1
|
Yao Y, Lee VKM, Chen ES. Molecular pathological insights into tumorigenesis and progression of giant cell tumor of bone. J Bone Oncol 2025; 51:100665. [PMID: 40092569 PMCID: PMC11909452 DOI: 10.1016/j.jbo.2025.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Giant cell tumor of bone (GCTB) is a primary bone tumor that typically exhibits benign histological appearance and clinical behavior in most cases, with local aggressiveness and rare metastasis. It predominantly affects individuals in the young adult age group. It is characterized by the presence of multinucleated osteoclastic giant cells and a stromal population of neoplastic cells. A key hallmark for GCTB pathogenesis is the G34W genetic mutation in the histone H3.3 gene, which is restricted to the population of cancerous stromal cells and is absent in osteoclasts and their progenitor cells. This review presents a comprehensive overview of the pathology of GCTB, including its histopathological characteristics, cytological features, histopathological variants, and their clinical relevance. We also discuss recent insights into genetic alterations in relation to the molecular pathways implicated in GCTB. A summary of the current understanding of GCTB pathology will update the knowledge base to guide the diagnosis and management of this unique bone tumor.
Collapse
Affiliation(s)
- Yibing Yao
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Victor Kwan Min Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Cancer Institute, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore
| |
Collapse
|
2
|
Hassan M, Shahzadi S, Malik A, Din SU, Yasir M, Chun W, Kloczkowski A. Oncomeric Profiles of microRNAs as New Therapeutic Targets for Treatment of Ewing's Sarcoma: A Composite Review. Genes (Basel) 2023; 14:1849. [PMID: 37895198 PMCID: PMC10606885 DOI: 10.3390/genes14101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Ewing's sarcoma is a rare type of cancer that forms in bones and soft tissues in the body, affecting mostly children and young adults. Current treatments for ES are limited to chemotherapy and/or radiation, followed by surgery. Recently, microRNAs have shown favourable results as latent diagnostic and prognostic biomarkers in various cancers. Furthermore, microRNAs have shown to be a good therapeutic agent due to their involvement in the dysregulation of various molecular pathways linked to tumour progression, invasion, angiogenesis, and metastasis. In this review, comprehensive data mining was employed to explore various microRNAs that might have therapeutic potential as target molecules in the treatment of ES.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
| | - Amal Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54590, Pakistan;
| | - Salah ud Din
- Department of Bioinformatics, University of Okara, Okara 56130, Pakistan;
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
3
|
Karras FS, Schreier J, Körber-Ferl K, Ullmann SR, Franke S, Roessner A, Jechorek D. Comparative analysis of miRNA expression in dedifferentiated and well-differentiated components of dedifferentiated chondrosarcoma. Pathol Res Pract 2023; 244:154414. [PMID: 36963273 DOI: 10.1016/j.prp.2023.154414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Dedifferentiated chondrosarcoma (DDCS) is a rare malignant cartilage tumor arising out of a low-grade chondrosarcoma, whereby the well-differentiated and the dedifferentiated components coexist in the same localization. DDCS has a massively increased metastatic potential in comparison to low-grade chondrosarcoma. So far, the underlying mechanisms of DDCS development and the increased malignancy are widely unknown. Targeted DNA sequencing revealed no genetic differences between both tissue components. Besides genetic events, alterations in epigenetic control may play a role in DDCS development. In this preliminary study, we have analyzed the differential miRNA expression in paired samples of both components of four primary DDCS cases and a rare lung metastasis with both components using the nCounter MAX analysis system from NanoString technologies. We identified 21 upregulated and two downregulated miRNAs in the dedifferentiated components of the primary cases. Moreover, three miRNAs were also significantly deregulated in the dedifferentiated component of the lung metastasis, supporting their possible role in DDCS development. Additionally, validated targets of the 23 deregulated miRNAs are involved in signaling pathways, like PI3K/Akt, Wnt/β-catenin, and TGF-β, as well as in cellular processes, like cell cycle regulation, apoptosis, and dedifferentiation. Further investigations are necessary to confirm and understand the role of the identified miRNAs in DDCS development.
Collapse
Affiliation(s)
- Franziska S Karras
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Julian Schreier
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Kerstin Körber-Ferl
- Institute of Human Genetics, Martin-Luther University Halle, Magdeburger Str. 2, 06112 Halle, Germany
| | - Sarah R Ullmann
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sabine Franke
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Albert Roessner
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Dörthe Jechorek
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
4
|
Roessner A, Franke S, Schreier J, Ullmann S, Karras F, Jechorek D. Genetics and epigenetics in conventional chondrosarcoma with focus on non-coding RNAs. Pathol Res Pract 2022; 239:154172. [DOI: 10.1016/j.prp.2022.154172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
|
5
|
Parmeggiani A, Miceli M, Errani C, Facchini G. State of the Art and New Concepts in Giant Cell Tumor of Bone: Imaging Features and Tumor Characteristics. Cancers (Basel) 2021; 13:6298. [PMID: 34944917 PMCID: PMC8699510 DOI: 10.3390/cancers13246298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022] Open
Abstract
Giant cell tumor of bone (GCTB) is classified as an intermediate malignant tumor due to its locally aggressive behavior, burdened by high local recurrence rate. GCTB accounts for about 4-5% of all primary bone tumors and typically arises in the metaphysis and epiphyses of the long tubular bones. Mutation of gene H3F3A is at the basis of GCTB etiopathogenesis, and its immunohistochemical expression is a valuable method for practical diagnosis, even if new biomarkers have been identified for early diagnosis and for potential tumor recurrence prediction. In the era of computer-aided diagnosis, imaging plays a key role in the assessment of GCTB for surgical planning, patients' prognosis prediction and post treatment evaluation. Cystic changes, penetrating irregular margins and adjacent soft tissue invasion on preoperative Magnetic Resonance Imaging (MRI) have been associated with a higher rate of local recurrence. Distance from the tumor edge to the articular surface and thickness of unaffected cortical bone around the tumor should be evaluated on Computed Tomography (CT) as related to local recurrence. Main features associated with local recurrence after curettage are bone resorption around the graft or cement, soft tissue mass formation and expansile destruction of bone. A denosumab positive response is represented by a peripherical well-defined osteosclerosis around the lesion and intralesional ossification. Radiomics has proved to offer a valuable contribution in aiding GCTB pre-operative diagnosis through clinical-radiomics models based on CT scans and multiparametric MR imaging, possibly guiding the choice of a patient-tailored treatment. Moreover, radiomics models based on texture analysis demonstrated to be a promising alternative solution for the assessment of GCTB response to denosumab both on conventional radiography and CT since the quantitative variation of some radiomics features after therapy has been correlated with tumor response, suggesting they might facilitate disease monitoring during post-denosumab surveillance.
Collapse
Affiliation(s)
- Anna Parmeggiani
- Diagnostic and Interventional Radiology Unit, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy; (M.M.); (G.F.)
| | - Marco Miceli
- Diagnostic and Interventional Radiology Unit, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy; (M.M.); (G.F.)
| | - Costantino Errani
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy;
| | - Giancarlo Facchini
- Diagnostic and Interventional Radiology Unit, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy; (M.M.); (G.F.)
| |
Collapse
|