1
|
Hoffmann F, Bolz S, Junger K, Klose F, Stehle IF, Ueffing M, Boldt K, Beyer T. Paralog-specific TTC30 regulation of Sonic hedgehog signaling. Front Mol Biosci 2023; 10:1268722. [PMID: 38074101 PMCID: PMC10701685 DOI: 10.3389/fmolb.2023.1268722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024] Open
Abstract
The intraflagellar transport (IFT) machinery is essential for cilia assembly, maintenance, and trans-localization of signaling proteins. The IFT machinery consists of two large multiprotein complexes, one of which is the IFT-B. TTC30A and TTC30B are integral components of this complex and were previously shown to have redundant functions in the context of IFT, preventing the disruption of IFT-B and, thus, having a severe ciliogenesis defect upon loss of one paralog. In this study, we re-analyzed the paralog-specific protein complexes and discovered a potential involvement of TTC30A or TTC30B in ciliary signaling. Specifically, we investigated a TTC30A-specific interaction with protein kinase A catalytic subunit α, a negative regulator of Sonic hedgehog (Shh) signaling. Defects in this ciliary signaling pathway are often correlated to synpolydactyly, which, intriguingly, is also linked to a rare TTC30 variant. For an in-depth analysis of this unique interaction and the influence on Shh, TTC30A or B single- and double-knockout hTERT-RPE1 were employed, as well as rescue cells harboring wildtype TTC30 or the corresponding mutation. We could show that mutant TTC30A inhibits the ciliary localization of Smoothened. This observed effect is independent of Patched1 but associated with a distinct phosphorylated PKA substrate accumulation upon treatment with forskolin. This rather prominent phenotype was attenuated in mutant TTC30B. Mass spectrometry analysis of wildtype versus mutated TTC30A or TTC30B uncovered differences in protein complex patterns and identified an impaired TTC30A-IFT57 interaction as the possible link leading to synpolydactyly. We could observe no impact on cilia assembly, leading to the hypothesis that a slight decrease in IFT-B binding can be compensated, but mild phenotypes, like synpolydactyly, can be induced by subtle signaling changes. Our systematic approach revealed the paralog-specific influence of TTC30A KO and mutated TTC30A on the activity of PRKACA and the uptake of Smoothened into the cilium, resulting in a downregulation of Shh. This downregulation, combined with interactome alterations, suggests a potential mechanism of how mutant TTC30A is linked to synpolydactyly.
Collapse
Affiliation(s)
- Felix Hoffmann
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | - Tina Beyer
- *Correspondence: Felix Hoffmann, ; Tina Beyer,
| |
Collapse
|
2
|
Hoffmann F, Bolz S, Junger K, Klose F, Schubert T, Woerz F, Boldt K, Ueffing M, Beyer T. TTC30A and TTC30B Redundancy Protects IFT Complex B Integrity and Its Pivotal Role in Ciliogenesis. Genes (Basel) 2022; 13:genes13071191. [PMID: 35885974 PMCID: PMC9319246 DOI: 10.3390/genes13071191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Intraflagellar transport (IFT) is a microtubule-based system that supports the assembly and maintenance of cilia. The dysfunction of IFT leads to ciliopathies of variable severity. Two of the IFT-B components are the paralogue proteins TTC30A and TTC30B. To investigate whether these proteins constitute redundant functions, CRISPR/Cas9 was used to generate single TTC30A or B and double-knockout hTERT-RPE1 cells. Ciliogenesis assays showed the redundancy of both proteins while the polyglutamylation of cilia was affected in single knockouts. The localization of other IFT components was not affected by the depletion of a single paralogue. A loss of both proteins led to a severe ciliogenesis defect, resulting in no cilia formation, which was rescued by TTC30A or B. The redundancy can be explained by the highly similar interaction patterns of the paralogues; both equally interact with the IFT-B machinery. Our study demonstrates that a loss of one TTC30 paralogue can mostly be compensated by the other, thus preventing severe ciliary defects. However, cells assemble shorter cilia, which are potentially limited in their function, especially because of impaired polyglutamylation. A complete loss of both proteins leads to a deficit in IFT complex B integrity followed by disrupted IFT and subsequently no cilia formation.
Collapse
Affiliation(s)
- Felix Hoffmann
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Sylvia Bolz
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Franziska Klose
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Timm Schubert
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Franziska Woerz
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Tina Beyer
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
- Correspondence:
| |
Collapse
|
3
|
Zaib T, Rashid H, Khan H, Zhou X, Sun P. Recent Advances in Syndactyly: Basis, Current Status and Future Perspectives. Genes (Basel) 2022; 13:771. [PMID: 35627156 PMCID: PMC9141913 DOI: 10.3390/genes13050771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
A comprehensive summary of recent knowledge in syndactyly (SD) is important for understanding the genetic etiology of SD and disease management. Thus, this review article provides background information on SD, as well as insights into phenotypic and genetic heterogeneity, newly identified gene mutations in various SD types, the role of HOXD13 in limb deformities, and recently introduced modern surgical techniques for SD. This article also proposes a procedure for genetic analysis to obtain a clearer genotype-phenotype correlation for SD in the future. We briefly describe the classification of non-syndromic SD based on variable phenotypes to explain different phenotypic features and mutations in the various genes responsible for the pathogenesis of different types of SD. We describe how different types of mutation in HOXD13 cause various types of SD, and how a mutation in HOXD13 could affect its interaction with other genes, which may be one of the reasons behind the differential phenotypes and incomplete penetrance. Furthermore, we also discuss some recently introduced modern surgical techniques, such as free skin grafting, improved flap techniques, and dermal fat grafting in combination with the Z-method incision, which have been successfully practiced clinically with no post-operative complications.
Collapse
Affiliation(s)
- Tahir Zaib
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- (T.Z.)
- (X.Z.)
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Hibba Rashid
- Department of Biotechnology and Microbiology, Abasyn University, Peshawar 25000, Pakistan
| | - Hanif Khan
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- (T.Z.)
- (X.Z.)
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- (T.Z.)
- (X.Z.)
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
4
|
Melas M, Kautto EA, Franklin SJ, Mori M, McBride KL, Mosher TM, Pfau RB, Hernandez-Gonzalez ME, McGrath SD, Magrini VJ, White P, Samora JB, Koboldt DC, Wilson RK. Long-read whole genome sequencing reveals HOXD13 alterations in synpolydactyly. Hum Mutat 2021; 43:189-199. [PMID: 34859533 DOI: 10.1002/humu.24304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/24/2021] [Accepted: 11/20/2021] [Indexed: 12/11/2022]
Abstract
Synpolydactyly 1, also called syndactyly type II (SDTY2), is a genetic limb malformation characterized by polydactyly with syndactyly involving the webbing of the third and fourth fingers, and the fourth and fifth toes. It is caused by heterozygous alterations in HOXD13 with incomplete penetrance and phenotypic variability. In our study, a five-generation family with an SPD phenotype was enrolled in our Rare Disease Genomics Protocol. A comprehensive examination of three generations using Illumina short-read whole-genome sequencing (WGS) did not identify any causative variants. Subsequent WGS using Pacific Biosciences (PacBio) long-read HiFi Circular Consensus Sequencing (CCS) revealed a heterozygous 27-bp duplication in the polyalanine tract of HOXD13. Sanger sequencing of all available family members confirmed that the variant segregates with affected individuals. Reanalysis of an unrelated family with a similar SPD phenotype uncovered a 21-bp (7-alanine) duplication in the same region of HOXD13. Although ExpansionHunter identified these events in most individuals in a retrospective analysis, low sequence coverage due to high GC content in the HOXD13 polyalanine tract makes detection of these events challenging. Our findings highlight the value of long-read WGS in elucidating the molecular etiology of congenital limb malformation disorders.
Collapse
Affiliation(s)
- Marilena Melas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Esko A Kautto
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Samuel J Franklin
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mari Mori
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kim L McBride
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Ruthann B Pfau
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | | | - Sean D McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vincent J Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Julie Balch Samora
- Department of Orthopedic Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease. Proc Natl Acad Sci U S A 2021; 118:2106770118. [PMID: 34548398 PMCID: PMC8488674 DOI: 10.1073/pnas.2106770118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia are tubulin-based cellular appendages, and their dysfunction has been linked to a variety of genetic diseases. Ciliary chondrodysplasia is one such condition that can co-occur with cystic kidney disease and other organ manifestations. We modeled skeletal ciliopathies by mutating two established disease genes in Xenopus tropicalis frogs. Bioinformatic analysis identified ttc30a as a ciliopathy network component, and targeting it replicated skeletal malformations and renal cysts as seen in patients and the amphibian models. A loss of Ttc30a affected cilia by altering posttranslational tubulin modifications. Our findings identify TTC30A/B as a component of ciliary segmentation essential for cartilage differentiation and renal tubulogenesis. These findings may lead to novel therapeutic targets in treating ciliary skeletopathies and cystic kidney disease. Skeletal ciliopathies (e.g., Jeune syndrome, short rib polydactyly syndrome, and Sensenbrenner syndrome) are frequently associated with nephronophthisis-like cystic kidney disease and other organ manifestations. Despite recent progress in genetic mapping of causative loci, a common molecular mechanism of cartilage defects and cystic kidneys has remained elusive. Targeting two ciliary chondrodysplasia loci (ift80 and ift172) by CRISPR/Cas9 mutagenesis, we established models for skeletal ciliopathies in Xenopus tropicalis. Froglets exhibited severe limb deformities, polydactyly, and cystic kidneys, closely matching the phenotype of affected patients. A data mining–based in silico screen found ttc30a to be related to known skeletal ciliopathy genes. CRISPR/Cas9 targeting replicated limb malformations and renal cysts identical to the models of established disease genes. Loss of Ttc30a impaired embryonic renal excretion and ciliogenesis because of altered posttranslational tubulin acetylation, glycylation, and defective axoneme compartmentalization. Ttc30a/b transcripts are enriched in chondrocytes and osteocytes of single-cell RNA-sequenced embryonic mouse limbs. We identify TTC30A/B as an essential node in the network of ciliary chondrodysplasia and nephronophthisis-like disease proteins and suggest that tubulin modifications and cilia segmentation contribute to skeletal and renal ciliopathy manifestations of ciliopathies in a cell type–specific manner. These findings have implications for potential therapeutic strategies.
Collapse
|