1
|
Sravani A, Thomas J. Targeting epithelial-mesenchymal transition signaling pathways with Dietary Phytocompounds and repurposed drug combinations for overcoming drug resistance in various cancers. Heliyon 2025; 11:e41964. [PMID: 39959483 PMCID: PMC11830326 DOI: 10.1016/j.heliyon.2025.e41964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a crucial step in metastasis formation. It enhances the ability of cancer cells' to self-renew and initiate tumors, while also increasing resistance to apoptosis and chemotherapy. Among the signaling pathways a few signaling pathways such as Notch, TGF-beta, and Wnt-beta catenin are critically involved in the epithelial-to-mesenchymal transition (EMT) acquisition. Therefore, regulating EMT is a key strategy for controlling malignant cell behavior. This is done by interconnecting other signaling pathways in many cancer types. Although there is extensive preclinical evidence regarding EMT's function in the development of cancer, there is still a deficiency in clinical translation at the therapeutic level. Thus, there is a need for medications that are both highly effective and with low cytotoxic for modulating EMT transitions at ground level. Thus, this led to the study of the evaluation and efficiency of phytochemicals found in dietary sources of fruits and vegetables and also the combination of small molecular repurposed drugs that can enhance the effectiveness of traditional cancer treatments. This review summarises major EMT-associated pathways and their cross talks with their mechanistic insights and the role of different dietary phytochemicals (curcumin, ginger, fennel, black pepper, and clove) and their natural analogs and also repurposed drugs (metformin, statin, chloroquine, and vitamin D) which are commonly used in regulating EMT in various preclinical studies. This review also investigates the concept of low-toxicity and broad spectrum ("The Halifax Project") approach which can help for site targeting of several key pathways and their mechanism. We also discuss the mechanisms of action, models for our dietary phytochemicals, and repurposed drugs and their combinations used to identify potential anti-EMT activities. Additionally, we also analyzed existing literature and proposed new directions for accelerating the discovery of novel drug candidates that are safe to administer.
Collapse
Affiliation(s)
- A.N.K.V. Sravani
- Center for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - John Thomas
- Center for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
2
|
Mallin MM, Kim N, Choudhury MI, Lee SJ, An SS, Sun SX, Konstantopoulos K, Pienta KJ, Amend SR. Cells in the polyaneuploid cancer cell (PACC) state have increased metastatic potential. Clin Exp Metastasis 2023:10.1007/s10585-023-10216-8. [PMID: 37326720 DOI: 10.1007/s10585-023-10216-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Although metastasis is the leading cause of cancer deaths, it is quite rare at the cellular level. Only a rare subset of cancer cells (~ 1 in 1.5 billion) can complete the entire metastatic cascade: invasion, intravasation, survival in the circulation, extravasation, and colonization (i.e. are metastasis competent). We propose that cells engaging a Polyaneuploid Cancer Cell (PACC) phenotype are metastasis competent. Cells in the PACC state are enlarged, endocycling (i.e. non-dividing) cells with increased genomic content that form in response to stress. Single-cell tracking using time lapse microscopy reveals that PACC state cells have increased motility. Additionally, cells in the PACC state exhibit increased capacity for environment-sensing and directional migration in chemotactic environments, predicting successful invasion. Magnetic Twisting Cytometry and Atomic Force Microscopy reveal that cells in the PACC state display hyper-elastic properties like increased peripheral deformability and maintained peri-nuclear cortical integrity that predict successful intravasation and extravasation. Furthermore, four orthogonal methods reveal that cells in the PACC state have increased expression of vimentin, a hyper-elastic biomolecule known to modulate biomechanical properties and induce mesenchymal-like motility. Taken together, these data indicate that cells in the PACC state have increased metastatic potential and are worthy of further in vivo analysis.
Collapse
Affiliation(s)
- Mikaela M Mallin
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA.
| | - Nicholas Kim
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | | | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Steven S An
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Kenneth J Pienta
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Sarah R Amend
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| |
Collapse
|
3
|
Huntly N, Freischel AR, Miller AK, Lloyd MC, Basanta D, Brown JS. Coexistence of “Cream Skimmer” and “Crumb Picker” Phenotypes in Nature and in Cancer. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.697618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Over 40 years ago, seminal papers by Armstrong and McGehee and by Levins showed that temporal fluctuations in resource availability could permit coexistence of two species on a single resource. Such coexistence results from non-linearities or non-additivities in the way resource supply translates into fitness. These reflect trade-offs where one species benefits more than the other during good periods and suffers more (or does less well) than the other during less good periods, be the periods stochastic, unstable population dynamics, or seasonal. Since, coexistence based on fluctuating conditions has been explored under the guises of “grazers” and “diggers,” variance partitioning, relative non-linearity, “opportunists” and “gleaners,” and as the storage effect. Here we focus on two phenotypes, “cream skimmers” and “crumb pickers,” the former having the advantage in richer times and the latter in less rich times. In nature, richer and poorer times, with regular or stochastic appearances, are the norm and occur on many time scales. Fluctuations among richer and poorer times also appear to be the norm in cancer ecosystems. Within tumors, nutrient availability, oxygen, and pH can fluctuate stochastically or periodically, with swings occurring over seconds to minutes to hours. Despite interest in tumor heterogeneity and how it promotes the coexistence of different cancer cell types, the effects of fluctuating resource availability have not been explored for cancer. Here, in the context of pulsed resources, we (1) develop models of foraging consumers who experience pulsed resources to examine four types of trade-offs that can promote coexistence of phenotypes that do relatively better in richer versus in poorer times, (2) establish that conditions in tumors are conducive for this mechanism, (3) propose and empirically explore biomarkers indicative of the two phenotypes (HIF-1, GLUT-1, CA IX, CA XII), and (4) and compare cream skimmer and crumb picker biology and ecology in nature and cancer to provide cross-disciplinary insights into this interesting, and, we argue, likely very common, mechanism of coexistence.
Collapse
|
4
|
Is There One Key Step in the Metastatic Cascade? Cancers (Basel) 2021; 13:cancers13153693. [PMID: 34359593 PMCID: PMC8345184 DOI: 10.3390/cancers13153693] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary To successfully metastasize, cancer cells must complete a sequence of obligatory steps called the metastatic cascade. To model the metastatic cascade, we used the framework of the Drake equation, initially created to describe the emergence of intelligent life in the Milky way, using a similar logic of a sequence of obligatory steps. Then within this framework, we used simulations on breast cancer to investigate the contribution of each step to the metastatic cascade. We show that the half-life of circulating tumor cells is one of the most important parameters in the cascade, suggesting that therapies reducing the survival of those cells in the vascular system could significantly reduce the risk of metastasis. Abstract The majority of cancer-related deaths are the result of metastases (i.e., dissemination and establishment of tumor cells at distant sites from the origin), which develop through a multi-step process classically termed the metastatic cascade. The respective contributions of each step to the metastatic process are well described but are also currently not completely understood. Is there, for example, a critical phase that disproportionately affects the probability of the development of metastases in individual patients? Here, we address this question using a modified Drake equation, initially formulated by the astrophysicist Frank Drake to estimate the probability of the emergence of intelligent civilizations in the Milky Way. Using simulations based on realistic parameter values obtained from the literature for breast cancer, we examine, under the linear progression hypothesis, the contribution of each component of the metastatic cascade. Simulations demonstrate that the most critical parameter governing the formation of clinical metastases is the survival duration of circulating tumor cells (CTCs).
Collapse
|