1
|
Balanta-Melo J, Eyquem-Reyes A, Blanco N, Vásquez W, Kupczik K, Toro-Ibacache V, Buvinic S. Unilateral Hypofunction of the Masseter Leads to Molecular and 3D Morphometric Signs of Atrophy in Ipsilateral Agonist Masticatory Muscles in Adult Mice. Int J Mol Sci 2023; 24:14740. [PMID: 37834190 PMCID: PMC10572689 DOI: 10.3390/ijms241914740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Mice are commonly used to study mandibular dynamics due to their similarity in chewing cycle patterns with humans. Adult mice treated unilaterally with botulinum toxin type A (BoNTA) in the masseter exhibit atrophy of this muscle characterized by an increase in the gene expression of atrophy-related molecular markers, and a reduction in both muscle fiber diameter and muscle mass at 14d. However, the impact of this muscle imbalance on the non-treated masticatory muscles remains unexplored. Here, we hypothesize that the unilateral masseter hypofunction leads to molecular and 3D morphometric signs of atrophy of the masseter and its agonist masticatory muscles in adult mice. Twenty-three 8-week-old male BALB/c mice received a single injection of BoNTA in the right masseter, whereas the left masseter received the same volume of saline solution (control side). Animals were euthanized at 2d, 7d, and 14d, and the masticatory muscles were analyzed for mRNA expression. Five heads were harvested at 14d, fixed, stained with a contrast-enhanced agent, and scanned using X-ray microtomography. The three-dimensional morphometric parameters (the volume and thickness) from muscles in situ were obtained. Atrogin-1/MAFbx, MuRF-1, and Myogenin mRNA gene expression were significantly increased at 2 and 7d for both the masseter and temporalis from the BoNTA side. For medial pterygoid, increased mRNA gene expression was found at 7d for Atrogin-1/MAFbx and at 2d-7d for Myogenin. Both the volume and thickness of the masseter, temporalis, and medial pterygoid muscles from the BoNTA side were significantly reduced at 14d. In contrast, the lateral pterygoid from the BoNTA side showed a significant increase in volume at 14d. Therefore, the unilateral hypofunction of the masseter leads to molecular and morphological signs of atrophy in both the BoNTA-injected muscle and its agonistic non-injected masticatory muscles. The generalized effect on the mouse masticatory apparatus when one of its components is intervened suggests the need for more clinical studies to determine the safety of BoNTA usage in clinical dentistry.
Collapse
Affiliation(s)
- Julián Balanta-Melo
- School of Dentistry, Faculty of Health, Universidad del Valle, Cali 760043, Colombia;
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrea Eyquem-Reyes
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (A.E.-R.); (N.B.); (W.V.); (V.T.-I.)
| | - Noelia Blanco
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (A.E.-R.); (N.B.); (W.V.); (V.T.-I.)
| | - Walter Vásquez
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (A.E.-R.); (N.B.); (W.V.); (V.T.-I.)
| | - Kornelius Kupczik
- Department of Anthropology, Faculty of Social Sciences, Universidad de Chile, Santiago 7750000, Chile
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Viviana Toro-Ibacache
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (A.E.-R.); (N.B.); (W.V.); (V.T.-I.)
| | - Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (A.E.-R.); (N.B.); (W.V.); (V.T.-I.)
- Center for Exercise, Metabolism and Cancer Studies CEMC2016, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
2
|
Krüger TB, Syversen U, Herlofson BB, Lian AM, Reseland JE. Targeting a therapeutically relevant concentration of alendronate for in vitro studies on osteoblasts. Acta Odontol Scand 2022; 80:619-625. [PMID: 35605138 DOI: 10.1080/00016357.2022.2072522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Bisphosphonates like alendronate mainly exert their effects on osteoclasts. However, osteoblasts are also affected, but exposed to a much lower concentration in vivo than the osteoclasts. Given that the effects are dose-dependent, the intention of the study was to identify a therapeutically relevant concentration of alendronate for in vitro studies on osteoblasts. MATERIALS AND METHODS Primary human osteoblasts were incubated with alendronate (5, 20 and 100 µM) for 1, 3, 7 and 14 days. Proliferation and viability were assessed, and the effects on cellular growth and function were evaluated by multianalyte profiling of selected proteins in cell culture media using the Luminex 200TM. RESULTS The viability was not affected by any of the dosages. Exposure to 5 µM alendronate had a neutral effect on osteoblast proliferation, and on secretion of osteogenic and inflammatory markers, while enhancing synthesis of a marker of angiogenesis. 20 µM alendronate induced a decline in proliferation and affected angiogenic and osteogenic biomarkers adversely. 100 µM alendronate reduced proliferation dramatically, and this dosage was excluded from further experiments. CONCLUSION A concentration of 5 µM alendronate exerted effects on human osteoblasts that may translate to those observed in vivo and could therefore be relevant for in vitro studies.
Collapse
Affiliation(s)
- Tormod B. Krüger
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Unni Syversen
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU—Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, Clinic of medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Bente B. Herlofson
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Aina M. Lian
- Oral Research Laboratory, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Janne E. Reseland
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Peng F, Qiu L, Yao M, Liu L, Zheng Y, Wu S, Ruan Q, Liu X, Zhang Y, Li M, Chu PK. A lithium-doped surface inspires immunomodulatory functions for enhanced osteointegration through PI3K/AKT signaling axis regulation. Biomater Sci 2021; 9:8202-8220. [PMID: 34727152 DOI: 10.1039/d1bm01075a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The response of immune systems is crucial to the success of biomedical implants in vivo and in particular, orthopedic implants must possess appropriate immunomodulatory functions to allow sufficient osteointegration. In this work, lithium (Li) is incorporated into titanium (Ti) implants by plasma electrolytic oxidation to realize slow and sustained release of Li ions. In vitro cellular behaviors of mice bone marrow derived macrophages (BMDMs), including gene expression, cytokine secretion, and surface marker analysis suggest that a low dose of Li incorporation could enhance the recruitment of BMDMs, restrict pro-inflammatory polarization (M1 phenotype), and promote anti-inflammatory polarization (M2 phenotype). The in vivo air pouch implantation model is constructed to simulate the microenvironment associated with aseptic loosening and the histology results confirm that a small dose of Li could relieve inflammatory reactions surrounding the implants. Moreover, compared to the Li-free group, the macrophage-conditioned culture medium (MCM) from Li-doped samples is more beneficial for the osteogenic differentiation of the mouse embryo cell line (C3H10T1/2) and angiogenesis of human umbilical vein endothelial cells (HUVECs), which is further confirmed by better osteointegration ability in the bone implantation model of Li-incorporating Ti implants. Furthermore, the molecular mechanism study discloses that osteoimmunomodulatory activity of Li-incorporating Ti implants is achieved by regulating the cascade molecules in the PI3K/AKT signalling pathway. This work reveals that favorable immune-modulated osteogenesis and osseointegration of bone implants can be realized by the incorporation of Li which broadens the strategy to develop the next generation of immunomodulatory biomaterials.
Collapse
Affiliation(s)
- Feng Peng
- Department of Orthopedics, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China. .,Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Longhai Qiu
- Department of Orthopedics, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China.
| | - Mengyu Yao
- Department of Orthopedics, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China.
| | - Lidan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yufeng Zheng
- Department of Orthopedics, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China. .,School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Qingdong Ruan
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yu Zhang
- Department of Orthopedics, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China.
| | - Mei Li
- Department of Orthopedics, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
4
|
Duan X, Lu X, Liu B. Astragalus Polysaccharide Injection Ameliorates the Apoptosis of Chondrocytes in the Ovariectomized Osteoporosis Mouse Model via Modulating Protein Kinase B/Glycogen Synthase Kinase 3 Beta Signal Transduction. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Akt/GSK3 signal pathway exerts an impact on the apoptosis of chondrocytes. We planned to elucidate the role and mechanism of Akt/GSK3 signal transduction in ovariectomized osteoporosis. 50 female mice in SPF-graded and healthy condition were processed to establish the ovariectomized
osteoporosis model, while 12 of the healthy mice were set as blank controls. The successfully established ovariectomized osteoporosis models were divided into model group (12 mice) and Astragalus group (12 mice). The following measurements were conducted: the bone mineral density in the left
humerus, serum estrogen level and Cx43 protein level in osteoblasts, proportion of apoptotic cells, as well as the protein and mRNA levels of Akt and GSK3β in murine bone tissues via Western blotting and RT-PCR detection, respectively. The bone mineral density of mice in Astragalus
group was the highest (0.174±0.04) g/cm2. The positive rate of Cx43 protein expression, apoptosis rate, as well as the protein and mRNA levels of Akt in osteocytes were significantly decreased (P < 0.05), but still significantly higher than model group. Estrogen
level in Astragalus group was (87.52 ±8.69) pmol/L. The positive rate of Cx43 expression, apoptosis rate, as well as the protein and mRNA levels of GSK3β in osteocytes were decreased in comparison to model group (P < 0.05). Astragalus polysaccharide injection could
ameliorate the apoptosis of chondrocytes and downregulate Cx43 protein via modulating Akt/GSK3β signal transduction, thereby exerting a therapeutic effect on ovariectomized osteoporosis.
Collapse
Affiliation(s)
- Xianbin Duan
- Department of Orthopedics, Shenzhen People’s Hospital, Guangdong, Shenzhen, 518100, China
| | - Xiaohu Lu
- Department of Orthopedics, Shenzhen People’s Hospital, Guangdong, Shenzhen, 518100, China
| | - Bi Liu
- Department of Orthopedics, Shenzhen People’s Hospital, Guangdong, Shenzhen, 518100, China
| |
Collapse
|
5
|
Cometa S, Bonifacio MA, Tranquillo E, Gloria A, Domingos M, De Giglio E. A 3D Printed Composite Scaffold Loaded with Clodronate to Regenerate Osteoporotic Bone: In Vitro Characterization. Polymers (Basel) 2021; 13:polym13010150. [PMID: 33401469 PMCID: PMC7795460 DOI: 10.3390/polym13010150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
Additive manufacturing (AM) is changing our current approach to the clinical treatment of bone diseases, providing new opportunities to fabricate customized, complex 3D structures with bioactive materials. Among several AM techniques, the BioCell Printing is an advanced, integrated system for material manufacture, sterilization, direct cell seeding and growth, which allows for the production of high-resolution micro-architectures. This work proposes the use of the BioCell Printing to fabricate polymer-based scaffolds reinforced with ceramics and loaded with bisphosphonates for the treatment of osteoporotic bone fractures. In particular, biodegradable poly(ε-caprolactone) was blended with hydroxyapatite particles and clodronate, a bisphosphonate with known efficacy against several bone diseases. The scaffolds' morphology was investigated by means of Scanning Electron Microscopy (SEM) and micro-Computed Tomography (micro-CT) while Energy Dispersive X-ray Spectroscopy (EDX) and X-ray Photoelectron Spectroscopy (XPS) revealed the scaffolds' elemental composition. A thermal characterization of the composites was accomplished by Thermogravimetric analyses (TGA). The mechanical performance of printed scaffolds was investigated under static compression and compared against that of native human bone. The designed 3D scaffolds promoted the attachment and proliferation of human MSCs. In addition, the presence of clodronate supported cell differentiation, as demonstrated by the normalized alkaline phosphatase activity. The obtained results show that the BioCell Printing can easily be employed to generate 3D constructs with pre-defined internal/external shapes capable of acting as a temporary physical template for regeneration of cancellous bone tissues.
Collapse
Affiliation(s)
| | - Maria Addolorata Bonifacio
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy;
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
| | - Elisabetta Tranquillo
- Department of Mechanical, Aerospace and Civil Engineering & Henry Royce Institute, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Marco Domingos
- Department of Mechanical, Aerospace and Civil Engineering & Henry Royce Institute, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK;
- Correspondence: (M.D.); (E.D.G.)
| | - Elvira De Giglio
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy;
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
- Correspondence: (M.D.); (E.D.G.)
| |
Collapse
|