1
|
Wang Y, Hu J, Sun L, Zhou B, Lin X, Zhang Q, Wang O, Jiang Y, Xia W, Xing X, Li M. Correlation of serum DKK1 level with skeletal phenotype in children with osteogenesis imperfecta. J Endocrinol Invest 2024; 47:2785-2795. [PMID: 38744806 PMCID: PMC11473575 DOI: 10.1007/s40618-024-02380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE We aim to detect serum DKK1 level of pediatric patients with OI and to analyze its relationship with the genotype and phenotype of OI patients. METHODS A cohort of pediatric OI patients and age-matched healthy children were enrolled. Serum levels of DKK1 and bone turnover biomarkers were measured by enzyme-linked immunosorbent assay. Bone mineral density (BMD) was measured by Dual-energy X-ray absorptiometry. Pathogenic mutations of OI were detected by next-generation sequencing and confirmed by Sanger sequencing. RESULTS A total of 62 OI children with mean age of 9.50 (4.86, 12.00) years and 29 healthy children were included in this study. The serum DKK1 concentration in OI children was significantly higher than that in healthy children [5.20 (4.54, 6.32) and 4.08 (3.59, 4.92) ng/mL, P < 0.001]. The serum DKK1 concentration in OI children was negatively correlated with height (r = - 0.282), height Z score (r = - 0.292), ALP concentration (r = - 0.304), lumbar BMD (r = - 0.276), BMD Z score of the lumbar spine and femoral neck (r = - 0.32; r = - 0.27) (all P < 0.05). No significant difference in serum DKK1 concentration was found between OI patients with and without vertebral compression fractures. In patients with spinal deformity (22/62), serum DKK1 concentration was positively correlated with SDI (r = 0.480, P < 0.05). No significant correlation was observed between serum DKK1 concentration and the annual incidence of peripheral fractures, genotype and types of collagen changes in OI children. CONCLUSION The serum DKK1 level was not only significantly elevated in OI children, but also closely correlated to their skeletal phenotype, suggesting that DKK1 may become a new biomarker and a potential therapeutic target of OI.
Collapse
Affiliation(s)
- Y Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - J Hu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - L Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - B Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - X Lin
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - Q Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - O Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - Y Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - W Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - X Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - M Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China.
| |
Collapse
|
2
|
Martanto TW, Japamadisaw A, Nurhayati D, Nelissen RGHH. Zoledronate Therapy in Osteogenesis Imperfecta: Perspectives in Indonesia Tertiary Hospital. J Bone Metab 2024; 31:290-295. [PMID: 39496298 DOI: 10.11005/jbm.24.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare disease with an estimated incidence of between 1/25,000 and 1/10,000 globally. The main treatment for OI is the administration of bisphosphonate drugs. Research on clinical, radiographic, and biochemical markers to monitor patients with OI treated with zoledronate can be challenging in countries in which patients have limited national health insurance. We aimed to examine patients with OI treated in Indonesia with a minimum follow-up period of 2 years. METHODS An observational study was conducted of all patients with OI treated with zoledronate between 2021 and 2023 at a tertiary hospital in Indonesia. We evaluated the paediatric quality of life (PedsQL), bone mineral density (BMD), and alkaline phosphatase (ALP) level before and after zoledronate treatment. To monitor safety, serum creatinine and calcium levels were also measured. RESULTS Eleven boys (55%) and nine girls (45%), with an average age of 6.9 years (range, 4-17 years), were included. After 2 years of zoledronate treatment, the total PedsQL score increased from 66.7 to 76.9 (P=0.0001) and the mean lumbar and total body BMD increased from 0.467 and 0.501 to 0.599 g/cm2, and 0.626 g/cm2 (P=0.001), respectively. The ALP level decreased from 310.6 to 186.4 mg/mL (P=0.0001). Neither serum creatinine (P=0.586) nor calcium (P=0.53) levels changed from the pre-treatment to 2 years post-treatment time points. CONCLUSIONS Zoledronate was safe and effective for the treatment of OI. There were significant improvements in the quality of life and BMD in patients with OI. The ALP level decreased, but serum creatinine and calcium levels were not affected by zoledronate.
Collapse
Affiliation(s)
- Tri Wahyu Martanto
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Orthopaedics and Traumatology, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Aliefio Japamadisaw
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Orthopaedics and Traumatology, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Dian Nurhayati
- Department of Radiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Radiology, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Rob G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
3
|
Liu J, Lin X, Sun L, Zhang Q, Jiang Y, Wang O, Xing X, Xia W, Li M. Safety and Efficacy of Denosumab in Children With Osteogenesis Imperfecta-the First Prospective Comparative Study. J Clin Endocrinol Metab 2024; 109:1827-1836. [PMID: 38198649 PMCID: PMC11180505 DOI: 10.1210/clinem/dgad732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 01/12/2024]
Abstract
CONTEXT Denosumab is a potential therapeutic agent for osteogenesis imperfecta (OI), but its efficacy and safety remain unclear in children with OI. OBJECTIVE We aimed to investigate the effects of denosumab on bone mineral density (BMD), spinal morphometry, and safety in children with OI compared with zoledronic acid. METHODS In this prospective study, 84 children or adolescents with OI were randomized to receive denosumab subcutaneous injection every 6 months or zoledronic acid intravenous infusion once. Changes of BMD and its Z-score, vertebral shape, serum levels of calcium and bone turnover biomarkers were assessed during the 1-year treatment. RESULTS After 12 months of treatment, BMD at the lumbar spine, femoral neck, and total hip significantly increased by 29.3%, 27.8%, and 30.2% in the denosumab group, and by 32.2%, 47.1%, and 41.1% in the zoledronic acid group (all P < .001 vs baseline). Vertebral height and projection area significantly increased after denosumab and zoledronic acid treatment. Rebound hypercalcemia was found to be a common and serious side effect of denosumab, of which 14.3% reached hypercalcemic crisis. Rebound hypercalcemia could be alleviated by switching to zoledronic acid treatment. CONCLUSION Treatment with denosumab or zoledronic acid is beneficial in increasing BMD and improving the spinal morphometry of children with OI. However, denosumab should be used with caution in pediatric patients with OI because of its common and dangerous side effect of rebound hypercalcemia. The appropriate dosage and dosing interval of denosumab need to be further explored in children with OI.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoyun Lin
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lei Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
4
|
Ko JY, Wang FS, Lian WS, Yang FS, Chen JW, Huang PH, Liao CY, Kuo SJ. Dickkopf-1 (DKK1) blockade mitigates osteogenesis imperfecta (OI) related bone disease. Mol Med 2024; 30:66. [PMID: 38773377 PMCID: PMC11106911 DOI: 10.1186/s10020-024-00838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND The current treatment of osteogenesis imperfecta (OI) is imperfect. Our study thus delves into the potential of using Dickkopf-1 antisense (DKK1-AS) to treat OI. METHODS We analysed serum DKK1 levels and their correlation with lumbar spine and hip T-scores in OI patients. Comparative analyses were conducted involving bone marrow stromal cells (BMSCs) and bone tissues from wild-type mice, untreated OI mice, and OI mice treated with DKK1-ASor DKK1-sense (DKK1-S). RESULTS Significant inverse correlations were noted between serum DKK1 levels and lumbar spine (correlation coefficient = - 0.679, p = 0.043) as well as hip T-scores (correlation coefficient = - 0.689, p = 0.042) in OI patients. DKK1-AS improved bone mineral density (p = 0.002), trabecular bone volume/total volume fraction (p < 0.001), trabecular separation (p = 0.010), trabecular thickness (p = 0.001), trabecular number (p < 0.001), and cortical thickness (p < 0.001) in OI mice. DKK1-AS enhanced the transcription of collagen 1α1, osteocalcin, runx2, and osterix in BMSC from OI mice (all p < 0.001), resulting in a higher von Kossa-stained matrix area (p < 0.001) in ex vivo osteogenesis assays. DKK1-AS also reduced osteoclast numbers (p < 0.001), increased β-catenin and T-cell factor 4 immunostaining reactivity (both p < 0.001), enhanced mineral apposition rate and bone formation rate per bone surface (both p < 0.001), and decreased osteoclast area (p < 0.001) in OI mice. DKK1-AS upregulated osteoprotegerin and downregulated nuclear factor-kappa B ligand transcription (both p < 0.001). Bone tissues from OI mice treated with DKK1-AS exhibited significantly higher breaking force compared to untreated OI mice (p < 0.001). CONCLUSIONS Our study elucidates that DKK1-AS has the capability to enhance bone mechanical properties, restore the transcription of osteogenic genes, promote osteogenesis, and inhibit osteoclastogenesis in OI mice.
Collapse
Affiliation(s)
- Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, 833401, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, 833401, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, 833401, Taiwan
| | - Feng-Sheng Wang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, 833401, Taiwan
| | - Wei-Shiung Lian
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, 833401, Taiwan
| | - Fu-Shine Yang
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, 833401, Taiwan
| | - Jeng-Wei Chen
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, 833401, Taiwan
| | - Po-Hua Huang
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, 833401, Taiwan
| | - Chin-Yi Liao
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, 833401, Taiwan
| | - Shu-Jui Kuo
- School of Medicine, China Medical University, Taichung City, 404328, Taiwan.
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung City, 404327, Taiwan.
| |
Collapse
|
5
|
Mahmoud I, Bouden S, Sahli M, Rouached L, Ben Tekaya A, Tekaya R, Saidane O, Abdelmoula L. Efficacy and safety of intravenous Zolidronic acid in the treatment of pediatric osteogenesis imperfecta: a systematic review. J Pediatr Orthop B 2024; 33:283-289. [PMID: 37339526 DOI: 10.1097/bpb.0000000000001104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Osteogenesis imperfecta is an inherited clinically heterogeneous disorder of bone metabolism characterized by bone and skeletal fragility and an increased risk of fractures. Pamidronate infusion was the standard treatment, but zoledronic acid is increasingly used to treat children with osteogenesis imperfecta. We conducted a systematic literature review to evaluate the efficacy and safety of intravenous zoledronic acid in the treatment of osteogenesis imperfecta in pediatric patients. A systematic review of the published literature was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Eligible articles were clinical trials and observational studies including pediatric patients (<16 years) with osteogenesis imperfecta treated with zoledronic acid. We selected articles published during the 20 past years. The selected languages were English and French. We included articles with a minimum sample size of five patients. Six articles fulfilled the selection criteria. The majority of patients were Chinese (58%). The predominant sex was male (65%), and the age of included patients ranged from 2.5 weeks to 16.8 years. For all patients, zoledronic infusions were administrated intravenously. The zoledronic treatment duration ranged from 1 to 3 years. Densitometry parameters before and after zoledronic treatment were evaluated and showed significant improvement both in lumbar spine-bone mineral density Z -score and femoral neck-bone mineral density Z -scores. A significant decrease in fracture rate has also been noted both in vertebral and nonvertebral fracture incidence. The two most common side effects were fever and flu-like reactions. None of the patients presented severe adverse events. Zoledronic acid appeared to be well-tolerated and effective in the treatment of pediatric osteogenesis imperfecta.
Collapse
Affiliation(s)
- Ines Mahmoud
- Department of Rheumatology, Charles Nicolle Hospital, Tunis
- University of Tunis El Manar
| | - Selma Bouden
- Department of Rheumatology, Charles Nicolle Hospital, Tunis
- University of Tunis El Manar
| | - Mariem Sahli
- University of Tunis El Manar
- Rheumatology practice, El Mourouj, Tunisia
| | - Leila Rouached
- Department of Rheumatology, Charles Nicolle Hospital, Tunis
- University of Tunis El Manar
| | - Aicha Ben Tekaya
- Department of Rheumatology, Charles Nicolle Hospital, Tunis
- University of Tunis El Manar
| | - Rawdha Tekaya
- Department of Rheumatology, Charles Nicolle Hospital, Tunis
- University of Tunis El Manar
| | - Olfa Saidane
- Department of Rheumatology, Charles Nicolle Hospital, Tunis
- University of Tunis El Manar
| | - Leila Abdelmoula
- Department of Rheumatology, Charles Nicolle Hospital, Tunis
- University of Tunis El Manar
| |
Collapse
|
6
|
Sun Y, Li L, Wang J, Liu H, Wang H. Emerging Landscape of Osteogenesis Imperfecta Pathogenesis and Therapeutic Approaches. ACS Pharmacol Transl Sci 2024; 7:72-96. [PMID: 38230285 PMCID: PMC10789133 DOI: 10.1021/acsptsci.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Osteogenesis imperfecta (OI) is an uncommon genetic disorder characterized by shortness of stature, hearing loss, poor bone mass, recurrent fractures, and skeletal abnormalities. Pathogenic variations have been found in over 20 distinct genes that are involved in the pathophysiology of OI, contributing to the disorder's clinical and genetic variability. Although medications, surgical procedures, and other interventions can partially alleviate certain symptoms, there is still no known cure for OI. In this Review, we provide a comprehensive overview of genetic pathogenesis, existing treatment modalities, and new developments in biotechnologies such as gene editing, stem cell reprogramming, functional differentiation, and transplantation for potential future OI therapy.
Collapse
Affiliation(s)
- Yu Sun
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Lin Li
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Jiajun Wang
- Medical
School of Hubei Minzu University, Enshi 445000, China
| | - Huiting Liu
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Hu Wang
- Department
of Neurology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
7
|
Zheng WB, Hu J, Sun L, Liu JY, Zhang Q, Wang O, Jiang Y, Xia WB, Xing XP, Li M. Correlation of lipocalin 2 and glycolipid metabolism and body composition in a large cohort of children with osteogenesis imperfecta. J Endocrinol Invest 2024; 47:47-58. [PMID: 37326909 PMCID: PMC10776749 DOI: 10.1007/s40618-023-02121-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE Lipocalin 2 (LCN2) is a newly recognized bone-derived factor that is important in regulation of energy metabolism. We investigated the correlation of serum LCN2 levels and glycolipid metabolism, and body composition in a large cohort of patients with osteogenesis imperfecta (OI). METHODS A total of 204 children with OI and 66 age- and gender-matched healthy children were included. Circulating levels of LCN2 and osteocalcin were measured by enzyme-linked immunosorbent assay. Serum levels of fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), and low- and high-density lipoprotein cholesterol (LDL-C, HDL-C) were measured by automated chemical analyzers. The body composition was measured by dual-energy X-ray absorptiometry. Grip strength and timed-up-and-go (TUG) were tested to evaluate the muscle function. RESULTS Serum LCN2 levels were 37.65 ± 23.48 ng/ml in OI children, which was significantly lower than those in healthy control (69.18 ± 35.43 ng/ml, P < 0.001). Body mass index (BMI) and serum FBG level were significantly higher and HDL-C levels were lower in OI children than healthy control (all P < 0.01). Grip strength was significantly lower (P < 0.05), and the TUG was significantly longer in OI patients than healthy control (P < 0.05). Serum LCN2 level was negatively correlated to BMI, FBG, HOMA-IR, HOMA-β, total body, and trunk fat mass percentage, and positively correlated to total body and appendicular lean mass percentage (all P < 0.05). CONCLUSIONS Insulin resistance, hyperglycemia, obesity, and muscle dysfunction are common in OI patients. As a novel osteogenic cytokine, LCN2 deficiency may be relevant to disorders of glucose and lipid metabolism, and dysfunction of muscle in OI patients.
Collapse
Affiliation(s)
- W-B Zheng
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
- Department of Endocrinology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - J Hu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - L Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - J-Y Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Q Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - O Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Y Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - W-B Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - X-P Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - M Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
8
|
Muñoz-Garcia J, Heymann D, Giurgea I, Legendre M, Amselem S, Castañeda B, Lézot F, William Vargas-Franco J. Pharmacological options in the treatment of osteogenesis imperfecta: A comprehensive review of clinical and potential alternatives. Biochem Pharmacol 2023; 213:115584. [PMID: 37148979 DOI: 10.1016/j.bcp.2023.115584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous connective tissue disorder characterized by bone fragility and different extra-skeletal manifestations. The severity of these manifestations makes it possible to classify OI into different subtypes based on the main clinical features. This review aims to outline and describe the current pharmacological alternatives for treating OI, grounded on clinical and preclinical reports, such as antiresorptive agents, anabolic agents, growth hormone, and anti-TGFβ antibody, among other less used agents. The different options and their pharmacokinetic and pharmacodynamic properties will be reviewed and discussed, focusing on the variability of their response and the molecular mechanisms involved to attain the main clinical goals, which include decreasing fracture incidence, improving pain, and promoting growth, mobility, and functional independence.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France; Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44322, France
| | - Dominique Heymann
- Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France; Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44322, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Irina Giurgea
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Marie Legendre
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Serge Amselem
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Beatriz Castañeda
- Service d'Orthopédie Dento-Facial, Département d'Odontologie, Hôpital Pitié-Salpêtrière (AP-HP), Paris F75013, France
| | - Frédéric Lézot
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France.
| | | |
Collapse
|
9
|
Hu J, Lin X, Gao P, Zhang Q, Zhou B, Wang O, Jiang Y, Xia W, Xing X, Li M. Genotypic and Phenotypic Spectrum and Pathogenesis of WNT1 Variants in a Large Cohort of Patients With OI/Osteoporosis. J Clin Endocrinol Metab 2023; 108:1776-1786. [PMID: 36595228 PMCID: PMC10271228 DOI: 10.1210/clinem/dgac752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
CONTEXT Mutations in WNT1 can cause rare inherited disorders such as osteogenesis imperfecta (OI) and early-onset osteoporosis (EOOP). Owing to its rarity, the clinical characteristics and pathogenic mechanism of WNT1 mutations remain unclear. OBJECTIVE We aimed to explore the phenotypic and genotypic spectrum and treatment responses of a large cohort of patients with WNT1-related OI/OP and the molecular mechanisms of WNT1 variants. METHODS The phenotypes and genotypes of patients and their responses to bisphosphonates or denosumab were evaluated. Western blot analysis, quantitative polymerase chain reaction, and immunofluorescence staining were used to evaluate the expression levels of WNT1, total β-catenin, and type I collagen in the tibial bone or skin from one patient. RESULTS We included 16 patients with 16 mutations identified in WNT1, including a novel mutation. The types of WNT1 mutations were related to skeletal phenotypes, and biallelic nonsense mutations or frameshift mutations could lead to an earlier occurrence of fragility fractures and more severe skeletal phenotypes. Some rare comorbidities were identified in this cohort, including cerebral abnormalities, hematologic diseases, and pituitary adenoma. Bisphosphonates and denosumab significantly increased the spine and proximal hip BMD of patients with WNT1 mutations and reshaped the compressed vertebrae. We report for the first time a decreased β-catenin level in the bone of patient 10 with c.677C > T and c.502G > A compared to the healthy control, which revealed the potential mechanisms of WNT1-induced skeletal phenotypes. CONCLUSION Biallelic nonsense mutations or frameshift mutations of WNT1 could lead to an earlier occurrence of fragility fractures and a more severe skeletal phenotype in OI and EOOP induced by WNT1 mutations. The reduced osteogenic activity caused by WNT pathway downregulation could be a potential pathogenic mechanism of WNT1-related OI and EOOP.
Collapse
Affiliation(s)
- Jing Hu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoyun Lin
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Peng Gao
- Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bingna Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
10
|
Montero-Lopez R, Laurer E, Tischlinger K, Nagy D, Scala M, Kranewitter W, Webersinke G, Hörtenhuber T, Högler W. Spontaneous reshaping of vertebral fractures in an adolescent with osteogenesis imperfecta. Bone Rep 2022; 16:101595. [PMID: 35693066 PMCID: PMC9178468 DOI: 10.1016/j.bonr.2022.101595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 10/28/2022] Open
|
11
|
Schindeler A, Lee LR, O'Donohue AK, Ginn SL, Munns CF. Curative Cell and Gene Therapy for Osteogenesis Imperfecta. J Bone Miner Res 2022; 37:826-836. [PMID: 35306687 PMCID: PMC9324990 DOI: 10.1002/jbmr.4549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/03/2022] [Accepted: 02/27/2022] [Indexed: 11/17/2022]
Abstract
Osteogenesis imperfecta (OI) describes a series of genetic bone fragility disorders that can have a substantive impact on patient quality of life. The multidisciplinary approach to management of children and adults with OI primarily involves the administration of antiresorptive medication, allied health (physiotherapy and occupational therapy), and orthopedic surgery. However, advances in gene editing technology and gene therapy vectors bring with them the promise of gene-targeted interventions to provide an enduring or perhaps permanent cure for OI. This review describes emergent technologies for cell- and gene-targeted therapies, major hurdles to their implementation, and the prospects of their future success with a focus on bone disorders. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Aaron Schindeler
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Lucinda R Lee
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Alexandra K O'Donohue
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and HealthThe University of Sydney and Sydney Children's Hospitals NetworkWestmeadAustralia
| | - Craig F Munns
- Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
- Department of Endocrinology and DiabetesQueensland Children's HospitalBrisbaneQLDAustralia
- Child Health Research Centre and Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
12
|
Zheng WB, Hu J, Zhao DC, Zhou BN, Wang O, Jiang Y, Xia WB, Xing XP, Li M. The role of osteocalcin in regulation of glycolipid metabolism and muscle function in children with osteogenesis imperfecta. Front Endocrinol (Lausanne) 2022; 13:898645. [PMID: 35983511 PMCID: PMC9378831 DOI: 10.3389/fendo.2022.898645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE Osteoblasts are discovered to secrete hormones with endocrine effects on metabolism, and osteocalcin (OC) is the most abundant non-collagenous protein in bone. We investigate the relationship between serum OC levels and glycolipid metabolism and muscle function in children with osteogenesis imperfecta (OI). METHODS A total of 225 children with OI and 80 healthy controls matched in age and gender were included in this single center study. Serum levels of fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), low- and high-density lipoprotein cholesterol (LDL-C, HDL-C) were measured by automated analyzers. Serum levels of fasting insulin (FINS) were measured using an automated electrochemiluminescence system. Serum levels of OC and undercarboxylated osteocalcin (ucOC) were measured by enzyme-linked immunosorbent assay. Grip strength and timed-up-and-go (TUG) test were measured. Bone mineral density (BMD) and body composition were measured using dual-energy X-ray absorptiometry. RESULTS OI patients had significantly higher body mass index (BMI), FBG, and HOMA-IR, but lower HDL-C levels, lower grip strength and longer TUG than control group (all P<0.05). Serum OC, ucOC levels, and ucOC/OC in OI type III patients were significantly lower than those in OI patients with type I and IV. Serum levels of OC, ucOC, and ucOC/OC were negatively correlated to BMI, FBG, insulin levels, and HOMA-IR (all P<0.05). The ratio of ucOC/OC was positively correlated to grip strength (r=0.512, P=0.036), lean mass percentage (%LM) of the total body and limbs, and negatively correlated to fat mass percentage (%FM) of the total body, %FM and fat mass index (FMI) of the trunk (all P<0.05). CONCLUSIONS Obesity, glucolipid metabolic abnormalities, and reduced grip strength were common in children with OI. Circulating osteocalcin and ucOC may play an important role in the regulation of glucose metabolism, as well as the muscle function of children with OI.
Collapse
Affiliation(s)
- Wen-bin Zheng
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Hu
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di-Chen Zhao
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing-Na Zhou
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ou Wang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Bo Xia
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-ping Xing
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Li
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Mei Li,
| |
Collapse
|
13
|
Zhang Y, Hu J, Lin X, Sun L, Yan S, Zhang Q, Jiang Y, Wang O, Xia W, Xing X, Li M. Skeletal outcomes of patients with osteogenesis imperfecta during drug holiday of bisphosphonates: a real-world study. Front Endocrinol (Lausanne) 2022; 13:901925. [PMID: 36225201 PMCID: PMC9549175 DOI: 10.3389/fendo.2022.901925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE This study aimed to investigate the skeletal outcomes of patients with osteogenesis imperfecta (OI) who received bisphosphonate (BP) treatment and entered drug holiday after achieving an age- and sex-specific bone mineral density (BMD) reference. METHODS Patients with OI receiving BP treatment were enrolled when they entered drug holidays of BPs. The skeletal outcomes were evaluated in detail during the drug holiday, including BMD, X-ray of the bone, bone fracture incidence, and bone turnover biomarkers. The pathogenic mutations of OI were identified by next-generation sequencing and confirmed by Sanger sequencing. RESULTS A total of 149 OI patients (127 juveniles and 22 adults) who entered drug holidays after nearly 4 years of BP treatment were included. Areal BMD at the lumbar spine increased from 0.934 ± 0.151 to 0.990 ± 0.142 g/cm2 and was stable in the second (1.029 ± 0.176 g/cm2) and third years (1.023 ± 0.174 g/cm2) of BP drug holidays, and BMD at the femoral neck, trochanter, and total hip had no significant change, but it was gradually inferior to that of the same-gender juveniles in the second and third years of the drug holiday. BMD at the lumbar spine and proximal hip did not change and was inferior to that of the same-gender adults. The average time of fractures fluctuated from 0.18 to 0.08 per year in juveniles, while only one adult suffered from a fracture during BP drug holidays. Bone turnover markers were in the normal range, except for a mildly high level of β-carboxy-terminal cross-linked telopeptide of type 1 collagen in the juvenile group. A total of 17 (11.4%) patients received BP retreatment because of bone loss during the drug holiday. OI type III and type IV and COL1A2 mutation were correlated to a longer duration of BP treatment to enter drug holidays (all p < 0.05). Old age at initial treatment (OR, 1.056) and OI type III (OR, 10.880) were correlated to a higher risk of BP retreatment. CONCLUSIONS OI patients will undergo nearly 4 years of BP treatment to achieve drug holidays. During the 3 years of the drug holiday, the patients' BMD is stable, and fracture incidence does not increase significantly. Patients are more inclined to need retreatment during drug holidays owing to the late start of BP treatment and more severe OI phenotypes.
Collapse
Affiliation(s)
- Yongze Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Hu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xiaoyun Lin
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Lei Sun
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Sunjie Yan
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
- *Correspondence: Mei Li,
| |
Collapse
|
14
|
Diacinti D, Pisani D, Cipriani C, Celli M, Zambrano A, Diacinti D, Kripa E, Iannacone A, Colangelo L, Nieddu L, Pepe J, Minisola S. Vertebral fracture assessment (VFA) for monitoring vertebral reshaping in children and adolescents with osteogenesis imperfecta treated with intravenous neridronate. Bone 2021; 143:115608. [PMID: 32829035 DOI: 10.1016/j.bone.2020.115608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/21/2020] [Accepted: 08/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The study was aimed at monitoring vertebral bodies changes with the use of Vertebral Fracture Assessment (VFA) in children and adolescents affected by osteogenesis imperfecta (OI) during treatment with intravenous neridronate. METHODS 60 children and adolescents (35 males and 25 females; age 1-16 years) with OI type I, III and IV were included in the study. Intravenous neridronate was administered at the dose of 2 mg/kg every 3 months in all patients. Lumbar spine (LS) bone mineral density (BMD) and VFA by dual X-ray absorptiometry (DXA) were assessed every 6 months up to 24 months during treatment. VFA with vertebral morphometry (MXA) was used to calculate the three indices of vertebral deformity: wedging, concavity and crushing. Serum calcium, phosphate, parathyroid hormone (PTH), 25-hydroxy-vitamin D [25(OH)D], total alkaline phosphatase (ALP), bone alkaline phosphatase (BALP) and urinary C-terminal telopeptide of type 1 collagen (CTx) were measured at any time point. RESULTS Mean LS BMD values significantly increased at 24 months compared to baseline (p < 0.0001); the corresponding Z-score values were -1.28 ± 1.23 at 24 months vs -2.46 ± 1.25 at baseline; corresponding mean Bone Mineral Apparent Density (BMAD) values were 0.335 ± 0.206 vs 0.464 ± 0.216. Mean serum levels of ALP, BALP and CTx significantly decreased from baseline to 24 months. By MXA, we observed a significant 19.1% reduction of the mean wedging index of vertebral reshaping at 12 months, and 38.4% at 24 months (p < 0.0001) and of the mean concavity index (16.3% at 12 months and 35.9% at 24 months; p < 0.0001). Vertebral reshaping was achieved for 66/88 (75%) wedge fractures and 59/70 (84%) concave fractures, but there were 4 incident mild fractures. Finally, VF rate was reduced at 24 months compared to baseline: 37/710 (5.2%) vs 158/710 (22.2%). CONCLUSION Our study demonstrates the utility of VFA as a safe and alternative methodology in the follow-up of children and adolescents with OI.
Collapse
Affiliation(s)
- D Diacinti
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy
| | - D Pisani
- Department of Clinical and Molecular Medicine, Saint'Andrea Hospital, Sapienza University of Rome, via Grottarossa, 1035, Rome, Italy
| | - C Cipriani
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161,Rome, Italy.
| | - M Celli
- Department Materno-Infantile, Center of Rare Disease and Skeletal Dysplasia, Policlinico Umberto I Hospital, Viale del Policlinico, 155, 00161 Rome, Italy
| | - A Zambrano
- Department Materno-Infantile, Center of Rare Disease and Skeletal Dysplasia, Policlinico Umberto I Hospital, Viale del Policlinico, 155, 00161 Rome, Italy
| | - D Diacinti
- Department of Oral and Maxillo-Facial Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, via Caserta 6, 00161, Rome, Italy; Department of Diagnostic and Molecular Imaging, Radiology and Radiotherapy, University Foundation Hospital Tor Vergata, Rome, Italy
| | - E Kripa
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy
| | - A Iannacone
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy
| | - L Colangelo
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161,Rome, Italy
| | - L Nieddu
- Faculty of Economics, UNINT University, Via Cristoforo Colombo 200, 00147, Rome, Italy
| | - J Pepe
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161,Rome, Italy
| | - S Minisola
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161,Rome, Italy
| |
Collapse
|
15
|
Marom R, Rabenhorst BM, Morello R. Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol 2020; 183:R95-R106. [PMID: 32621590 PMCID: PMC7694877 DOI: 10.1530/eje-20-0299] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is an inherited skeletal dysplasia characterized by bone fragility and skeletal deformities. While the majority of cases are associated with pathogenic variants in COL1A1 and COL1A2, the genes encoding type I collagen, up to 25% of cases are associated with other genes that function within the collagen biosynthesis pathway or are involved in osteoblast differentiation and bone mineralization. Clinically, OI is heterogeneous in features and variable in severity. In addition to the skeletal findings, it can affect multiple systems including dental and craniofacial abnormalities, muscle weakness, hearing loss, respiratory and cardiovascular complications. A multi-disciplinary approach to care is recommended to address not only the fractures, reduced mobility, growth and bone pain but also other extra-skeletal manifestations. While bisphosphonates remain the mainstay of treatment in OI, new strategies are being explored, such as sclerostin inhibitory antibodies and TGF beta inhibition, to address not only the low bone mineral density but also the inherent bone fragility. Studies in animal models have expanded the understanding of pathomechanisms of OI and, along with ongoing clinical trials, will allow to develop better therapeutic approaches for these patients.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| | - Brien M. Rabenhorst
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Roy Morello
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
16
|
Ukarapong S, Seeherunvong T, Berkovitz G. Current and Emerging Therapies for Pediatric Bone Diseases. Clin Rev Bone Miner Metab 2020. [DOI: 10.1007/s12018-020-09272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|