the suppression of the mitogen-activated protein kinase/RANK/c-Fos/NFATc1 signaling pathways, and that curcumin may be a potential novel therapeutic agent for the treatment of bone deterioration in inflammatory diseases such as RA.
Collapse
Affiliation(s)
- Wei Shang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Ling-Jie Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Xiao-Lei Dong
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Zhi-Ming Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Jing Li
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Bei-Bei Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Hui Cai
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
30
|
Ming W, Lu G, Xin S, Huanyu L, Yinghao J, Xiaoying L, Chengming X, Banjun R, Li W, Zifan L. Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation. Biochem Biophys Res Commun 2016; 476:412-419. [PMID: 27237975 DOI: 10.1016/j.bbrc.2016.05.135] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/25/2016] [Indexed: 12/11/2022]
Abstract
Therapeutic targeting bone loss has been the focus of the study in osteoporosis. The present study is intended to evaluate whether MOTS-c, a novel mitochondria related 16 aa peptide, can protect mice from ovariectomy-induced osteoporosis. After ovary removal, the mice were injected with MOTS-c at a dose of 5 mg/kg once a day for 12 weeks. Our results showed that MOTS-c treatment significantly alleviated bone loss, as determined by micro-CT examination. Mechanistically, we found that the receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclast differentiation was remarkably inhibited by MOTS-c. Moreover, MOTS-c increased phosphorylated AMPK levels, and compound C, an AMPK inhibitor, could partially abrogate the effects of the MOTS-c on osteoclastogenesis. Thus, our findings provide evidence that MOTS-c may exert as an inhibitor of osteoporosis via AMPK dependent inhibition of osteoclastogenesis.
Collapse
Affiliation(s)
- Wei Ming
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an 710032, PR China; Department of Pharmacology, Xi'an Medical University, Xi'an 710021, PR China.
| | - Gan Lu
- Department of Gynecology of Shaanxi Provincial People's Hospital, Xi'an, 710068, PR China.
| | - Sha Xin
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Lu Huanyu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Jiang Yinghao
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Lei Xiaoying
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Xu Chengming
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Ruan Banjun
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Wang Li
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Lu Zifan
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
31
|
Oh SJ, Gu DR, Jin SH, Park KH, Lee SH. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling. Biochem Biophys Res Commun 2016; 475:125-32. [PMID: 27179783 DOI: 10.1016/j.bbrc.2016.05.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023]
Abstract
Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5' monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.
Collapse
Affiliation(s)
- Se Jeong Oh
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dong Ryun Gu
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Su Hyun Jin
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Keun Ha Park
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seoung Hoon Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Wonkwang Institute of Biomaterials and Implant, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.
| |
Collapse
|