1
|
Boehm E, Sauer C, Baur-Melnyk A, Biebl JT, Harada S, Wegener B, Kraft E, Stahl R, Feist-Pagenstert I. Real-life effects of pharmacological osteoporosis treatments on bone mineral density by quantitative computed tomography. J Bone Miner Metab 2024; 42:741-753. [PMID: 39287797 DOI: 10.1007/s00774-024-01553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Monitoring of bone mineral density (BMD) is used to assess pharmacological osteoporosis therapy. This study examined the real-life effects of antiresorptive and osteoanabolic treatments on volumetric BMD (vBMD) of the spine by quantitative computed tomography (QCT). MATERIALS AND METHODS Patients aged ≥ 50 years with a vBMD < 120 mg/ml had ≥ 2 QCT. For analysis of therapy effects, the pharmacological treatment and the duration of each therapy were considered. Identical vertebrae were evaluated in all vBMD measurements for each patient. A linear mixed model with random intercepts was used to estimate the effects of pharmacological treatments on vBMD. RESULTS A total of 1145 vBMD measurements from 402 patients were analyzed. Considering potential confounders such as sex, age, and prior treatment, a reduction in trabecular vBMD was estimated for oral bisphosphonates (- 1.01 mg/ml per year; p < 0.001), intravenous bisphosphonates (- 0.93 mg/ml per year; p = 0.015) and drug holiday (- 1.58 mg/ml per year; p < 0.001). Teriparatide was estimated to increase trabecular vBMD by 4.27 mg/ml per year (p = 0.018). Patients receiving denosumab showed a statistically non-significant decrease in trabecular vBMD (- 0.44 mg/ml per year; p = 0.099). Compared to non-treated patients, pharmacological therapy had positive effects on trabecular vBMD (1.35 mg/ml; p = 0.001, 1.43 mg/ml; p = 0.004, 1.91 mg/ml; p < 0.001, and 6.63 mg/ml; p < 0.001 per year for oral bisphosphonates, intravenous bisphosphonates, denosumab, and teriparatide, respectively). CONCLUSION An increase in trabecular vBMD by QCT was not detected with antiresorptive agents. Patients treated with teriparatide showed increasing trabecular vBMD. Non-treatment led to a larger decrease in trabecular vBMD than pharmacological therapy.
Collapse
Affiliation(s)
- Elena Boehm
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
| | - Christina Sauer
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Andrea Baur-Melnyk
- Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Radiologische Praxis Divocare, Kaufingerstrasse 15, 80331, Munich, Germany
| | - Johanna Theresia Biebl
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Saori Harada
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Marchioninistraße 15, 81377, Munich, Germany
| | - Bernd Wegener
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Eduard Kraft
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Rehabilitation, City Hospital Bogenhausen, Englschalkinger Straße 77, 81925, Munich, Germany
| | - Robert Stahl
- Institute for Diagnostic and Interventional Neuroradiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Isa Feist-Pagenstert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| |
Collapse
|
2
|
Kobayashi D, Hayashi H, Nishigami R, Maeda T, Asahara T, Kanazawa Y, Katsumata A, Kimoto N, Yamamoto S. A blurring correction method suitable to analyze quantitative x-ray images derived from energy-resolving photon counting detector. Phys Med Biol 2024; 69:075023. [PMID: 38452379 DOI: 10.1088/1361-6560/ad3119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Objective.The purpose of this study is to propose a novel blurring correction method that enables accurate quantitative analysis of the object edge when using energy-resolving photon counting detectors (ERPCDs). Although the ERPCDs have the ability to generate various quantitative analysis techniques, such as the derivations of effective atomic number (Zeff) and bone mineral density values, at the object edge in these quantitative images, accurate quantitative information cannot be obtained. This is because image blurring prevents the gathering of accurate primary x-ray attenuation information.Approach.We developed the following procedure for blurring correction. A 5 × 5 pixels masking region was set as the processing area, and the pixels affected by blurring were extracted from the analysis of pixel value distribution. The blurred pixel values were then corrected to the proper values estimated by analyzing minimum and/or maximum values in the set mask area. The suitability of our correction method was verified by a simulation study and an experiment using a prototype ERPCD.Main results. WhenZeffimage of aluminum objects (Zeff= 13) were analyzed without applying our correction method, regardless of raw data or correction data applying a conventional edge enhancement method, the properZeffvalues could not be derived for the object edge. In contrast, when applying our correction method, 82% of pixels affected by blurring were corrected and the properZeffvalues were calculated for those pixels. As a result of investigating the applicability limits of our method through simulation, it was proven that it works effectively for objects with 4 × 4 pixels or more.Significance. Our method is effective in correcting image blurring when the quantitative image is calculated based on multiple images. It will become an in-demand technology for putting a quantitative diagnosis into actual medical examinations.
Collapse
Affiliation(s)
- Daiki Kobayashi
- Graduate School of Medical Sciences, Kanazawa University, Ishikawa, 920-0942, Japan
| | - Hiroaki Hayashi
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, 920-0942, Japan
| | - Rina Nishigami
- Graduate School of Medical Sciences, Kanazawa University, Ishikawa, 920-0942, Japan
| | - Tatsuya Maeda
- Graduate School of Medical Sciences, Kanazawa University, Ishikawa, 920-0942, Japan
| | - Takashi Asahara
- Graduate School of Medical Sciences, Kanazawa University, Ishikawa, 920-0942, Japan
| | - Yuki Kanazawa
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | | | | | | |
Collapse
|
3
|
Boehm E, Kraft E, Biebl JT, Wegener B, Stahl R, Feist-Pagenstert I. Quantitative computed tomography has higher sensitivity detecting critical bone mineral density compared to dual-energy X-ray absorptiometry in postmenopausal women and elderly men with osteoporotic fractures: a real-life study. Arch Orthop Trauma Surg 2024; 144:179-188. [PMID: 37796283 DOI: 10.1007/s00402-023-05070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/03/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Dual-energy X-ray absorptiometry (DXA) is considered the gold standard for the diagnosis of osteoporosis and assessment of fracture risk despite proven limitations. Quantitative computed tomography (QCT) is regarded as a sensitive method for diagnosis and follow-up. Pathologic fractures are classified as the main clinical manifestation of osteoporosis. The objective of the study was to compare DXA and QCT to determine their sensitivity and discriminatory power. MATERIALS AND METHODS Patients aged 50 years and older were included who had DXA of the lumbar spine and femur and additional QCT of the lumbar spine within 365 days. Fractures and bone mineral density (BMD) were retrospectively examined. BMD measurements were analyzed for the detection of osteoporotic fractures. Sensitivity and receiver operating characteristic curve were used for calculations. As an indication for a second radiological examination was given, the results were compared with control groups receiving exclusively DXA or QCT for diagnosis or follow-up. RESULTS Overall, BMD measurements of 404 subjects were analyzed. DXA detected 15 (13.2%) patients having pathologic fractures (n = 114) with normal bone density, 66 (57.9%) with osteopenia, and 33 (28.9%) with osteoporosis. QCT categorized no patients having pathologic fractures with healthy bone density, 14 (12.3%) with osteopenia, and 100 (87.7%) with osteoporosis. T-score DXA, trabecular BMD QCT, and cortical BMD QCT correlated weakly. Trabecular BMD QCT and cortical BMD QCT classified osteoporosis with decreased bone mineral density (AUC 0.680; 95% CI 0.618-0.743 and AUC 0.617; 95% CI 0.553-0.682, respectively). T-score DXA could not predict prevalent pathologic fractures. In control groups, each consisting of 50 patients, DXA and QCT were significant classifiers to predict prevalent pathologic fractures. CONCLUSION Our results support that volumetric measurements by QCT in preselected subjects represent a more sensitive method for the diagnosis of osteoporosis and prediction of fractures compared to DXA.
Collapse
Affiliation(s)
- Elena Boehm
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Eduard Kraft
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Rehabilitation, City Hospital Bogenhausen, Englschalkinger Straße 77, 81925, Munich, Germany
| | - Johanna Theresia Biebl
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
| | - Bernd Wegener
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Robert Stahl
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Isa Feist-Pagenstert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| |
Collapse
|
4
|
Yeni YN, Dix MR, Xiao A, Oravec DJ, Flynn MJ. Measuring the thickness of vertebral endplate and shell using digital tomosynthesis. Bone 2022; 157:116341. [PMID: 35092890 PMCID: PMC8858866 DOI: 10.1016/j.bone.2022.116341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/07/2021] [Accepted: 01/23/2022] [Indexed: 02/05/2023]
Abstract
The vertebral endplate and cortical shell play an important structural role and contribute to the overall strength of the vertebral body, are at highest risk of initial failure, and are involved in degenerative disease of the spine. The ability to accurately measure the thickness of these structures is therefore important, even if difficult due to relatively low resolution clinical imaging. We posit that digital tomosynthesis (DTS) may be a suitable imaging modality for measurement of endplate and cortical shell thickness owing to the ability to reconstruct multiplanar images with good spatial resolution at low radiation dose. In this study, for 25 cadaveric L1 vertebrae, average and standard deviation of endplate and cortical shell thickness were measured using images from DTS and microcomputed tomography (μCT). For endplate thickness measurements, significant correlations between DTS and μCT were found for all variables when comparing thicknesses measured in both the overall endplate volume (R2 = 0.25-0.54) and when measurements were limited to a central range of coronal or sagittal slices (R2 = 0.24-0.62). When compared to reference values from the overall shell volume, DTS thickness measurements were generally nonsignificant. However, when measurement of cortical shell thickness was limited to a range of central slices, DTS outcomes were significantly correlated with reference values for both sagittal and coronal central regions (R2 = 0.21-0.49). DTS may therefore offer a means for measurement of endplate thickness and, within a limited sagittal or coronal measurement volume, for measurement of cortical shell thickness.
Collapse
Affiliation(s)
- Yener N Yeni
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America.
| | - Michael R Dix
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America; School of Medicine, Wayne State University, Detroit, MI, United States of America
| | - Angela Xiao
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America
| | - Daniel J Oravec
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America
| | - Michael J Flynn
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America
| |
Collapse
|
5
|
Dahan G, Safran O, Yosibash Z. Can neck fractures in proximal humeri be predicted by CT-based FEA? J Biomech 2022; 136:111039. [PMID: 35381504 DOI: 10.1016/j.jbiomech.2022.111039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Proximal humeri fractures at anatomical and surgical neck (∼5% and ∼50% incidence respectively) are frequent in elderly population. Yet, neither in-vitro experiments nor CT-based finite element analyses (CTFEA) have investigated these in depth. Herein we enhance (Dahan et al., 2019) (addressing anatomical neck fractures) by more experiments and specimens, accounting for surgical neck fractures and explore CTFEA's prediction of humeri mechanical response and yield force. METHODS Four fresh frozen human humeri were tested in a new experimental configuration inducing surgical neck fractures. Digital image correlation (DIC) provided strains and displacements on humeri surfaces and used to validate CTFEA predictions. CTFEA were enhanced herein to improve the accuracy at the proximal neck: A cortical bone mapping (CBM) algorithm was implemented to overcome insufficient scanning resolution, and a new trabecular material mapping was investigated. RESULTS The new experimental setting induced impacted surgical neck fractures in all humeri. Excellent DIC to CTFEA correlation in strains was obtained at the shaft (slope 0.984, R2=0.99) and a fair agreement (slope 0.807, R2=0.73) at the neck. CBM algorithm had worsened the correlation, whereas the new material mapping had a negligible influence. Yield loads predictions improved considerably when trabecular yielding (maximum principal strain criterion) was considered instead of surface cortical yielding. DISCUSSION CTFEA well predicts strains on the shaft and reasonably well on the neck. This enhances former conclusions by past studies conducted using SGs, now also evident by DIC. Yield load prediction for surgical neck fractures (involving crushing of trabecular bone) is predicted better by trabecular failure laws rather than cortex ones. Further FEA studies using trabecular orthotropic constitutive models and failure laws are warrant.
Collapse
|
6
|
Poole KES, Treece GM, Pearson RA, Gee AH, Bolognese MA, Brown JP, Goemaere S, Grauer A, Hanley DA, Mautalen C, Recknor C, Yang Y, Rojeski M, Libanati C, Whitmarsh T. Romosozumab Enhances Vertebral Bone Structure in Women With Low Bone Density. J Bone Miner Res 2022; 37:256-264. [PMID: 34738660 PMCID: PMC9299688 DOI: 10.1002/jbmr.4465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Romosozumab monoclonal antibody treatment works by binding sclerostin and causing rapid stimulation of bone formation while decreasing bone resorption. The location and local magnitude of vertebral bone accrual by romosozumab and how it compares to teriparatide remains to be investigated. Here we analyzed the data from a study collecting lumbar computed tomography (CT) spine scans at enrollment and 12 months post-treatment with romosozumab (210 mg sc monthly, n = 17), open-label daily teriparatide (20 μg sc, n = 19), or placebo (sc monthly, n = 20). For each of the 56 women, cortical thickness (Ct.Th), endocortical thickness (Ec.Th), cortical bone mineral density (Ct.bone mineral density (BMD)), cancellous BMD (Cn.BMD), and cortical mass surface density (CMSD) were measured across the first lumbar vertebral surface. In addition, color maps of the changes in the lumbar vertebrae structure were statistically analyzed and then visualized on the bone surface. At 12 months, romosozumab improved all parameters significantly over placebo and resulted in a mean vertebral Ct.Th increase of 10.3% versus 4.3% for teriparatide, an Ec.Th increase of 137.6% versus 47.5% for teriparatide, a Ct.BMD increase of 2.1% versus a -0.1% decrease for teriparatide, and a CMSD increase of 12.4% versus 3.8% for teriparatide. For all these measurements, the differences between romosozumab and teriparatide were statistically significant (p < 0.05). There was no significant difference between the romosozumab-associated Cn.BMD gains of 22.2% versus 18.1% for teriparatide, but both were significantly greater compared with the change in the placebo group (-4.6%, p < 0.05). Cortical maps showed the topographical locations of the increase in bone in fracture-prone areas of the vertebral shell, walls, and endplates. This study confirms widespread vertebral bone accrual with romosozumab or teriparatide treatment and provides new insights into how the rapid prevention of vertebral fractures is achieved in women with osteoporosis using these anabolic agents. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kenneth ES Poole
- Department of MedicineUniversity of Cambridge and Addenbrooke's HospitalCambridgeUK
| | | | - Rose A Pearson
- Department of EngineeringUniversity of CambridgeCambridgeUK
| | - Andrew H Gee
- Department of EngineeringUniversity of CambridgeCambridgeUK
| | | | - Jacques P Brown
- CHU de Québec Research Centre and Laval UniversityQuebec CityCanada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ripani D, Caldarella C, Za T, Rossi E, De Stefano V, Giordano A. Progression to Symptomatic Multiple Myeloma Predicted by Texture Analysis-Derived Parameters in Patients Without Focal Disease at 18F-FDG PET/CT. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:536-544. [PMID: 33985932 DOI: 10.1016/j.clml.2021.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/26/2022]
Abstract
This retrospective study is focused on the possible clinical implications of texture analysis-derived PET parameters in patients with smoldering multiple myeloma. Several texture features are significantly associated with progression to symptomatic multiple myeloma and with a shorter time to progression. The results of this study may lead to early identification of patients who could benefit from specific therapies. BACKGROUND The aim of the study was to determine whether positron emission tomography parameters derived from texture analysis of axial and peripheral skeleton predict progression to symptomatic multiple myeloma (MM) in patients undergoing 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) without evidence of focal sites of 18F-FDG uptake. PATIENTS AND METHODS Patients with smoldering MM who underwent 18F-FDG PET/CT from May 2014 to June 2018 were retrospectively reviewed. Volumes of interest (VOIs) were placed on T5-T7 and L2-L4, iliac crests, and femoral diaphyses. Dedicated software (LIFEx) allowed us to obtain PET-derived first-, second-, and higher order texture features. Possible associations between PET parameters and progression to symptomatic MM were determined. Kaplan-Meier curves allowed to assess time to progression (TTP) based on the PET parameters. RESULTS Forty-five patients were included: 26 patients (58%) did not meet the criteria for symptomatic MM, but 19 patients (42%) progressed to symptomatic MM. Several texture features extracted from VOIs placed on iliac crests and femoral diaphyses were significantly associated with progression to symptomatic MM and with a shorter TTP (P < .05); conversely, the above-mentioned parameters extracted from VOIs placed on T5-T7 and L2-L4 did not significantly differ among the patients with regard to their progression to symptomatic MM and length of TTP, except for the gray-level zone length matrix-short-zone low-gray-level emphasis and gray-level zone length matrix-low gray-level zone emphasis. Particularly, second- and higher order texture features showed a significant association with the above-mentioned outcomes. CONCLUSION Texture features derived from PET may be an expression of subtle disease distribution in the axial and peripheral bone marrow.
Collapse
Affiliation(s)
- Daria Ripani
- Dipartimento di Scienze Radiologiche ed Ematologiche, Istituto di Medicina Nucleare, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carmelo Caldarella
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Tommaso Za
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Servizio e Day Hospital di Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo. A. Gemelli, 8, 00168 Rome, Italy
| | - Elena Rossi
- Dipartimento di Scienze Radiologiche ed Ematologiche, Istituto di Ematologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Servizio e Day Hospital di Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo. A. Gemelli, 8, 00168 Rome, Italy
| | - Valerio De Stefano
- Dipartimento di Scienze Radiologiche ed Ematologiche, Istituto di Ematologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Servizio e Day Hospital di Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo. A. Gemelli, 8, 00168 Rome, Italy
| | - Alessandro Giordano
- Dipartimento di Scienze Radiologiche ed Ematologiche, Istituto di Medicina Nucleare, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
8
|
Schileo E, Pitocchi J, Falcinelli C, Taddei F. Cortical bone mapping improves finite element strain prediction accuracy at the proximal femur. Bone 2020; 136:115348. [PMID: 32240847 DOI: 10.1016/j.bone.2020.115348] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 11/28/2022]
Abstract
Despite evidence of the biomechanical role of cortical bone, current state of the art finite element models of the proximal femur built from clinical CT data lack a subject-specific representation of the bone cortex. Our main research hypothesis is that the subject-specific modelling of cortical bone layer from CT images, through a deconvolution procedure known as Cortical Bone Mapping (CBM, validated for cortical thickness and density estimates) can improve the accuracy of CT-based FE models of the proximal femur, currently limited by partial volume artefacts. Our secondary hypothesis is that a careful choice of cortical-specific density-elasticity relationship may improve model accuracy. We therefore: (i) implemented a procedure to include subject-specific CBM estimates of both cortical thickness and density in CT-based FE models. (ii) defined alternative models that included CBM estimates and featured a cortical-specific or an independently optimised density-elasticity relationship. (iii) tested our hypotheses in terms of elastic strain estimates and failure load and location prediction, by comparing with a published cohort of 14 femurs, where strain and strength in stance and fall loading configuration were experimentally measured, and estimated through reference FE models that did not explicitly model the cortical compartment. Our findings support the main hypothesis: an explicit modelling of the proximal femur cortical bone layer including CBM estimates of cortical bone thickness and density increased the FE strains prediction, mostly by reducing peak errors (average error reduced by 30%, maximum error and 95th percentile of error distribution halved) and especially when focusing on the femoral neck locations (all error metrics at least halved). We instead rejected the secondary hypothesis: changes in cortical density-elasticity relationship could not improve validation performances. From these improved baseline strain estimates, further work is needed to achieve accurate strength predictions, as models incorporating cortical thickness and density produced worse estimates of failure load and equivalent estimates of failure location when compared to reference models. In summary, we recommend including local estimates of cortical thickness and density in FE models to estimate bone strains in physiological conditions, and especially when designing exercise studies to promote bone strength.
Collapse
Affiliation(s)
- Enrico Schileo
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Jonathan Pitocchi
- Materialise N.V., Heverlee, Belgium; Multiscale in Mechanical and Biological Engineering (M2BE), University of Zaragoza, Zaragoza, Spain; Biomechanics Section, KU Leuven, Leuven, Belgium
| | | | - Fulvia Taddei
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
9
|
Löffler MT, Sollmann N, Mei K, Valentinitsch A, Noël PB, Kirschke JS, Baum T. X-ray-based quantitative osteoporosis imaging at the spine. Osteoporos Int 2020; 31:233-250. [PMID: 31728606 DOI: 10.1007/s00198-019-05212-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
Osteoporosis is a metabolic bone disease with a high prevalence that affects the population worldwide, particularly the elderly. It is often due to fractures associated with bone fragility that the diagnosis of osteoporosis becomes clinically evident. However, early diagnosis would be necessary to initiate therapy and to prevent occurrence of further fractures, thus reducing morbidity and mortality. X-ray-based imaging plays a key role for fracture risk assessment and monitoring of osteoporosis. Whereas over decades dual-energy X-ray absorptiometry (DXA) has been the main method used and still reflects the reference standard, another modality reemerges with quantitative computed tomography (QCT) because of its three-dimensional advantages and the opportunistic exploitation of routine CT scans. Against this background, this article intends to review and evaluate recent advances in the field of X-ray-based quantitative imaging of osteoporosis at the spine. First, standard DXA with the recent addition of trabecular bone score (TBS) is presented. Secondly, standard QCT, dual-energy BMD quantification, and opportunistic BMD screening in non-dedicated CT exams are discussed. Lastly, finite element analysis and microstructural parameter analysis are reviewed.
Collapse
Affiliation(s)
- M T Löffler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - N Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - K Mei
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - A Valentinitsch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - P B Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - T Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
10
|
Cesar R, Bravo-Castillero J, Ramos RR, Pereira CAM, Zanin H, Rollo JMDA. Relating mechanical properties of vertebral trabecular bones to osteoporosis. Comput Methods Biomech Biomed Engin 2019; 23:54-68. [DOI: 10.1080/10255842.2019.1699542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- R. Cesar
- Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - J. Bravo-Castillero
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Mexico City, México
- IIMAS UNAM Mérida, Unidad Académica de Yucatán, Parque Científico Tecnológico de Yucatán, Mérida, México
| | - R. R. Ramos
- Facultad de Matemática y Computación, Universidad de La Habana, Havana, Cuba
| | - C. A. M. Pereira
- Orthopedics and Traumatology Institute at the Clinical Hospital, University of São Paulo (USP), São Paulo, Brazil
| | - H. Zanin
- Carbon Sci-Tech labs, School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | - J. M. D. A. Rollo
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
11
|
Next-generation imaging of the skeletal system and its blood supply. Nat Rev Rheumatol 2019; 15:533-549. [PMID: 31395974 DOI: 10.1038/s41584-019-0274-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Bone is organized in a hierarchical 3D architecture. Traditionally, analysis of the skeletal system was based on bone mass assessment by radiographic methods or on the examination of bone structure by 2D histological sections. Advanced imaging technologies and big data analysis now enable the unprecedented examination of bone and provide new insights into its 3D macrostructure and microstructure. These technologies comprise ex vivo and in vivo methods including high-resolution computed tomography (CT), synchrotron-based imaging, X-ray microscopy, ultra-high-field magnetic resonance imaging (MRI), light-sheet fluorescence microscopy, confocal and intravital two-photon imaging. In concert, these techniques have been used to detect and quantify a novel vascular system of trans-cortical vessels in bone. Furthermore, structures such as the lacunar network, which harbours and connects osteocytes, become accessible for 3D imaging and quantification using these methods. Next-generation imaging of the skeletal system and its blood supply are anticipated to contribute to an entirely new understanding of bone tissue composition and function, from macroscale to nanoscale, in health and disease. These insights could provide the basis for early detection and precision-type intervention of bone disorders in the future.
Collapse
|