1
|
Liu H, Liu L, Rosen CJ. Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity. Curr Obes Rep 2025; 14:9. [PMID: 39808256 DOI: 10.1007/s13679-024-00594-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE OF REVIEW Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles. RECENT FINDINGS Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases. The advancement of imaging techniques, particularly cross-sectional imaging, has profoundly expanded our understanding of the complexities beyond the traditional view of bone marrow adipose tissue as an inert depot. Notably, marrow adipocytes are anatomically and functionally distinct from brown, beige, and classic white adipocytes. Emerging evidence suggests that bone marrow adipocytes, bone marrow adipose tissue originate from the differentiation of bone marrow mesenchymal stromal cells; however, they appear to be a heterogeneous population with varying metabolic profiles, lipid compositions, secretory properties, and functional responses depending on their specific location within the bone marrow. This review provides an up-to-date synthesis of current knowledge on bone marrow adipocytes, emphasizing the relationships between bone marrow adipogenesis and factors such as aging, osteoporosis, obesity, and bone marrow tumors or metastases, thereby elucidating the mechanisms underlying musculoskeletal pathophysiology.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Linyi Liu
- Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.
| |
Collapse
|
2
|
Du Y, Huo Y, Yang Y, Lin P, Liu W, Wang Z, Zeng W, Li J, Liang Z, Yuan C, Zhu J, Luo Z, Liu Y, Ma C, Yang C. Role of sirtuins in obesity and osteoporosis: molecular mechanisms and therapeutic targets. Cell Commun Signal 2025; 23:20. [PMID: 39799353 PMCID: PMC11724515 DOI: 10.1186/s12964-024-02025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
The prevalence of obesity and osteoporosis (OP) represents a significant public health concern on a global scale. A substantial body of evidence indicates that there is a complex relationship between obesity and OP, with a correlation between the occurrence of OP and obesity. In recent years, sirtuins have emerged as a prominent area of interest in the fields of aging and endocrine metabolism. Among the various research avenues exploring the potential of sirtuins, the effects of these proteins on obesity and OP have garnered significant attention from numerous researchers. Sirtuins regulate energy balance and lipid balance, which in turn inhibit the process of adipogenesis. Additionally, sirtuins regulate the balance between osteogenic and osteoblastic activity, which protects against the development of OP. However, no study has yet provided a comprehensive discussion of the relationship between the three: sirtuins, obesity, and OP. This paper will therefore describe the relationship between sirtuins and obesity, the relationship between sirtuins and OP, and a discussion focusing on the possibility of treating OP caused by obesity by targeting sirtuins. This will be based on the common influences on the occurrence of obesity and OP (such as mesenchymal stem cells, gut microbiota, and insulin). Finally, the potential of SIRT1, an important member of sirtuins, in polyphenolic natural products for the treatment of obesity and OP will be presented. This will contribute to a better understanding of the interactions between sirtuins and obesity and bone, which will facilitate the development of new therapeutic strategies for obesity and OP in the future.
Collapse
Grants
- Nos. 2021B1515140012, 2023A1515010083 the Natural Science Foundation of Guangdong Province
- No. 20211800905342 the Dongguan Science and Technology of Social Development Program
- No. A2024398 the Medical Scientific Research Foundation of Guangdong Province
- No. k202005 the Research and Development Fund of Dongguan People' s Hospital
- Nos. GDMU2021003, GDMU2021049, GDMU2022031, GDMU2022047, GDMU2022063, GDMU2022077, GDMU2022078, GDMU2023008, GDMU2023015, GDMU2023026, GDMU2023042, GDMU2023102 the Guangdong Medical University Students' Innovation and Entrepreneurship Training Program
- Nos. 202210571008, S202210571075, 202310571031, S202310571047, S202310571078, S202310571063, S202310571077 the Provincial and National College Students' Innovation and Entrepreneurship Training Program
- No. 4SG24028G the Guangdong Medical University-Southern Medical University twinning research team project
- No. PF100-2-01 "Climbing 100" Joint Merit Training Program Funded Project
- Nos. 2023ZYDS001, 2023FZDS001, 2023FYDB010 the Guangdong Medical University Students' Innovation Experiment Program
- the Research and Development Fund of Dongguan People’ s Hospital
- the Guangdong Medical University Students’ Innovation and Entrepreneurship Training Program
- the Provincial and National College Students’ Innovation and Entrepreneurship Training Program
- the Cai Limin National Traditional Chinese Medicine Inheritance Studio
- the Guangdong Medical University Students’ Innovation Experiment Program
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523059, China
| | - Yuying Huo
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Yujia Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Peiqi Lin
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Wuzheng Liu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Ziqin Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Wenqi Zeng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Jiahui Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Zhonghan Liang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Chenyue Yuan
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Jinfeng Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Ziyi Luo
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Yi Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Chunling Ma
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
3
|
Cai J, Deng Y, Min Z, Li C, Zhao Z, Yi J, Jing D. Unlocking the Epigenetic Symphony: Histone Acetylation Orchestration in Bone Remodeling and Diseases. Stem Cell Rev Rep 2024:10.1007/s12015-024-10807-2. [PMID: 39495465 DOI: 10.1007/s12015-024-10807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Histone acetylation orchestrates a complex symphony of gene expression that controls cellular fate and activities, including the intricate processes of bone remodeling. Despite its proven significance, a systematic illustration of this process has been lacking due to its complexity, impeding clinical application. In this review, we delve into the central regulators of histone acetylation, unveiling their multifaceted roles in modulating bone physiology. We explore both contradictory and overlapping roles among these regulators and assess their potential as therapeutic targets for various bone disorders. Furthermore, we highlight current applications and discuss looming questions for a more effective use of epigenetic therapy in bone diseases, aiming to address gaps in knowledge and clinical practice. By providing a panoramic view of histone acetylation's impact on bone health and disease, this review unveils promising avenues for therapeutic intervention and enhances our understanding of skeletal physiology, crucial for improving therapeutical outcomes and quality of patients' life.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yudi Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ziyang Min
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chaoyuan Li
- Department of Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
4
|
Chen Y, Xiao H, Liu Z, Teng F, Yang A, Geng B, Sheng X, Xia Y. Sirt1: An Increasingly Interesting Molecule with a Potential Role in Bone Metabolism and Osteoporosis. Biomolecules 2024; 14:970. [PMID: 39199358 PMCID: PMC11352324 DOI: 10.3390/biom14080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoporosis (OP) is a common metabolic bone disease characterized by low bone mass, decreased bone mineral density, and degradation of bone tissue microarchitecture. However, our understanding of the mechanisms of bone remodeling and factors affecting bone mass remains incomplete. Sirtuin1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase that regulates a variety of cellular metabolisms, including inflammation, tumorigenesis, and bone metabolism. Recent studies have emphasized the important role of SIRT1 in bone homeostasis. This article reviews the role of SIRT1 in bone metabolism and OP and also discusses therapeutic strategies and future research directions for targeting SIRT1.
Collapse
Affiliation(s)
- Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Zirui Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Fei Teng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Ao Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Xiaoyun Sheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
5
|
Waykar TR, Mandlik SK, Mandlik DS. Sirtuins: exploring next-gen therapeutics in the pathogenesis osteoporosis and associated diseases. Immunopharmacol Immunotoxicol 2024; 46:277-301. [PMID: 38318808 DOI: 10.1080/08923973.2024.2315418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVE Osteoporosis poses a substantial public health challenge due to an ageing population and the lack of adequate treatment options. The condition is marked by a reduction in bone mineral density, resulting in an elevated risk of fractures. The reduction in bone density and strength, as well as musculoskeletal issues that come with aging, present a significant challenge for individuals impacted by these conditions, as well as the healthcare system worldwide. METHODS Literature survey was conducted until May 2023 using databases such as Web of Science, PubMed, Scopus, and Google Scholar. RESULT Sirtuins 1-7 (SIRT1-SIRT7), which are a group of Nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, possess remarkable capabilities to increase lifespan and combat diseases related to aging. Research has demonstrated that these proteins play an important role in regular skeletal development and maintenance by directly impacting bone cells. Their dysfunction could be a factor in various bone conditions. Studies conducted on animals before clinical trials have shown that administering Sirtuins agonists to mice provides a safeguard against osteoporosis resulting from aging, menopause, and immobilization. These findings imply that Sirtuins may be a viable target for addressing the irregularity in bone remodeling and treating osteoporosis and other skeletal ailments. CONCLUSION The purpose of this review was to present a thorough and current evaluation of the existing knowledge on Sirtuins biology, with a particular emphasis on their involvement in maintaining bone homeostasis and contributing to osteoporosis. Additionally, the review examines potential pharmacological interventions targeting Sirtuins for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Tejal R Waykar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Satish K Mandlik
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Deepa S Mandlik
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
6
|
Liu Z, Liu H, Liu S, Li B, Liu Y, Luo E. SIRT1 activation promotes bone repair by enhancing the coupling of type H vessel formation and osteogenesis. Cell Prolif 2024; 57:e13596. [PMID: 38211965 PMCID: PMC11150139 DOI: 10.1111/cpr.13596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
Bone repair is intricately correlated with vascular regeneration, especially of type H vessels. Sirtuin 1 (SIRT1) expression is closely associated with endothelial function and vascular regeneration; however, the role of SIRT1 in enhancing the coupling of type H vessel formation with osteogenesis to promote bone repair needs to be investigated. A co-culture system combining human umbilical vein endothelial cells and osteoblasts was constructed, and a SIRT1 agonist was used to evaluate the effects of SIRT1 activity. The angiogenic and osteogenic capacities of the co-culture system were examined using short interfering RNA. Mouse models with bone defects in the femur or mandible were established to explore changes in type H vessel formation and bone repair following modulated SIRT1 activity. SIRT1 activation augmented the angiogenic and osteogenic capacities of the co-culture system by activating the PI3K/AKT/FOXO1 signalling pathway and did not significantly regulate osteoblast differentiation. Inhibition of the PI3K/AKT/FOXO1 pathway attenuated SIRT1-mediated effects. The SIRT1 activity in bone defects was positively correlated with the formation of type H vessels and bone repair in vivo, whereas SIRT1 inhibition substantially weakened vascular and bone formation. Thus, SIRT1 is crucial to the coupling of type H vessels with osteogenesis during bone repair.
Collapse
Affiliation(s)
- Zhikai Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bolun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Yen BL, Wang LT, Wang HH, Hung CP, Hsu PJ, Chang CC, Liao CY, Sytwu HK, Yen ML. Excess glucose alone depress young mesenchymal stromal/stem cell osteogenesis and mitochondria activity within hours/days via NAD +/SIRT1 axis. J Biomed Sci 2024; 31:49. [PMID: 38735943 PMCID: PMC11089752 DOI: 10.1186/s12929-024-01039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation. METHODS Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45- MSCs. RESULTS Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD+), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD+, with oral NAD+ precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days. CONCLUSIONS We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD+-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.
Collapse
Affiliation(s)
- B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan.
| | - Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, No.1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing Street, Taipei, 11042, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No.250, Wuxing Street, Taipei, 11042, Taiwan
| | - Hsiu-Huang Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
| | - Chin-Pao Hung
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, No.1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
| | - Chia-Chi Chang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), No.161, Section 6, Minquan East Road, Taipei, 11490, Taiwan
| | - Chien-Yu Liao
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, No.35, Keyan Road, Zhunan, 35053, Taiwan
- Graduate Institute of Microbiology & Immunology, NDMC, No.161, Section 6, Minquan East Road, Taipei, 11490, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, No.1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan.
| |
Collapse
|
8
|
Zhu N, Hou J, Si J, Yang N, Chen B, Wei X, Zhu L. SIRT1 and ZNF350 as novel biomarkers for osteoporosis: a bioinformatics analysis and experimental validation. Mol Biol Rep 2024; 51:530. [PMID: 38637425 DOI: 10.1007/s11033-024-09406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/29/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Osteoporosis (OP) is characterized by bone mass decrease and bone tissue microarchitectural deterioration in bone tissue. This study identified potential biomarkers for early diagnosis of OP and elucidated the mechanism of OP. METHODS Gene expression profiles were downloaded from Gene Expression Omnibus (GEO) for the GSE56814 dataset. A gene co-expression network was constructed using weighted gene co-expression network analysis (WGCNA) to identify key modules associated with healthy and OP samples. Functional enrichment analysis was conducted using the R clusterProfiler package for modules to construct the transcriptional regulatory factor networks. We used the "ggpubr" package in R to screen for differentially expressed genes between the two samples. Gene set variation analysis (GSVA) was employed to further validate hub gene expression levels between normal and OP samples using RT-PCR and immunofluorescence to evaluate the potential biological changes in various samples. RESULTS There was a distinction between the normal and OP conditions based on the preserved significant module. A total of 100 genes with the highest MM scores were considered key genes. Functional enrichment analysis suggested that the top 10 biological processes, cellular component and molecular functions were enriched. The Toll-like receptor signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, osteoclast differentiation, JAK-STAT signaling pathway, and chemokine signaling pathway were identified by Kyoto Encyclopedia of Genes and Genomes pathway analysis. SIRT1 and ZNF350 were identified by Wilcoxon algorithm as hub differentially expressed transcriptional regulatory factors that promote OP progression by affecting oxidative phosphorylation, apoptosis, PI3K-Akt-mTOR signaling, and p53 pathway. According to RT-PCR and immunostaining results, SIRT1 and ZNF350 levels were significantly higher in OP samples than in normal samples. CONCLUSION SIRT1 and ZNF350 are important transcriptional regulatory factors for the pathogenesis of OP and may be novel biomarkers for OP treatment.
Collapse
Affiliation(s)
- Naiqiang Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Jingyi Hou
- Chengde Medical University, Chengde, 067000, China
| | - Jingyuan Si
- South Operation Department, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Ning Yang
- Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Bin Chen
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China.
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China.
| |
Collapse
|
9
|
Gu C, Zhou Q, Hu X, Ge X, Hou M, Wang W, Liu H, Shi Q, Xu Y, Zhu X, Yang H, Chen X, Liu T, He F. Melatonin rescues the mitochondrial function of bone marrow-derived mesenchymal stem cells and improves the repair of osteoporotic bone defect in ovariectomized rats. J Pineal Res 2024; 76:e12924. [PMID: 37941528 DOI: 10.1111/jpi.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Osteoporotic bone defects, a severe complication of osteoporosis, are distinguished by a delayed bone healing process and poor repair quality. While bone marrow-derived mesenchymal stem cells (BMMSCs) are the primary origin of bone-forming osteoblasts, their mitochondrial function is impaired, leading to inadequate bone regeneration in osteoporotic patients. Melatonin is well-known for its antioxidant properties and regulation on bone metabolism. The present study postulated that melatonin has the potential to enhance the repair of osteoporotic bone defects by restoring the mitochondrial function of BMMSCs. In vitro administration of melatonin at varying concentrations (0.01, 1, and 100 μM) demonstrated a significant dose-dependent improvement in the mitochondrial function of BMMSCs obtained from ovariectomized rats (OVX-BMMSCs), as indicated by an elevation in mitochondrial membrane potential, adenosine triphosphate synthesis and expression of mitochondrial respiratory chain factors. Melatonin reduced the level of mitochondrial superoxide by activating the silent information regulator type 1 (SIRT1) and its downstream antioxidant enzymes, particularly superoxide dismutase 2 (SOD2). The protective effects of melatonin were found to be nullified upon silencing of Sirt1 or Sod2, underscoring the crucial role of the SIRT1-SOD2 axis in the melatonin-induced enhancement of mitochondrial energy metabolism in OVX-BMMSCs. To achieve a sustained and localized release of melatonin, silk fibroin scaffolds loaded with melatonin (SF@MT) were fabricated. The study involved the surgical creation of bilateral femur defects in OVX rats, followed by the implantation of SF@MT scaffolds. The results indicated that the application of melatonin partially restored the mitochondrial energy metabolism and osteogenic differentiation of OVX-BMMSCs by reinstating mitochondrial redox homeostasis. These findings suggest that the localized administration of melatonin through bone implants holds potential as a therapeutic approach for addressing osteoporotic bone defects.
Collapse
Affiliation(s)
- Chao Gu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Suzhou, China
| | - Quan Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xiayu Hu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xiaoyang Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Wenhao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Ge J, Yu YJ, Li JY, Li MY, Xia SM, Xue K, Wang SY, Yang C. Activating Wnt/β-catenin signaling by autophagic degradation of APC contributes to the osteoblast differentiation effect of soy isoflavone on osteoporotic mesenchymal stem cells. Acta Pharmacol Sin 2023; 44:1841-1855. [PMID: 36973541 PMCID: PMC10462682 DOI: 10.1038/s41401-023-01066-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
The functional role of autophagy in regulating differentiation of bone marrow mesenchymal stem cells (MSCs) has been studied extensively, but the underlying mechanism remains largely unknown. The Wnt/β-catenin signaling pathway plays a pivotal role in the initiation of osteoblast differentiation of mesenchymal progenitor cells, and the stability of core protein β-catenin is tightly controlled by the APC/Axin/GSK-3β/Ck1α complex. Here we showed that genistein, a predominant soy isoflavone, stimulated osteoblast differentiation of MSCs in vivo and in vitro. Female rats were subjected to bilateral ovariectomy (OVX); four weeks after surgery the rats were orally administered genistein (50 mg·kg-1·d-1) for 8 weeks. The results showed that genistein administration significantly suppressed the bone loss and bone-fat imbalance, and stimulated bone formation in OVX rats. In vitro, genistein (10 nM) markedly activated autophagy and Wnt/β-catenin signaling pathway, and stimulated osteoblast differentiation in OVX-MSCs. Furthermore, we found that genistein promoted autophagic degradation of adenomatous polyposis coli (APC), thus initiated β-catenin-driven osteoblast differentiation. Notably, genistein activated autophagy through transcription factor EB (TFEB) rather than mammalian target of rapamycin (mTOR). These findings unveil the mechanism of how autophagy regulates osteogenesis in OVX-MSCs, which expands our understanding that such interplay could be employed as a useful therapeutic strategy for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Jing Ge
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Ye-Jia Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Jia-Yi Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Meng-Yu Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Si-Mo Xia
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Ke Xue
- Department of Pastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Shao-Yi Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China.
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China.
| |
Collapse
|
11
|
Zhu C, Ding H, Shi L, Zhang S, Tong X, Huang M, Liu L, Guan X, Zou J, Yuan Y, Chen X. Exercise improved bone health in aging mice: a role of SIRT1 in regulating autophagy and osteogenic differentiation of BMSCs. Front Endocrinol (Lausanne) 2023; 14:1156637. [PMID: 37476496 PMCID: PMC10355118 DOI: 10.3389/fendo.2023.1156637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/07/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction This study was designed to investigate the effect of running exercise on improving bone health in aging mice and explore the role of the SIRT1 in regulating autophagy and osteogenic differentiation of Bone marrow Mesenchymal Stem Cells (BMSCs). Methods Twelve-month-old male C57BL/6J mice were used in this study as the aging model and were assigned to treadmill running exercise for eight weeks. Non-exercise male C57BL/6J mice of the same old were used as aging control and five-month-old mice were used as young controls. BMSCs were isolated from mice and subjected to mechanical stretching stimulation in vitro. Results The results showed that aging mice had lower bone mass, bone mineral density (BMD), and autophagy than young mice, while running exercise improved BMD and bone mass as well as upregulated autophagy in bone cells. Mechanical loading increased osteogenic differentiation and autophagy in BMSCs, and knockdown of SIRT1 in BMSCs demonstrated that SIRT1-regulated autophagy involved the mechanical loading activation of osteogenic differentiation. Conclusion Taken together, this study revealed that exercise improved bone health during aging by activating bone formation, which can be attributed to osteogenic differentiation of BMSCs through the activation of SIRT1-mediated autophagy. The mechanisms underlying this effect may involve mechanical loading.
Collapse
Affiliation(s)
- Chengyu Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Haili Ding
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Liang Shi
- Department of Gynaecology and Obstetrics, Xinchang People’s Hospital, Shaoxing, China
| | - Shihua Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaoyang Tong
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Mei Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lifei Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Xiaotian Guan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
13
|
Lin L, Guo Z, He E, Long X, Wang D, Zhang Y, Guo W, Wei Q, He W, Wu W, Li J, Wo L, Hong D, Zheng J, He M, Zhao Q. SIRT2 regulates extracellular vesicle-mediated liver-bone communication. Nat Metab 2023; 5:821-841. [PMID: 37188819 PMCID: PMC10229428 DOI: 10.1038/s42255-023-00803-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
The interplay between liver and bone metabolism remains largely uncharacterized. Here, we uncover a mechanism of liver-bone crosstalk regulated by hepatocyte SIRT2. We demonstrate that hepatocyte SIRT2 expression is increased in aged mice and elderly humans. Liver-specific SIRT2 deficiency inhibits osteoclastogenesis and alleviates bone loss in mouse models of osteoporosis. We identify leucine-rich α-2-glycoprotein 1 (LRG1) as a functional cargo in hepatocyte-derived small extracellular vesicles (sEVs). In SIRT2-deficient hepatocytes, LRG1 levels in sEVs are upregulated, leading to increased transfer of LRG1 to bone-marrow-derived monocytes (BMDMs), and in turn, to inhibition of osteoclast differentiation via reduced nuclear translocation of NF-κB p65. Treatment with sEVs carrying high levels of LRG1 inhibits osteoclast differentiation in human BMDMs and in mice with osteoporosis, resulting in attenuated bone loss in mice. Furthermore, the plasma level of sEVs carrying LRG1 is positively correlated with bone mineral density in humans. Thus, drugs targeting hepatocyte-osteoclast communication may constitute a promising therapeutic strategy for primary osteoporosis.
Collapse
Affiliation(s)
- Longshuai Lin
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zengya Guo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enjun He
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xidai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Difei Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihong Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wei
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanying Wu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingchi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulu Wo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dengli Hong
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Qinghua Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Cheng M, Yuan W, Moshaverinia A, Yu B. Rejuvenation of Mesenchymal Stem Cells to Ameliorate Skeletal Aging. Cells 2023; 12:998. [PMID: 37048071 PMCID: PMC10093211 DOI: 10.3390/cells12070998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Advanced age is a shared risk factor for many chronic and debilitating skeletal diseases including osteoporosis and periodontitis. Mesenchymal stem cells develop various aging phenotypes including the onset of senescence, intrinsic loss of regenerative potential and exacerbation of inflammatory microenvironment via secretory factors. This review elaborates on the emerging concepts on the molecular and epigenetic mechanisms of MSC senescence, such as the accumulation of oxidative stress, DNA damage and mitochondrial dysfunction. Senescent MSCs aggravate local inflammation, disrupt bone remodeling and bone-fat balance, thereby contributing to the progression of age-related bone diseases. Various rejuvenation strategies to target senescent MSCs could present a promising paradigm to restore skeletal aging.
Collapse
Affiliation(s)
- Mingjia Cheng
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Weihao Yuan
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Alireza Moshaverinia
- Section of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Bo Yu
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Wang C, Chen R, Zhu X, Zhang X, Lian N. METTL14 alleviates the development of osteoporosis in ovariectomized mice by upregulating m 6A level of SIRT1 mRNA. Bone 2023; 168:116652. [PMID: 36584783 DOI: 10.1016/j.bone.2022.116652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to investigate whether METTL14 participated in ovariectomized (OVX)-induced osteoporosis (OP) in mice by regulating the m6A level of SIRT1 mRNA. OVX was performed on mice to induce OP, and mouse bone marrow stromal cells (BMSCs) and bone marrow mononuclear macrophages (BMMs) were isolated to induce osteoblast differentiation and osteoclast differentiation, respectively. The morphology of bone trabeculae was evaluated under a micro-CT scanner. The changes in pathology of bone tissues were observed through staining using hematoxylin-eosin. The number of osteoclasts was measured by tartrate-resistant acid phosphatase staining, and the content of serum calcium, PINP, and CTX-I was tested by enzyme-linked immunosorbent assay, accompanied by the measurement of the expression of SIRT1, METTL14, osteogenic marker genes, and osteoclast marker genes. The m6A modification level of SIRT1 and the binding between METTL14 and SIRT1 were verified. In OVX mice, SIRT1 and METTL14 were downregulated. Overexpression of SIRT1 or METTL14 increased the expression of osteogenic marker genes but decreased the expression of osteoclast marker genes. Additionally, METTL14 overexpression increased m6A level of SIRT1 mRNA. Furthermore, overexpression of METTL14 promoted osteoblast differentiation and suppressed osteoclast differentiation, which were reversed by knockdown of SIRT1. METTL14 promoted osteoblast differentiation and repressed osteoclast differentiation by m6A-dependent upregulation of SIRT1 mRNA, thereby alleviating OP development.
Collapse
Affiliation(s)
- Changsheng Wang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China.
| | - Rongsheng Chen
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Xitian Zhu
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Xiaobo Zhang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Nancheng Lian
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| |
Collapse
|
16
|
Liu M, Cheng L, Li X, Wang H, Wang M, Gan L. Resveratrol Reverses Myogenic Induction Suppression Caused by High Glucose Through Activating the SIRT1/AKT/FOXO1 Pathway. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231159722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Background Differentiated bone marrow mesenchymal stem cells (BMSCs) may be a therapeutic strategy to treat sarcopenia caused by high glucose. The effects of resveratrol in the myogenic induction of BMSCs under high glucose are unknown. We evaluated the effects and possible mechanisms of high glucose and resveratrol on myogenic induction of rat BMSCs. Methods Primary rat BMSCs were isolated and purified from Sprague-Dawley rats aged between 3 and 4 weeks. Rat BMSCs were differentiated into myogenic cells using conditioned medium and treated with glucose and/or resveratrol along with EX527 (a specific silent information regulator 1 [SIRT1] inhibitor). The expressions of MyoD1 and Myogenin were measured. The reactive oxygen species (ROS) level, superoxide dismutase (SOD) activity, and the expressions of FOXO1 and p-AKT/AKT during myogenic induction were also examined. Results High glucose decreased cell viability, cell proliferation, and SOD activity, increased intracellular ROS levels, and inhibited the AKT/FOXO1. Resveratrol reversed myogenic induction suppression caused by high glucose, partly through restoring cell proliferation and viability, reducing peroxidative damage, and activating the AKT/FOXO1 pathway; this effect was eliminated by EX527. Conclusion Our results indicate that resveratrol promoted myogenic induction and partially reversed the suppression of myogenic induction caused by high glucose through activating the SIRT1/AKT/FOXO1 pathway.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luyang Cheng
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianglu Li
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongzhi Wang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Manfeng Wang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lu Gan
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Chlebek C, Rosen CJ. The Role of Bone Cell Energetics in Altering Bone Quality and Strength in Health and Disease. Curr Osteoporos Rep 2023; 21:1-10. [PMID: 36435911 DOI: 10.1007/s11914-022-00763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Bone quality and strength are diminished with age and disease but can be improved by clinical intervention. Energetic pathways are essential for cellular function and drive osteogenic signaling within bone cells. Altered bone quality is associated with changes in the energetic activity of bone cells following diet-based or therapeutic interventions. Energetic pathways may directly or indirectly contribute to changes in bone quality. The goal of this review is to highlight tissue-level and bioenergetic changes in bone health and disease. RECENT FINDINGS Bone cell energetics are an expanding field of research. Early literature primarily focused on defining energetic activation throughout the lifespan of bone cells. Recent studies have begun to connect bone energetic activity to health and disease. In this review, we highlight bone cell energetic demands, the effect of substrate availability on bone quality, altered bioenergetics associated with disease treatment and development, and additional biological factors influencing bone cell energetics. Bone cells use several energetic pathways during differentiation and maturity. The orchestration of bioenergetic pathways is critical for healthy cell function. Systemic changes in substrate availability alter bone quality, potentially due to the direct effects of altered bone cell bioenergetic activity. Bone cell bioenergetics may also contribute directly to the development and treatment of skeletal diseases. Understanding the role of energetic pathways in the cellular response to disease will improve patient treatment.
Collapse
Affiliation(s)
- Carolyn Chlebek
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA.
| |
Collapse
|
18
|
Lan X, Ma H, Cheng Q, Xiao Y, Zou L, Yuan Z, Luo J. SIRT1/Notch1 signal axis involves in the promoting effect of Segetalin B on bone formation. Drug Dev Res 2022; 83:1845-1857. [PMID: 36207817 DOI: 10.1002/ddr.22001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 12/29/2022]
Abstract
Phytoestrogens are a class of potential natural medicines for treating postmenopausal osteoporosis (PMOP). Segetalin B (SB) is a cyclic peptide compound showing estrogenic activity. This study reports the effect of SB on bone formation among ovariectomized (OVX) rats. The bone marrow mesenchymal stem cells (BMSCs) from OVX rats were cultured in vitro. Alizarin Red staining was utilized to observe the effect of SB on the mineralization of BMSCs. The levels of alkaline phosphatase (ALP), osteocalcin, bone morphogenetic protein (BMP-2), and Sirtuin 1 (SIRT1) activities were detected. The OVX rats were treated with SB in vivo. Micro-CT was utilized for imaging analysis. Urine calcium and phosphorus, and ALP activity in bone marrow were assayed. Western blot analysis and immunofluorescence were incorporated to detect protein expressions in vitro and in vivo. The results showed that SB dose-dependently promoted mineralization of OVX rat-derived BMSCs in vitro increased the level of Osteocalcin, BMP-2, ALP, and SIRT1 activity. Moreover, it upregulated expressions of Runx2, Osterix, and SIRT1, downregulated expressions of Notch intracellular domain (NICD), acetyl-NICD, and hairy and enhancer of split 1 (Hes1). In addition, SB treatment significantly decreased bone loss, inhibited calcium and phosphorus loss, elevated ALP activity, upregulated Runx2, Osterix, and SIRT1, and downregulated NICD and Hes1 in OVX rats in vivo. However, EX527, a SIRT1-selective inhibitor, could reverse the above effects of SB in vitro or in vivo. These results indicate that SB is a potential natural medicine to improve PMOP. Thus, its mechanism of promoting bone formation involves the SIRT1/Notch1 signaling axis.
Collapse
Affiliation(s)
- Xiaoyong Lan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Haiping Ma
- Nursing Department of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qingfeng Cheng
- Nursing Department of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yuhong Xiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Lingfeng Zou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhen Yuan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
19
|
Huang X, Chen W, Gu C, Liu H, Hou M, Qin W, Zhu X, Chen X, Liu T, Yang H, He F. Melatonin suppresses bone marrow adiposity in ovariectomized rats by rescuing the imbalance between osteogenesis and adipogenesis through SIRT1 activation. J Orthop Translat 2022; 38:84-97. [PMID: 36381247 PMCID: PMC9619141 DOI: 10.1016/j.jot.2022.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Accelerated imbalance between bone formation and bone resorption is associated with bone loss in postmenopausal osteoporosis. Studies have shown that this loss is accompanied by an increase in bone marrow adiposity. Melatonin was shown to improve impaired bone formation capacity of bone marrow-derived mesenchymal stem cells from ovariectomized rats (OVX-BMMSCs). OBJECTIVES To investigate whether the anti-osteoporosis effect of melatonin involves regulation of the equilibrium between osteogenic and adipogenic differentiation of osteoporotic BMMSCs. METHODS To induce osteoporosis, female Sprague-Dawley rats received ovariectomy (OVX). Primary BMMSCs were isolated from tibiae and femurs of OVX and sham-op rats and were induced towards osteogenic or adipogenic differentiation. Matrix mineralization was determined by Alizarin Red S (ARS) and lipid formation was evaluated by Oil Red O. OVX rats were injected with melatonin through the tail vein. Bone microarchitecture was determined using micro computed tomography and marrow adiposity were examined by histology staining. RESULTS OVX-BMMSCs exhibited a compromised osteogenic potential and an enhanced lineage differentiation towards adipocytes. In vitro melatonin improved osteogenic differentiation of OVX-BMMSCs and promoted matrix mineralization by enhancing the expression of transcription factor RUNX2 in a dose-dependent manner. Moreover, melatonin significantly inhibited lipid formation and suppressed OVX-BMMSCs adipogenesis by down-regulating peroxisome proliferator-activated receptor γ (PPARγ). Intravenous injection of melatonin prevented bone mass reduction and bone architecture destruction in ovariectomized rats. Importantly, there was a significant inhibition of adipose tissue formation in the bone marrow. Mechanistic investigations revealed that SIRT1 was involved in melatonin-mediated determination of stem cell fate. Inhibition of SIRT1 abolished the protective effects of melatonin on bone formation by inducing BMMSCs towards adipocyte differentiation. CONCLUSIONS Melatonin reversed the differentiation switch of OVX-BMMSCs from osteogenesis to adipogenesis by activating the SIRT1 signaling pathway. Restoration of stem cell lineage commitment by melatonin prevented marrow adipose tissue over-accumulation and protected from bone loss in postmenopausal osteoporosis. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Determination of stem cell fate towards osteoblasts or adipocytes plays a pivotal role in regulating bone metabolism. This study demonstrates the protective effect of melatonin on bone mass in estrogen-deficient rats by suppressing adipose tissue accumulation in the bone marrow. Melatonin may serve as a promising candidate for the treatment of osteoporosis in clinics.
Collapse
Affiliation(s)
- Xiaoxiong Huang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China,Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Weikai Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Chao Gu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Wanjin Qin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China,Corresponding author. Department of Pathology, The Third Affiliated Hospital of Soochow University, No.185 Juqian Road, Changzhou, 213003, Jiangsu, China.
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China,Corresponding author. Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China,Corresponding author. Orthopaedic Institute, Soochow University, Suzhou 215000, China
| |
Collapse
|
20
|
Gao W, Li R, Ye M, Zhang L, Zheng J, Yang Y, Wei X, Zhao Q. The circadian clock has roles in mesenchymal stem cell fate decision. Stem Cell Res Ther 2022; 13:200. [PMID: 35578353 PMCID: PMC9109355 DOI: 10.1186/s13287-022-02878-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/26/2022] [Indexed: 02/08/2023] Open
Abstract
The circadian clock refers to the intrinsic biological rhythms of physiological functions and behaviours. It synergises with the solar cycle and has profound effects on normal metabolism and organismal fitness. Recent studies have suggested that the circadian clock exerts great influence on the differentiation of stem cells. Here, we focus on the close relationship between the circadian clock and mesenchymal stem cell fate decisions in the skeletal system. The underlying mechanisms include hormone signals and the activation and repression of different transcription factors under circadian regulation. Additionally, the clock interacts with epigenetic modifiers and non-coding RNAs and is even involved in chromatin remodelling. Although the specificity and safety of circadian therapy need to be further studied, the circadian regulation of stem cells can be regarded as a promising candidate for health improvement and disease prevention.
Collapse
Affiliation(s)
- Wenzhen Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rong Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Meilin Ye
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, 250012, China
| | - Lanxin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiawen Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuqing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qing Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Jiang H, Jiang Y, Xu Y, Yuan D, Li Y. Bronchial epithelial SIRT1 deficiency exacerbates cigarette smoke induced emphysema in mice through the FOXO3/PINK1 pathway. Exp Lung Res 2022:1-16. [PMID: 35132913 DOI: 10.1080/01902148.2022.2037169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Purpose: Cellular senescence and mitochondrial fragmentation are thought to be crucial components of the cigarette smoke(CS)-induced responses that contribute to the chronic obstructive pulmonary disease (COPD) development as a result of accelerated premature aging of the lung. Although there have been a few reports on the role of sirtuin 1(SIRT1) in mitochondrial homeostasis, senescence and inflammation, whether SIRT1/FOXO3/PINK1 signaling mediated mitophagy ameliorates cellular senescence in COPD is still unclear. This study aimed to ascertain whether SIRT1 regulates cellular senescence via FOXO3/PINK1-mediated mitophagy in COPD. Methods: To investigate the effect of CS exposure and SIRT1 deficiency on mitophagy and senescence in the lung, a SIRT1 knockout(KO) mouse model was used. Airway resistance, cellular senescence mitochondrial injury, mitophagy, cellular architecture and protein expression levels in lung tissues, from SIRT1 KO and wild-type(WT) COPD model mice exposed to CS for 6 months were examined by western blotting, histochemistry, immunofluorescence and transmission electron microscopy(TEM). Results: In CS exposed mice, SIRT1 deficiency exacerbated airway resistance and cellular senescence, increased FOXO3 acetylation and decreased PINK1 protein levels and attenuated mitophagy. Mechanistically, the damaging effect of SIRT1 deficiency on lung tissue was attributed to increased FOXO3 acetylation and decreased PINK1 levels, and attenuated mitophagy. In vitro, mitochondrial damage and cellular sensitivity in response to CS exposure were more severe in control cells than in cells treated with aSIRT1 activator. SIRT1 activation SIRT1 activation decreased FOXO3 acetylation and increased the protein levels of PINK1 and enhanced mitophagy. Conclusion: These results demonstrated that the detrimental effects of SIRT1 deficiency on cell senescence associated with insufficient mitophagy, and involved the FOXO3/PINK1 signaling pathway.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yaona Jiang
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Graduate Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuanri Xu
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Graduate Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Dong Yuan
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yaqing Li
- Department of Internal Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Ning K, Liu S, Yang B, Wang R, Man G, Wang DE, Xu H. Update on the Effects of Energy Metabolism in Bone Marrow Mesenchymal Stem Cells Differentiation. Mol Metab 2022; 58:101450. [PMID: 35121170 PMCID: PMC8888956 DOI: 10.1016/j.molmet.2022.101450] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal (stromal) stem cells (BMSCs) play key roles in bone homeostasis, tissue regeneration, and global energy homeostasis; however, the intrinsic mechanism of BMSC differentiation is not well understood. Plasticity in energy metabolism allows BMSCs to match the divergent demands of osteo-adipogenic differentiation. Targeting BMSC metabolic pathways may provide a novel therapeutic perspective for BMSC differentiation unbalance related diseases. Scope of review This review covers the recent studies of glucose, fatty acids, and amino acids metabolism fuel the BMSC differentiation. We also discuss recent findings about energy metabolism in BMSC differentiation. Major conclusions Glucose, fatty acids, and amino acids metabolism provide energy to fuel BMSC differentiation. Moreover, some well-known regulators including environmental stress, hormone drugs, and biological and pathological factors may also influence BMSC differentiation by altering metabolism. This offers insight to the significance of metabolism on BMSC fate determination and provides the possibility of treating diseases related to BMSC differentiation, such as obesity and osteoporosis, from a metabolic perspective.
Collapse
|
23
|
Avilkina V, Leterme D, Falgayrac G, Delattre J, Miellot F, Gauthier V, Chauveau C, Ghali Mhenni O. Severity Level and Duration of Energy Deficit in Mice Affect Bone Phenotype and Bone Marrow Stromal Cell Differentiation Capacity. Front Endocrinol (Lausanne) 2022; 13:880503. [PMID: 35733777 PMCID: PMC9207532 DOI: 10.3389/fendo.2022.880503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Anorexia nervosa is known to induce changes in bone parameters and an increase in bone marrow adiposity (BMA) that depend on the duration and seriousness of the disease. Previous studies have found that bone loss is associated with BMA accumulation. Sirtuin of type 1 (Sirt1), a histone deacetylase that is partly regulated by energy balance, was shown to have pro-osteoblastogenic and anti-adipogenic effects. To study the effects of the severity and duration of energy deficits related to bone loss, a mouse model of separation-based anorexia (SBA) was established. We recently demonstrated that moderate body weight loss (18%) 8-week SBA protocol in mice resulted in an increase in BMA, bone loss, and a significant reduction in Sirt1 expression in bone marrow stromal cells (BMSCs) extracted from SBA mice. We hypothesised that Sirt1 deficit in BMSCs is associated with bone and BMA alterations and could potentially depend on the severity of weight loss and the length of SBA protocol. We studied bone parameters, BMA, BMSC differentiation capacity, and Sirt1 expression after induction of 4 different levels of body weight loss (0%,12%,18%,24%), after 4 or 10 weeks of the SBA protocol. Our results demonstrated that 10 week SBA protocols associated with body weight loss (12%, 18%, 24%) induced a significant decrease in bone parameters without any increase in BMA. BMSCs extracted from 12% and 18% SBA groups showed a significant decrease in Sirt1 mRNA levels before and after co-differentiation. For these two groups, decrease in Sirt1 was associated with a significant increase in the mRNA level of adipogenic markers and a reduction of osteoblastogenesis. Inducing an 18% body weight loss, we tested a short SBA protocol (4-week). We demonstrated that a 4-week SBA protocol caused a significant decrease in Tb.Th only, without change in other bone parameters, BMA, Sirt1 expression, or differentiation capacity of BMSCs. In conclusion, this study showed, for the first time, that the duration and severity of energy deficits are critical for changes in bone parameters, BMSC differentiation, and Sirt1 expression. Furthermore, we showed that in this context, Sirt1 expression could impact BMSC differentiation with further effects on bone phenotype.
Collapse
Affiliation(s)
| | - Damien Leterme
- MAB Lab ULR4490, Univ Littoral Côte d'Opale, Boulogne-sur-Mer, France
| | | | | | - Flore Miellot
- MAB Lab ULR4490, Univ Littoral Côte d'Opale, Boulogne-sur-Mer, France
| | | | | | - Olfa Ghali Mhenni
- MAB Lab ULR4490, Univ Littoral Côte d'Opale, Boulogne-sur-Mer, France
| |
Collapse
|
24
|
Avilkina V, Chauveau C, Ghali Mhenni O. Sirtuin function and metabolism: Role in pancreas, liver, and adipose tissue and their crosstalk impacting bone homeostasis. Bone 2022; 154:116232. [PMID: 34678494 DOI: 10.1016/j.bone.2021.116232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Mammalian sirtuins (SIRT1-7) are members of the nicotine adenine dinucleotide (NAD+)-dependent family of enzymes critical for histone deacetylation and posttranslational modification of proteins. Sirtuin family members regulate a wide spectrum of biological processes and are best known for maintaining longevity. Sirtuins are well characterized in metabolic tissues such as the pancreas, liver and adipose tissue (AT). They are regulated by a diverse range of stimuli, including nutrients and metabolic changes within the organism. Indeed, nutrient-associated conditions, such as obesity and anorexia nervosa (AN), were found to be associated with bone fragility development in osteoporosis. Interestingly, it has also been demonstrated that sirtuins, more specifically SIRT1, can regulate bone activity. Various studies have demonstrated the importance of sirtuins in bone in the regulation of bone homeostasis and maintenance of the balance between bone resorption and bone formation. However, to understand the molecular mechanisms involved in the negative regulation of bone homeostasis during overnutrition (obesity) or undernutrition, it is crucial to examine a wider picture and to determine the pancreatic, liver and adipose tissue pathway crosstalk responsible for bone loss. Particularly, under AN conditions, sirtuin family members are highly expressed in metabolic tissue, but this phenomenon is reversed in bone, and severe bone loss has been observed in human subjects. AN-associated bone loss may be connected to SIRT1 deficiency; however, additional factors may interfere with bone homeostasis. Thus, in this review, we focus on sirtuin activity in the pancreas, liver and AT in cases of over- and undernutrition, especially the regulation of their secretome by sirtuins. Furthermore, we examine how the secretome of the pancreas, liver and AT affects bone homeostasis, focusing on undernutrition. This review aims to lead to a better understanding of the crosstalk between sirtuins, metabolic organs and bone. In long term prospective it should contribute to promote improvement of therapeutic strategies for the prevention of metabolic diseases and the development of osteoporosis.
Collapse
Affiliation(s)
- Viktorija Avilkina
- Marrow Adiposity and Bone Lab (MABLab) ULR4490, Univ. Littoral Côte d'Opale, F-62200, Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Christophe Chauveau
- Marrow Adiposity and Bone Lab (MABLab) ULR4490, Univ. Littoral Côte d'Opale, F-62200, Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Olfa Ghali Mhenni
- Marrow Adiposity and Bone Lab (MABLab) ULR4490, Univ. Littoral Côte d'Opale, F-62200, Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France.
| |
Collapse
|
25
|
Zhou F, Yi Z, Wu Y, Xiong Y. The role of forkhead box class O1 during implant osseointegration. Eur J Oral Sci 2021; 129:e12822. [PMID: 34865256 DOI: 10.1111/eos.12822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
FOXO1, a member of the forkhead family of transcription factors, plays a vital role in the osteogenic lineage commitment of mesenchymal stem cells, and affects multiple cellular functions of osteogenic cells. However, prior studies have focused on mesenchymal stem cells but not on differentiated osteoblasts. In addition, studies about the role of FOXO1 during osseointegration are lacking. In this present study, we constructed osteoblast conditional FOXO1 knock-out mice and lentivirus-mediated FoxO1 overexpression to investigate maxillary titanium implant osseointegration. After 4 wk post implant placement, micro-computed tomography, histomorphometric analyses, and RT-qPCR assays were performed. Results showed that compared with the control group, overexpression of FOXO1 significantly enhanced bone formation around implant and bone-implant contact ratio, while loss of FOXO1 impaired peri-implant osteogenesis and osseointegration. Moreover, overexpression of FoxO1 enhanced expression of osteogenesis-related genes, such as Runx2, Alp1, Col1a1, and Bglap. Whereas, knock-out of Foxo1 reduced the expression of osteogenesis-related genes. Taken together, our results suggested that FOXO1 in osteoblasts could enhance osteogenesis-related gene expression to improve osseointegration.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zumu Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Wei R, Han C, He F, Xiong X, Ye F, Liu H, Li L, Xu H, Wei S, Zeng X. Role of forkhead box protein O1 and insulin on cell proliferation mediated by sirtuin 1 in goose primary hepatocytes. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Donat A, Knapstein PR, Jiang S, Baranowsky A, Ballhause TM, Frosch KH, Keller J. Glucose Metabolism in Osteoblasts in Healthy and Pathophysiological Conditions. Int J Mol Sci 2021; 22:ijms22084120. [PMID: 33923498 PMCID: PMC8073638 DOI: 10.3390/ijms22084120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
Bone tissue in vertebrates is essential to performing movements, to protecting internal organs and to regulating calcium homeostasis. Moreover, bone has also been suggested to contribute to whole-body physiology as an endocrine organ, affecting male fertility; brain development and cognition; and glucose metabolism. A main determinant of bone quality is the constant remodeling carried out by osteoblasts and osteoclasts, a process consuming vast amounts of energy. In turn, clinical conditions associated with impaired glucose metabolism, including type I and type II diabetes and anorexia nervosa, are associated with impaired bone turnover. As osteoblasts are required for collagen synthesis and matrix mineralization, they represent one of the most important targets for pharmacological augmentation of bone mass. To fulfill their function, osteoblasts primarily utilize glucose through aerobic glycolysis, a process which is regulated by various molecular switches and generates adenosine triphosphate rapidly. In this regard, researchers have been investigating the complex processes of energy utilization in osteoblasts in recent years, not only to improve bone turnover in metabolic disease, but also to identify novel treatment options for primary bone diseases. This review focuses on the metabolism of glucose in osteoblasts in physiological and pathophysiological conditions.
Collapse
|
28
|
Lv X, Chen S, Gao F, Hu B, Wang Y, Ni S, Kou H, Song Z, Qing X, Wang S, Liu H, Shao Z. Resveratrol-enhanced SIRT1-mediated osteogenesis in porous endplates attenuates low back pain and anxiety behaviors. FASEB J 2021; 35:e21414. [PMID: 33583095 DOI: 10.1096/fj.202002524r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/11/2022]
Abstract
Low back pain (LBP) is a major clinical problem that lacks effective treatments. The sensory innervation in porous vertebral endplates and anxiety contributes to spinal hyperalgesia. We hypothesized that SIRT1 activator resveratrol alleviates LBP and anxiety via promotion of osteogenesis in the porous endplates. The hyperalgesia and anxiety-related behaviors; sensory innervation, inflammation and porosity of endplates; and osteogenic/osteoclastic factors expression were measured following resveratrol treatment after lumbar spine instability (LSI) surgery. To explore whether resveratrol promotes endplates osteogenesis and thus alleviates LBP through activation of SIRT1 in the osteoprogenitor cells of endplates, SIRT1OSX-/- mice were employed. Additionally, the levels of inflammation markers, phosphorylation of cAMP response element-binding protein (pCREB), and brain-derived neurotrophic factor (BDNF) in hippocampus were evaluated. After 4 or 8 weeks LSI surgery, the mice suffered from hyperalgesia and anxiety, which were efficiently attenuated by resveratrol at 8 weeks. Resveratrol treatment-enhanced osteogenesis and decreased endplates porosities accompanied with the reduction of TNFα, IL-1β, and COX2 levels and CGRP+ nerve fibers innervation in porous endplates. Resveratrol-mediated endplates osteogenesis, decreased endplates porosities, and analgesic and antianxiety effects were abrogated in SIRT1OSX-/- mice. Furthermore, resveratrol relieved inflammation and increased pCREB and BDNF expression in the hippocampus after 8 weeks, which alleviate anxiety-related behaviors. This study provides that resveratrol-mediated porous endplates osteogenesis via the activation of SIRT1 markedly blocked sensory innervation and inflammation in endplates, therefore, alleviating LSI surgery-induced LBP and hippocampus-related anxiety.
Collapse
Affiliation(s)
- Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songfeng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongkui Wang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuangfei Ni
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Kou
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongmian Song
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Liu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Chen Y, Zhou F, Liu H, Li J, Che H, Shen J, Luo E. SIRT1, a promising regulator of bone homeostasis. Life Sci 2021; 269:119041. [PMID: 33453243 DOI: 10.1016/j.lfs.2021.119041] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, epigenetically regulates various cell metabolisms, including inflammation, tumorigenesis, and bone metabolism. Many clinical studies have found the potential of SIRT1 in predicting and treating bone-related disorders, such as osteoporosis and osteonecrosis, suggesting that SIRT1 might be a regulator of bone homeostasis. In order to identify the mechanisms that underlie the pivotal role of SIRT1 in bone homeostasis, many studies revealed that SIRT1 could maintain the balance between bone formation and absorption via regulating the ratio of osteoblasts to osteoclasts. SIRT1 controls the differentiation of mesenchymal stem cells (MSCs) and bone marrow-derived macrophages, increasing osteogenesis and reducing osteoclastogenesis. Besides, SIRT1 can enhance bone-forming cells' viability, including MSCs and osteoblasts under adverse conditions by resisting senescence, suppressing apoptosis, and promoting autophagy in favor of osteogenesis. Furthermore, the effect on bone vasculature homeostasis enables SIRT1 to become a valuable strategy for ischemic osteonecrosis and senile osteoporosis. The review systemically discusses SIRT1 pathways and the critical role in bone homeostasis and assesses whether SIRT1 is a potential target for manipulation and therapy, to lay a solid foundation for further researches in the future.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA
| | - Jiaxuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Huiling Che
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiaqi Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - En Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
30
|
Chen YS, Lian WS, Kuo CW, Ke HJ, Wang SY, Kuo PC, Jahr H, Wang FS. Epigenetic Regulation of Skeletal Tissue Integrity and Osteoporosis Development. Int J Mol Sci 2020; 21:ijms21144923. [PMID: 32664681 PMCID: PMC7404082 DOI: 10.3390/ijms21144923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
Bone turnover is sophisticatedly balanced by a dynamic coupling of bone formation and resorption at various rates. The orchestration of this continuous remodeling of the skeleton further affects other skeletal tissues through organ crosstalk. Chronic excessive bone resorption compromises bone mass and its porous microstructure as well as proper biomechanics. This accelerates the development of osteoporotic disorders, a leading cause of skeletal degeneration-associated disability and premature death. Bone-forming cells play important roles in maintaining bone deposit and osteoclastic resorption. A poor organelle machinery, such as mitochondrial dysfunction, endoplasmic reticulum stress, and defective autophagy, etc., dysregulates growth factor secretion, mineralization matrix production, or osteoclast-regulatory capacity in osteoblastic cells. A plethora of epigenetic pathways regulate bone formation, skeletal integrity, and the development of osteoporosis. MicroRNAs inhibit protein translation by binding the 3'-untranslated region of mRNAs or promote translation through post-transcriptional pathways. DNA methylation and post-translational modification of histones alter the chromatin structure, hindering histone enrichment in promoter regions. MicroRNA-processing enzymes and DNA as well as histone modification enzymes catalyze these modifying reactions. Gain and loss of these epigenetic modifiers in bone-forming cells affect their epigenetic landscapes, influencing bone homeostasis, microarchitectural integrity, and osteoporotic changes. This article conveys productive insights into biological roles of DNA methylation, microRNA, and histone modification and highlights their interactions during skeletal development and bone loss under physiological and pathological conditions.
Collapse
Affiliation(s)
- Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chung-Wen Kuo
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Huei-Jing Ke
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Pei-Chen Kuo
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-7317123 (ext. 6404)
| |
Collapse
|