1
|
Galeone A, Grano M, Brunetti G. Tumor Necrosis Factor Family Members and Myocardial Ischemia-Reperfusion Injury: State of the Art and Therapeutic Implications. Int J Mol Sci 2023; 24:4606. [PMID: 36902036 PMCID: PMC10003149 DOI: 10.3390/ijms24054606] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Ischemic heart disease is the principal cause of death worldwide and clinically manifests as myocardial infarction (MI), stable angina, and ischemic cardiomyopathy. Myocardial infarction is defined as an irreversible injury due to severe and prolonged myocardial ischemia inducing myocardial cell death. Revascularization is helpful in reducing loss of contractile myocardium and improving clinical outcome. Reperfusion rescues myocardium from cell death but also induces an additional injury called ischemia-reperfusion injury. Multiple mechanisms are involved in ischemia-reperfusion injury, such as oxidative stress, intracellular calcium overload, apoptosis, necroptosis, pyroptosis, and inflammation. Various members of the tumor necrosis factor family play a key role in myocardial ischemia-reperfusion injury. In this article, the role of TNFα, CD95L/CD95, TRAIL, and the RANK/RANKL/OPG axis in the regulation of myocardial tissue damage is reviewed together with their potential use as a therapeutic target.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
2
|
Xu H, Ding Z, Chen J, Zhang Y, Shan W, Chen X, Liu X, Gao Y, Han G. Correlation between serum Dickkopf-1 (DKK1) levels and coronary artery stenosis. Nutr Metab Cardiovasc Dis 2023; 33:168-176. [PMID: 36411225 DOI: 10.1016/j.numecd.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND AIMS To study the correlation between the level of serum Dickkopf-1 (DKK1) and the degree of coronary artery stenosis in patients with coronary atherosclerotic heart disease. METHODS AND RESULTS In 2018, general data and biochemical indexes of 311 patients who underwent coronary angiography were recorded. Before procedure, arterial blood was drawn and the concentrations of DKK1, retinol binding protein 4 (RBP4), plasminogen activator inhibitor (PAI-1) were measured. Based on coronary angiography results, subjects were divided into a coronary heart disease (CHD) group; and a non-coronary heart disease (non-CHD)group. The CHD group was divided into three subgroups: the low Gensini score; the middle Gensini score; and the high Gensini score subgroups. Compared with those of the non-CHD group, DKK1, RBP4 and PAI-1 of the CHD group were significantly higher, while the OC was lower. DKK1,RBP4 and PAI-1 levels of the middle and high Gensini subgroups were significantly higher, compared with that of the low Gensini subgroup. Differences between osteocalcin (OC), beta-isomerized C-terminal telopeptidase (β-CTX), and 25(OH)2D3 of the three subgroups were not significant. Correlation between DKK1 and the inflammatory factors, RBP4 and PAI-1, was positive. Correlation between DKK1 and β - CTX, 25(OH)2D3 and OC was not significant. DKK1 was a risk factor for CHD. The degree of coronary artery stenosis was related to DKK1 concentration. CONCLUSIONS Serum DKK1 levels in coronary heart disease patients were significantly higher, and positively correlated with the degree of coronary artery stenosis. DKK1 level is an independent risk factor for coronary heart disease.
Collapse
Affiliation(s)
- Hongxiu Xu
- Development of Endocrinology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China; The First Hospital of Qinghuangdao, PR China
| | - Zhenjiang Ding
- Development of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Jiaoyue Chen
- Development of Endocrinology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Ying Zhang
- Development of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Weichao Shan
- Development of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Xiaoyu Chen
- Development of Endocrinology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Xiaoyan Liu
- Development of Endocrinology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Yu Gao
- Development of Endocrinology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Guiyan Han
- Development of Endocrinology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China.
| |
Collapse
|
3
|
Zhang T, Wang T, Niu Q, Xu L, Chen Y, Gao X, Gao H, Zhang L, Liu GE, Li J, Xu L. Transcriptional atlas analysis from multiple tissues reveals the expression specificity patterns in beef cattle. BMC Biol 2022; 20:79. [PMID: 35351103 PMCID: PMC8966188 DOI: 10.1186/s12915-022-01269-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/03/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A comprehensive analysis of gene expression profiling across tissues can provide necessary information for an in-depth understanding of their biological functions. We performed a large-scale gene expression analysis and generated a high-resolution atlas of the transcriptome in beef cattle. RESULTS Our transcriptome atlas was generated from 135 bovine tissues in adult beef cattle, covering 51 tissue types of major organ systems (e.g., muscular system, digestive system, immune system, reproductive system). Approximately 94.76% of sequencing reads were successfully mapped to the reference genome assembly ARS-UCD1.2. We detected a total of 60,488 transcripts, and 32% of them were not reported before. We identified 2654 housekeeping genes (HKGs) and 477 tissue-specific genes (TSGs) across tissues. Using weighted gene co-expression network analysis, we obtained 24 modules with 237 hub genes (HUBGs). Functional enrichment analysis showed that HKGs mainly maintain the basic biological activities of cells, while TSGs were involved in tissue differentiation and specific physiological processes. HKGs in bovine tissues were more conserved in terms of expression pattern as compared to TSGs and HUBGs among multiple species. Finally, we obtained a subset of tissue-specific differentially expressed genes (DEGs) between beef and dairy cattle and several functional pathways, which may be involved in production and health traits. CONCLUSIONS We generated a large-scale gene expression atlas across the major tissues in beef cattle, providing valuable information for enhancing genome assembly and annotation. HKGs, TSGs, and HUBGs further contribute to better understanding the biology and evolution of multiple tissues in cattle. DEGs between beef and dairy cattle also fill in the knowledge gaps about differential transcriptome regulation of bovine tissues underlying economically important traits.
Collapse
Affiliation(s)
- Tianliu Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Tianzhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qunhao Niu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lei Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705 USA
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| |
Collapse
|
4
|
Theoretical Evidence of Osteoblast Self-Inhibition after Activation of the Genetic Regulatory Network Controlling Mineralization. J Theor Biol 2022; 537:111005. [PMID: 35031309 DOI: 10.1016/j.jtbi.2022.111005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 01/16/2023]
Abstract
Bone is a hard-soft biomaterial built through a self-assembly process under genetic regulatory network (GRN) monitoring. This paper aims to capture the behavior of the bone GRN part that controls mineralization by using a mathematical model. Here, we provide an advanced review of empirical evidence about interactions between gene coding (i) transcription factors and (ii) bone proteins. These interactions are modeled with nonlinear differential equations using Michaelis-Menten and Hill functions. Compared to empirical evidence, the two best systems (among 126=2,985,984 possibilities) use factors of inhibition from the start of the activation of each gene. It reveals negative indirect interactions coming from either negative feedback loops or the recently depicted micro-RNAs. The difference between the two systems also lies in the BSP equation and two ways for activating and reducing its production. Thus, it highlights the critical role of BSP in the bone GRN that acts on bone mineralization. Our study provides the first theoretical evidence of a necessary genetic inhibition for bone mineralization with this work.
Collapse
|
5
|
Abstract
Adequate bone remodeling may be a primary parameter for long-term successful complication-free dental implant treatment. A 1.8-mm osseous thickness around dental implants is thought to be the minimum thickness for adequate vasculature for osteocyte nutrition and function. A dental implant does not provide progenitor cells or angiogenic or osteogenic factors. Thus, the surrounding bone may need to have a 1.8-mm thickness to accommodate the vasculature necessary for nutrients for appropriate remodeling. Additionally, the 1.8-mm dimension may provide for mechanical load resistance. There is no evidence to illustrate the physiologic need for the 1.8-mm dimension. This dimension requirement is based on clinical outcome observations. Basic science research for bone survival around dental implants is needed.
Collapse
|
6
|
Kosmopoulos M, Paschou SA, Grapsa J, Anagnostis P, Vryonidou A, Goulis DG, Siasos G. The Emerging Role of Bone Markers in Diagnosis and Risk Stratification of Patients With Coronary Artery Disease. Angiology 2019; 70:690-700. [PMID: 30696256 DOI: 10.1177/0003319718822625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecules that govern bone metabolism, such as osteoprotegerin (OPG) and osteopontin (OPN), have been isolated from other tissues, including blood vessels. Atherosclerosis and coronary artery disease (CAD) are leading causes of mortality worldwide. Despite novel biochemical and imaging techniques, early detection of CAD is still unsatisfactory. Experimental data indicate that bone turnover markers (BTMs) contribute to the development of atherosclerosis. This finding has sparked interest in their clinical use. This narrative review analyzed information from >50 human studies, which strongly suggest that OPG, OPN, and alkaline phosphatase (ALP) serum concentrations are altered in patients with CAD. Osteoprotegerin seems to be more useful for the detection of early disease, while OPN and ALP are recruited in vessels after the establishment of disease. Osteocalcin may be used as a flow cytometry marker for endothelial progenitor cells and can constitute a marker to monitor response to interventional treatments and risk of restenosis. However, most data derive from observational studies. Incorporation of BTMs in multifactorial computational algorithms could further determine their role in CAD diagnosis and prognosis together with other imaging techniques and biochemical markers.
Collapse
Affiliation(s)
- Marinos Kosmopoulos
- 1 Division of Cardiology, Department of Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Stavroula A Paschou
- 2 Division of Endocrinology and Diabetes, "Aghia Sophia" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Julia Grapsa
- 3 Barts Heart Center, St Bartholomew's Hospital, London, UK
| | - Panagiotis Anagnostis
- 4 Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andromachi Vryonidou
- 5 Department of Endocrinology and Diabetes, Hellenic Red Cross Hospital, Athens, Greece
| | - Dimitrios G Goulis
- 4 Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gerasimos Siasos
- 6 First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The role of osteoprotegerin in the crosstalk between vessels and bone: Its potential utility as a marker of cardiometabolic diseases. Pharmacol Ther 2018; 182:115-132. [DOI: 10.1016/j.pharmthera.2017.08.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Lau I, Potluri A, Ibeh CL, Redman RS, Paal E, Bandyopadhyay BC. Microcalcifications in stone-obstructed human submandibular gland are associated with apoptosis and cell proliferation. Arch Oral Biol 2017. [PMID: 28623687 DOI: 10.1016/j.archoralbio.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Human submandibular gland (SMG) stones are associated with inflammation, fibrosis and microcalcifications in the surrounding tissues. However, there is little information about the accompanying cell injury-repair process, apoptosis, and cell proliferation. The purpose of this study was to investigate such an association and its clinical significance. DESIGN OF STUDY Mid-gland paraffin sections of human SMGs ("stone glands") and normal SMGs ("non-stone glands") were subjected to stains for general histology (hematoxylin and eosin), fibrosis (Masson's trichrome), and calcification (alizarin red) and to immunohistochemistry for proliferative activity (Ki-67), and apoptosis (Caspase-3). Tissues were assessed for areas of inflammation, calcium deposition, and fibrosis, and for cycling and apoptotic cells. RESULTS Acini were atrophic and proportionately fewer in lobules with fibrosis in stone glands. Additionally, stone glands had intraluminal calcifications (microliths) in scattered excretory and striated ducts and blood vessel walls. Areas of inflammation and fibrosis were small and uncommon, and calcifications were not seen in non-stone glands. Proliferating and apoptotic cells were common in the main duct of stone glands where ciliated and mucous cell hyperplasia and stratified squamous metaplasia had occurred, uncommon in the main duct of non-stone glands, and uncommon in all other parenchymal elements of both stone and non-stone glands. CONCLUSION Stone obstruction in the main excretory ducts of SMG resulted in progressive depletion of acini from proximal to distal lobules via calcification, inflammation, fibrosis, and parenchymal cell atrophy, apoptosis and proliferation. Interlobular duct microliths contributed to this depletion by further provoking intralobular inflammation, fibrosis, and acinar atrophy.
Collapse
Affiliation(s)
- Ivan Lau
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, Washington DC, United States
| | - Ajay Potluri
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, Washington DC, United States
| | - Cliff-Lawrence Ibeh
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, Washington DC, United States
| | - Robert S Redman
- Oral Pathology Research Laboratory, Research Service, Veterans Affairs Medical Center, Washington DC, United States
| | - Edina Paal
- Pathology and Laboratory Service, Veterans Affairs Medical Center, Washington DC, United States
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, Washington DC, United States; Department of Pharmacology and Physiology, Georgetown University, Washington DC, United States.
| |
Collapse
|