1
|
Augdal T, Angenete O, Zadig P, Lundestad A, Nordal E, Shi X, Rosendahl K. The assessment of bone health in children with juvenile idiopathic arthritis; comparison of different imaging-based methods. Pediatr Rheumatol Online J 2024; 22:80. [PMID: 39210351 PMCID: PMC11363637 DOI: 10.1186/s12969-024-01018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Osteoporosis is increasingly being recognized in children, mostly secondary to systemic underlying conditions or medication. However, no imaging modality currently provides a full evaluation of bone health in children. We compared DXA, a radiographic bone health index (BHI (BoneXpert) and cone-beam CT for the assessment of low bone mass in children with juvenile idiopathic arthritis (JIA). METHODS Data used in the present study was drawn from a large multicentre study including 228 children aged 4-16 years, examined between 2015 and 2020. All had a radiograph of the left hand, a DXA scan and a cone-beam CT of the temporomandibular joints within four weeks of each other. For the present study, we included 120 subjects, selected based on DXA BMD and BoneXpert BHI to secure values across the whole range to be tested. RESULTS One hundred and twenty children (60.0% females) were included, mean age 11.6 years (SD 3.1 years). There was a strong correlation between the absolute values of BHI and BMD for both total body less head (TBLH) (r = 0.75, p < 0.001) and lumbar spine (L1-L4) (r = 0.77, p < 0.001). The correlation between BHI standard deviation score (SDS) and BMD TBLH Z-scores was weak (r = 0.34) but significant (0 = 0.001), varying from weak (r = 0.31) to moderate (r = 0.42) between the three study sites. Categorizing BHI SDS and DXA BMD Z-scores on a 0-5 scale yielded a weak agreement between the two for both TBLH and LS, with w-kappa of 0.2, increasing to 0.3 when using quadratic weights. The agreement was notably higher for one of the three study sites as compared to the two others, particularly for spine assessment, yielding a moderate kappa value of 0.4 - 0.5. For cone-beam CT, based on a 1-3 scale, 59 out of 94 left TMJ's were scored as 1 and 31 as score 2 by the first observer vs. 87 and 7 by the second observer yielding a poor agreement (kappa 0.1). CONCLUSIONS Categorizing DXA LS and automated radiographic Z-scores on a 0-5 scale gave a weak to moderate agreement between the two methods, indicating that a hand radiograph might provide an adjuvant tool to DXA when assessing bone health children with JIA, given thorough calibration is performed.
Collapse
Affiliation(s)
- Thomas Augdal
- Section of Paediatric Radiology, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Oskar Angenete
- Department of Radiology and Nuclear Medicine, St Olavs Hospital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pia Zadig
- Section of Paediatric Radiology, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Ellen Nordal
- Department of Paediatrics, and Research Group for Child and Adolescent Health, Department of Clinical Medicine, University Hospital of North Norway, UiT The Arctic University of Norway, Tromsø, Norway
| | - Xieqi Shi
- Department of Clinical Dentistry, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Oral and Maxillofacial Radiology, Faculty of Odontology, University of Malmö, Malmö, Sweden
| | - Karen Rosendahl
- Section of Paediatric Radiology, University Hospital of North Norway, Tromsø, Norway.
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
2
|
Pinto B, Muzumdar R, Hecht Baldauff N. Bone health in children undergoing solid organ transplantation. Curr Opin Pediatr 2023; 35:703-709. [PMID: 37811914 DOI: 10.1097/mop.0000000000001290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW Pediatric solid organ transplant recipients are a unique and growing patient population who are at risk for metabolic bone disease both before and after transplantation. RECENT FINDINGS The odds of sustaining a fracture in adulthood are significantly higher if an individual has sustained at least one childhood fracture, therefore, close monitoring before and after transplant is essential. Emerging data in patients with chronic kidney disease mineral and bone disorder (CKD-MBD) and hepatic osteodystrophy highlights the role of fibroblast growth factor 23 in the pathogenesis of metabolic bone disease in these conditions. While dual X-ray absorptiometry (DXA) is the most widely used imaging modality for assessment of bone mass in children, quantitative computer tomography (QCT) is an emerging modality, especially for patients with glucocorticoid-induced osteoporosis. SUMMARY Solid organ transplantation improves organ function and quality of life; however, bone mineral density can decline following transplantation, particularly during the first three to six months. Immunosuppressive medications, including glucocorticoids, are a major contributing factor. Following transplant, treatment should be tailored to achieve mineral homeostasis, correct nutritional deficiencies, and improve physical conditioning. In summary, early identification and treatment of metabolic bone disease can improve the bone health status of pediatric transplant recipients as they enter adulthood. VIDEO ABSTRACT http://links.lww.com/MOP/A71.
Collapse
Affiliation(s)
- Bianca Pinto
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
3
|
Holzapfel L, Choukair D, Schenk JP, Bettendorf M. Longitudinal assessment of bone health index as a measure of bone health in short-statured children before and during treatment with recombinant growth hormone. J Pediatr Endocrinol Metab 2023; 36:824-831. [PMID: 37531076 DOI: 10.1515/jpem-2023-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES The aim of our study was the longitudinal assessment of bone health index (BHI) in short-statured children during growth hormone (GH) treatment to estimate changes in their bone health. METHODS 256 short-statured children (isolated GH deficiency (IGHD) n=121, multiple pituitary hormone deficiency (MPHD) n=49, intrauterine growth retardation (small for gestational age (SGA)) n=52, SHOX (short stature homeobox gene) deficiency n=9, Ullrich Turner syndrome (UTS) n=25) who started with GH between 2010 and 2018 were included. Annual bone ages (Greulich and Pyle, GP) and BHI were, retrospectively, analysed in consecutive radiographs of the left hand (BoneXpert software) from GH therapy start (T0) up to 10 years (T10) thereafter, with T max indicating the individual time point of the last available radiograph. The results are presented as the median (25 %/75 % interquartile ranges, IQR) and statistical analyses were performed using non-parametric tests as appropriate. RESULTS The BHI standard deviation scores (SDS) were reduced (-0.97, -1.8/-0.3) as bone ages were retarded (-1.6 years, -2.31/-0.97) in all patients before start of GH and were significantly lower in patients with growth hormone deficiency (GHD) (-1.04, -1.85/-0.56; n=170) compared to non-GHD patients (-0.79, -1.56/-0.01; n=86; p=0.022). BHI SDS increased to -0.17 (-1/0.58) after 1 year of GH (T1, 0.5-1.49, p<0.001) and to -0.20 (-1/-0.50, p<0.001) after 5.3 years (T max, 3.45/7.25). CONCLUSIONS BHI SDS are reduced in treatment-naive short-statured children regardless of their GH status, increase initially with GH treatment while plateauing thereafter, suggesting sustained improved bone health.
Collapse
Affiliation(s)
- Lukas Holzapfel
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela Choukair
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens-Peter Schenk
- Division of Paediatric Radiology, Clinic of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Bettendorf
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Ye W, Cheng S, Xiao J, Yu H. High-sensitivity C-reactive protein could be a potential indicator of bone mineral density in adolescents aged 10-20 years. Sci Rep 2022; 12:7119. [PMID: 35504934 PMCID: PMC9065143 DOI: 10.1038/s41598-022-11209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/11/2022] [Indexed: 11/08/2022] Open
Abstract
There was very limited evidence linking high-sensitivity C-reactive protein (HS-CRP) and total bone mineral density (BMD) in adolescents. The aim of this population-based study was to investigate the relationship between HS-CRP and total BMD in adolescents aged 10-20 years. A cross-sectional study was performed in the normal U.S. population from the data of the National Health and Nutrition Examination Survey (NHANES). The correlation between HS-CRP and total BMD was evaluated by using weighted multivariate linear regression models. And further subgroup analysis was conducted. There were 1747 participants in this study, 47.1% were female, 29.4% were white, 19.5% were black, and 22.3% were Mexican-American. In the multi-regression model that after the potential confounders had been adjusted, HS-CRP was negatively associated with total BMD. The negative association was also observed in the subgroup analyses stratified by gender and age. Our results demonstrated that higher HS-CRP was negatively correlated with total BMD in 10-20 years old adolescents.
Collapse
Affiliation(s)
- Weiran Ye
- Department of Endocrinology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Shi Cheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Jin Xiao
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.
| | - Hui Yu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
5
|
Ciancia S, van Rijn RR, Högler W, Appelman-Dijkstra NM, Boot AM, Sas TCJ, Renes JS. Osteoporosis in children and adolescents: when to suspect and how to diagnose it. Eur J Pediatr 2022; 181:2549-2561. [PMID: 35384509 PMCID: PMC9192469 DOI: 10.1007/s00431-022-04455-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
UNLABELLED Early recognition of osteoporosis in children and adolescents is important in order to establish an appropriate diagnosis of the underlying condition and to initiate treatment if necessary. In this review, we present the diagnostic work-up, and its pitfalls, of pediatric patients suspected of osteoporosis including a careful collection of the medical and personal history, a complete physical examination, biochemical data, molecular genetics, and imaging techniques. The most recent and relevant literature has been reviewed to offer a broad overview on the topic. Genetic and acquired pediatric bone disorders are relatively common and cause substantial morbidity. In recent years, there has been significant progress in the understanding of the genetic and molecular mechanistic basis of bone fragility and in the identification of acquired causes of osteoporosis in children. Specifically, drugs that can negatively impact bone health (e.g. steroids) and immobilization related to acute and chronic diseases (e.g. Duchenne muscular dystrophy) represent major risk factors for the development of secondary osteoporosis and therefore an indication to screen for bone mineral density and vertebral fractures. Long-term studies in children chronically treated with steroids have resulted in the development of systematic approaches to diagnose and manage pediatric osteoporosis. CONCLUSIONS Osteoporosis in children requires consultation with and/or referral to a pediatric bone specialist. This is particularly relevant since children possess the unique ability for spontaneous and medication-assisted recovery, including reshaping of vertebral fractures. As such, pediatricians have an opportunity to improve bone mass accrual and musculoskeletal health in osteoporotic children. WHAT IS KNOWN • Both genetic and acquired pediatric disorders can compromise bone health and predispose to fractures early in life. • The identification of children at risk of osteoporosis is essential to make a timely diagnosis and start the treatment, if necessary. WHAT IS NEW • Pediatricians have an opportunity to improve bone mass accrual and musculoskeletal health in osteoporotic children and children at risk of osteoporosis. • We offer an extensive but concise overview about the risk factors for osteoporosis and the diagnostic work-up (and its pitfalls) of pediatric patients suspected of osteoporosis.
Collapse
Affiliation(s)
- Silvia Ciancia
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Rick R. van Rijn
- grid.7177.60000000084992262Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wolfgang Högler
- grid.9970.70000 0001 1941 5140Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Natasha M. Appelman-Dijkstra
- grid.10419.3d0000000089452978Department of Internal Medicine, Subdivision of Endocrinology, Center for Bone Quality, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke M. Boot
- grid.4830.f0000 0004 0407 1981Department of Pediatrics, Subdivision of Endocrinology, University Medical Center Groningen, Beatrix Children’s Hospital, University of Groningen, Groningen, The Netherlands
| | - Theo C. J. Sas
- grid.416135.40000 0004 0649 0805Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands ,Diabeter, Center for Pediatric and Adult Diabetes Care and Research, Rotterdam, The Netherlands
| | - Judith S. Renes
- grid.416135.40000 0004 0649 0805Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands
| |
Collapse
|