1
|
Amjad E, Sokouti B, Asnaashari S. A hybrid systems biology and systems pharmacology investigation of Zingerone's effects on reconstructed human epidermal tissues. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021; 22:90. [PMID: 36820091 PMCID: PMC8666180 DOI: 10.1186/s43042-021-00204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
Background As individuals live longer, elderly populations can be expected to face issues. This pattern urges researchers to investigate the aging concept further to produce successful anti-aging agents. In the current study, the effects of Zingerone (a natural compound) on epidermal tissues were analyzed using a bioinformatics approach. Methods For this purpose, we chose the GEO dataset GSE133338 to carry out the systems biology and systems pharmacology approaches, ranging from identifying the differentially expressed genes to analyzing the gene ontology, determining similar structures of Zingerone and their features (i.e., anti-oxidant, anti-inflammatory, and skin disorders), constructing the gene-chemicals network, analyzing gene-disease relationships, and validating significant genes through the evidence presented in the literature. Results The post-processing of the microarray dataset identified thirteen essential genes among control and Zingerone-treated samples. The procedure revealed various structurally similar chemical and herbal compounds with possible skin-related effects. Additionally, we studied the relationships of differentially expressed genes with skin-related diseases and validated their direct connections with skin disorders the evidence available in the literature. Also, the analysis of the microarray profiling dataset revealed the critical role of interleukins as a part of the cytokines family on skin aging progress. Conclusions Zingerone, and potentially any constituents of Zingerone (e.g., their similar compound scan functionality), can be used as therapeutic agents in managing skin disorders such as skin aging. However, the beneficial effects of Zingerone should be assessed in other models (i.e., human or animal) in future studies.
Collapse
Affiliation(s)
- Elham Amjad
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Sokouti
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Asnaashari
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Xue JY, Ikegawa S, Guo L. Genetic disorders associated with the RANKL/OPG/RANK pathway. J Bone Miner Metab 2021; 39:45-53. [PMID: 32940787 DOI: 10.1007/s00774-020-01148-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
The RANKL/OPG/RANK signalling pathway is a major regulatory system for osteoclast formation and activity. Mutations in TNFSF11, TNFRSF11B and TNFRSF11A cause defects in bone metabolism and development, thereby leading to skeletal disorders with changes in bone density and/or morphology. To date, nine kinds of monogenic skeletal diseases have been found to be causally associated with TNFSF11, TNFRSF11B and TNFRSF11A mutations. These diseases can be divided into two types according to the mutation effects and the resultant pathogenesis. One is caused by the mutations inducing constitutional RANK activation or OPG deficiency, which increase osteoclastogenesis and accelerate bone turnover, resulting in juvenile Paget's disease 2, Paget disease of bone 2, familial expansile osteolysis, expansile skeletal hyperphosphatasia, panostotic expansile bone disease, and Paget disease of bone 5. The other is caused by the de-activating mutations in TNFRSF11A or TNFSF11, which decrease osteoclastogenesis and elevate bone density, resulting in osteopetrosis, autosomal recessive 2 and 7, and dysosteosclerosis. Here we reviewed the current knowledge about these genetic disorders with paying particular attention to the updating genotype-phenotype association in the TNFRSF11A-caused diseases.
Collapse
Affiliation(s)
- Jing-Yi Xue
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, 4-6-1 Minato-ku, Tokyo, 108-8639, Japan
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, 4-6-1 Minato-ku, Tokyo, 108-8639, Japan.
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, 4-6-1 Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
3
|
Whyte MP, Campeau PM, McAlister WH, Roodman GD, Kurihara N, Nenninger A, Duan S, Gottesman GS, Bijanki VN, Sedighi H, Veis DJ, Mumm S. Juvenile Paget's Disease From Heterozygous Mutation of SP7 Encoding Osterix (Specificity Protein 7, Transcription Factor SP7). Bone 2020; 137:115364. [PMID: 32298837 PMCID: PMC8054448 DOI: 10.1016/j.bone.2020.115364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Juvenile Paget's disease (JPD) became in 1974 the commonly used name for ultra-rare heritable occurrences of rapid bone remodeling throughout of the skeleton that present in infancy or early childhood as fractures and deformity hallmarked biochemically by marked elevation of serum alkaline phosphatase (ALP) activity (hyperphosphatasemia). Untreated, JPD can kill during childhood or young adult life. In 2002, we reported that homozygous deletion of the gene called tumor necrosis factor receptor superfamily, member 11B (TNFRSF11B) encoding osteoprotegerin (OPG) explained JPD in Navajos. Soon after, other bi-allelic loss-of-function TNFRSF11B defects were identified in JPD worldwide. OPG inhibits osteoclastogenesis and osteoclast activity by decoying receptor activator of nuclear factor κ-B (RANK) ligand (RANKL) away from its receptor RANK. Then, in 2014, we reported JPD in a Bolivian girl caused by a heterozygous activating duplication within TNFRSF11A encoding RANK. Herein, we identify mutation of a third gene underlying JPD. An infant girl began atraumatic fracturing of her lower extremity long-bones. Skull deformity and mild hearing loss followed. Our single investigation of the patient, when she was 15 years-of-age, showed generalized osteosclerosis and hyperostosis. DXA revealed a Z-score of +5.1 at her lumbar spine and T-score of +3.3 at her non-dominant wrist. Biochemical studies were consistent with positive mineral balance and several markers of bone turnover were elevated and included striking hyperphosphatasemia. Iliac crest histopathology was consistent with rapid skeletal remodeling. Measles virus transcripts, common in classic Paget's disease of bone, were not detected in circulating mononuclear cells. Then, reportedly, she responded to several months of alendronate therapy with less skeletal pain and correction of hyperphosphatasemia but had been lost to our follow-up. After we detected no defect in TNFRSF11A or B, trio exome sequencing revealed a de novo heterozygous missense mutation (c.926C>G; p.S309W) within SP7 encoding the osteoblast transcription factor osterix (specificity protein 7, transcription factor SP7). Thus, mutation of SP7 represents a third genetic cause of JPD.
Collapse
Affiliation(s)
- Michael P Whyte
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Montreal, Quebec H3T 1C5, Canada.
| | - William H McAlister
- Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - G David Roodman
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Nori Kurihara
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Angela Nenninger
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Shenghui Duan
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Gary S Gottesman
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Vinieth N Bijanki
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Homer Sedighi
- Department of Plastic Surgery, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Deborah J Veis
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Steven Mumm
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|