1
|
Suominen TH, Edgren J, Salpakoski A, Kallinen M, Cervinka T, Rantalainen T, Törmäkangas T, Heinonen A, Sipilä S. Physical function and lean body mass as predictors of bone loss after hip fracture: a prospective follow-up study. BMC Musculoskelet Disord 2020; 21:367. [PMID: 32517755 PMCID: PMC7285571 DOI: 10.1186/s12891-020-03401-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/03/2020] [Indexed: 11/24/2022] Open
Abstract
Background Predictors of bone deterioration after hip fracture have not been well characterized. The aim of this study was to examine the associations of physical function and lean body mass (LBM) with loss of bone density and strength in older people recovering from a hip fracture. Methods A total of 81 over 60-year-old, community-dwelling men and women operated for a hip fracture participated in this 1-year prospective follow-up study. Distal tibia total volumetric bone mineral density (vBMDTOT, mg/cm3) and compressive strength index (BSI, g2/cm4) and mid-tibia cortical vBMD (vBMDCO, mg/cm3) and bending strength index (SSI, mm3) were assessed in both legs by peripheral quantitative computed tomography (pQCT) at baseline (on average 10 weeks after fracture) and at 12 months. At baseline, LBM was measured with a bioimpedance device and physical function with the Short Physical Performance Battery (SPPB) and perceived difficulty in walking outdoors. Robust multivariable linear regression models were used to estimate the associations of physical function and LBM with the change in bone parameters at 12-months. Results The mean change in distal tibia vBMDTOT and BSI in both legs ranged from − 0.9 to − 2.5%. The change in mid-tibia vBMDCO and SSI ranged from − 0.5 to − 2.1%. A lower SPPB score, difficulty in walking outdoors and lower LBM predicted greater decline in distal tibia vBMDTOT in both legs. A lower SPPB score and difficulty in walking outdoors were also associated with a greater decline in distal tibia BSI in both legs. At the midshaft site, a lower SPPB score and lower LBM were associated with greater decline in SSI on the fractured side. Conclusions Older hip fracture patients with low physical function and lower LBM may be at risk for greater decline in tibia bone properties during the first post-fracture year. Acknowledgement of the risk factors could assist in developing interventions and care to promote bone health and overall recovery. Trial registration ISRCTN, ISRCTN53680197. The trial was registered retrospectively but before the recruitment was completed. Registered March 3, 2010.
Collapse
Affiliation(s)
- Tuuli H Suominen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland.
| | - Johanna Edgren
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland
| | | | - Mauri Kallinen
- Department of Physical and Rehabilitation Medicine, Central Finland Health Care District, Central Finland Central Hospital, Jyväskylä, Finland.,Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | | | - Timo Rantalainen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland
| | - Timo Törmäkangas
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland
| | - Ari Heinonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sarianna Sipilä
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland
| |
Collapse
|
2
|
Suominen TH, Edgren J, Salpakoski A, Arkela M, Kallinen M, Cervinka T, Rantalainen T, Törmäkangas T, Heinonen A, Sipilä S. Effects of a Home-Based Physical Rehabilitation Program on Tibial Bone Structure, Density, and Strength After Hip Fracture: A Secondary Analysis of a Randomized Controlled Trial. JBMR Plus 2019; 3:e10175. [PMID: 31346568 PMCID: PMC6636770 DOI: 10.1002/jbm4.10175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 11/10/2022] Open
Abstract
Weight‐bearing physical activity may decrease or prevent bone deterioration after hip fracture. This study investigated the effects of a home‐based physical rehabilitation program on tibial bone traits in older hip fracture patients. A population‐based clinical sample of men and women operated for hip fracture (mean age 80 years, 78% women) was randomly assigned into an intervention (n = 40) and a standard care control group (n = 41) on average 10 weeks postfracture. The intervention group participated in a 12‐month home‐based rehabilitation intervention, including evaluation and modification of environmental hazards, guidance for safe walking, nonpharmacological pain management, motivational physical activity counseling, and a progressive, weight‐bearing home exercise program comprising strengthening exercises for the lower legs, balance training, functional exercises, and stretching. All participants received standard care. Distal tibia (5% proximal to the distal end plate) compressive bone strength index (BSI; g2/cm4), total volumetric BMD (vBMDTOT; mg/cm3), and total area (CSATOT; mm2), as well as midtibia (55%) strength–strain index (SSI; mm3), cortical vBMD (vBMDCO; mg/cm3), and ratio of cortical to total area (CSACO/CSATOT) were assessed in both legs by pQCT at baseline and at 3, 6, and 12 months. The intervention had no effect (group × time) on either the distal or midtibial bone traits. At the distal site, BSI of both legs, vBMDTOT of the fractured side, and CSATOT of the nonfractured side decreased significantly over time in both groups 0.7% to 3.1% (12 months, p < 0.05). At the midshaft site, CSACO/CSATOT and SSI of both legs, and vBMDCO of the fractured leg, decreased significantly over time in both groups 1.1% to 1.9% (12 months, p < 0.05). Trabecular and cortical bone traits of the tibia on the fractured and the nonfractured side deteriorated throughout follow‐up. The home‐based physical rehabilitation intervention aimed at promoting mobility recovery was unable to prevent bone deterioration in older people after hip fracture. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tuuli H Suominen
- Gerontology Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | - Johanna Edgren
- Gerontology Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | | | - Marja Arkela
- Department of Physical and Rehabilitation Medicine Central Finland Central Hospital Jyväskylä Finland
| | - Mauri Kallinen
- Department of Physical and Rehabilitation Medicine Central Finland Central Hospital Jyväskylä Finland.,Department of Medical Rehabilitation Oulu University Hospital and Center for Life Course Health Research University of Oulu Oulu Finland
| | | | - Timo Rantalainen
- Gerontology Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | - Timo Törmäkangas
- Gerontology Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | - Ari Heinonen
- Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | - Sarianna Sipilä
- Gerontology Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| |
Collapse
|
3
|
Henchie TF, Gravallese EM, Bredbenner TL, Troy KL. An image-based method to measure joint deformity in inflammatory arthritis: development and pilot study. Comput Methods Biomech Biomed Engin 2019; 22:942-952. [PMID: 31064209 DOI: 10.1080/10255842.2019.1607315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Quantifying joint deformity in people with rheumatoid (RA) and psoriatic arthritis (PsA) remains challenging. Here, we demonstrate a new method to measure bone erosions and abnormal periosteal growths, based on the difference between a predicted healthy and actual diseased joint surface. We optimized the method by creating and measuring artificial bone erosions and growths. Then we measured 46 healthy and diseased patient surfaces. We found average sensitivity errors of ≤0.27 mm when measuring artificial erosions and growths. Patients had significantly more bone erosion than healthy subjects. Surface based outcomes are a novel way to interpret and quantify bone changes in PsA and RA.
Collapse
Affiliation(s)
- Travis F Henchie
- a Department of Biomedical Engineering , Worcester Polytechnic Institute , Worcester , Massachusetts , USA
| | - Ellen M Gravallese
- b Division of Rheumatology , University of Massachusetts Memorial Medical Center and University of Massachusetts Medical School , Worcester , Massachusetts , USA
| | - Todd L Bredbenner
- c Department of Mechanical and Aerospace Engineering , University of Colorado Colorado Springs , Colorado Springs , Colorado , USA
| | - Karen L Troy
- a Department of Biomedical Engineering , Worcester Polytechnic Institute , Worcester , Massachusetts , USA
| |
Collapse
|
4
|
Cervinka T, Giangregorio L, Sievanen H, Cheung AM, Craven BC. Peripheral Quantitative Computed Tomography: Review of Evidence and Recommendations for Image Acquisition, Analysis, and Reporting, Among Individuals With Neurological Impairment. J Clin Densitom 2018; 21:563-582. [PMID: 30196052 DOI: 10.1016/j.jocd.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/07/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023]
Abstract
In 2015, the International Society for Clinical Densitometry (ISCD) position statement regarding peripheral quantitative computed tomography (pQCT) did not recommend routine use of pQCT, in clinical settings until consistency in image acquisition and analysis protocols are reached, normative studies conducted, and treatment thresholds identified. To date, the lack of consensus-derived recommendations regarding pQCT implementation remains a barrier to implementation of pQCT technology. Thus, based on description of available evidence and literature synthesis, this review recommends the most appropriate pQCT acquisition and analysis protocols for clinical care and research purposes, and recommends specific measures for diagnosis of osteoporosis, assigning fracture risk, and monitoring osteoporosis treatment effectiveness, among patients with neurological impairment. A systematic literature search of MEDLINE, EMBASE©, CINAHL, and PubMed for available pQCT studies assessing bone health was carried out from inception to August 8th, 2017. The search was limited to individuals with neurological impairment (spinal cord injury, stroke, and multiple sclerosis) as these groups have rapid and severe regional declines in bone mass. Of 923 references, we identified 69 that met review inclusion criteria. The majority of studies (n = 60) used the Stratec XCT 2000/3000 pQCT scanners as reflected in our evaluation of acquisition and analysis protocols. Overall congruence with the ISCD Official Positions was poor. Only 11% (n = 6) studies met quality reporting criteria for image acquisition and 32% (n = 19) reported their data analysis in a format suitable for reproduction. Therefore, based on current literature synthesis, ISCD position statement standards and the authors' expertise, we propose acquisition and analysis protocols at the radius, tibia, and femur sites using Stratec XCT 2000/3000 pQCT scanners among patients with neurological impairment for clinical and research purposes in order to drive practice change, develop normative datasets and complete future meta-analysis to inform fracture risk and treatment efficacy evaluation.
Collapse
Affiliation(s)
- T Cervinka
- Neural Engineering and Therapeutics Team, Toronto Rehabilitation Research Institute-University Health Network, Toronto, Ontario, Canada.
| | - L Giangregorio
- Neural Engineering and Therapeutics Team, Toronto Rehabilitation Research Institute-University Health Network, Toronto, Ontario, Canada; Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - H Sievanen
- Bone Research Group, UKK Institute, Tampere, Finland
| | - A M Cheung
- Centre of Excellence in Skeletal Health Assessment, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - B C Craven
- Neural Engineering and Therapeutics Team, Toronto Rehabilitation Research Institute-University Health Network, Toronto, Ontario, Canada; Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada; Centre of Excellence in Skeletal Health Assessment, University Health Network, Toronto, Ontario, Canada; Brain and Spinal Cord Rehabilitation Program, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|