1
|
Gris AH, Piva MM, Schwertz CI, Mori AP, Saremba C, Simon DM, Sonne L, Pavarini SP, Driemeier D. Auricular and laryngeal chondritis in nursery and finishing pigs. Vet Pathol 2024; 61:88-94. [PMID: 37470276 DOI: 10.1177/03009858231186101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
This work aimed to characterize the clinic-pathological presentation of an outbreak of auricular and laryngeal chondritis in pigs. Visits were made to pig farms, where the clinical history was obtained, and clinical and postmortem examinations were performed. In those farms, 3% to 4% of pigs presented otohematomas, which started in the nursery and extended to the finishing phase. Moreover, some finishing pigs presented with respiratory distress, initially characterized as inspiratory dyspnea, associated by an uncommon respiratory stridor and culminating in death. Grossly, nursery piglets had enlarged ears, and on the cut surface, the cartilage was fragmented and associated with blood clots. In the finishing phase, in addition to auricular lesions, the epiglottis and arytenoid cartilages were thickened and distorted, which partially occluded the lumen. Microscopically, the laryngeal and auricular cartilages were fragmented, displayed a loss of matrix basophilia, and were surrounded by lymphohistiocytic inflammatory infiltrate, with occasional multinucleated giant cells and fibrosis. The lesions exclusively affected elastic cartilages. The disease in finishing pigs led to increased mortality and was a differential diagnosis to respiratory challenges. It was not possible to determine the factor that triggered this condition; however, a nutritional association is suspected. To the authors' knowledge, this is the first report of primary auricular and laryngeal chondritis in pigs.
Collapse
Affiliation(s)
- Anderson H Gris
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Manoela M Piva
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton I Schwertz
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Inata Produtos Biológicos, Uberlândia, Brazil
| | - Ana P Mori
- Inata Produtos Biológicos, Uberlândia, Brazil
| | | | | | - Luciana Sonne
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - David Driemeier
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Zhang X, Qi L, Chen X, Lai Y, Liu K, Xue K. Comparative study of alginate and type I collagen as biomaterials for cartilage stem/progenitor cells to construct tissue-engineered cartilage in vivo. Front Bioeng Biotechnol 2023; 10:1057199. [PMID: 36714619 PMCID: PMC9873961 DOI: 10.3389/fbioe.2022.1057199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
With the help of biomaterials, cartilage stem/progenitor cells (CSPCs) derived from cartilage tissue present a promising choice for cartilage regeneration. In our previous study, we investigated whether CSPCs could be ideal seeding cells for cartilage tissue regeneration. Biomaterials are fabricated to accelerate tissue regeneration, providing a suitable environment for cell attachment, proliferation, and differentiation. Among the biomaterials used in cartilage regeneration medicine, alginate and collagen are classified as natural biomaterials and are characterized by high biocompatibility, bioactivity, and non-toxic degradation products. However, it is unclear which material would have a competitive advantage in CSPC-based cartilage regeneration in vivo. In the present study, we employed alginate and type Ⅰ collagen as substrates for CSPCs and chondrocytes, which was made control group, to explore a more suitable biomaterials for CSPCs to fabricate tissue-engineered cartilage, in vivo. Hematoxylin and eosin (HE) staining, Safranin O, immunohistochemical assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to evaluate the tissue-engineered cartilage in vivo. Compared with the alginate group, collagen enhanced the expression of cartilage-specific genes, such as ACAN, SOX9, and COLII, more markedly. Furthermore, the marker genes of expression, dedifferentiation, and hypertrophy, COLI and COLX, were downregulated in the collagen group. The results demonstrated that collagen as a substrate was superior to alginate in increasing the accumulation of cartilage-like ECM for CSPCs in vivo. In summary, compared with alginate, collagen hydrogel is an effective biomaterial for CSPC-based cartilage regeneration.
Collapse
Affiliation(s)
- Xiaodie Zhang
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Qi
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - XiaoGang Chen
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, Hainan Western Central Hospital, Shanghai, China
| |
Collapse
|
3
|
Kurenkova AD, Romanova IA, Kibirskiy PD, Timashev P, Medvedeva EV. Strategies to Convert Cells into Hyaline Cartilage: Magic Spells for Adult Stem Cells. Int J Mol Sci 2022; 23:11169. [PMID: 36232468 PMCID: PMC9570095 DOI: 10.3390/ijms231911169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Damaged hyaline cartilage gradually decreases joint function and growing pain significantly reduces the quality of a patient's life. The clinically approved procedure of autologous chondrocyte implantation (ACI) for treating knee cartilage lesions has several limits, including the absence of healthy articular cartilage tissues for cell isolation and difficulties related to the chondrocyte expansion in vitro. Today, various ACI modifications are being developed using autologous chondrocytes from alternative sources, such as the auricles, nose and ribs. Adult stem cells from different tissues are also of great interest due to their less traumatic material extraction and their innate abilities of active proliferation and chondrogenic differentiation. According to the different adult stem cell types and their origin, various strategies have been proposed for stem cell expansion and initiation of their chondrogenic differentiation. The current review presents the diversity in developing applied techniques based on autologous adult stem cell differentiation to hyaline cartilage tissue and targeted to articular cartilage damage therapy.
Collapse
Affiliation(s)
- Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| | - Irina A. Romanova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Pavel D. Kibirskiy
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ekaterina V. Medvedeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| |
Collapse
|
4
|
The synovial microenvironment suppresses chondrocyte hypertrophy and promotes articular chondrocyte differentiation. NPJ Regen Med 2022; 7:51. [PMID: 36114234 PMCID: PMC9481641 DOI: 10.1038/s41536-022-00247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
During the development of the appendicular skeleton, the cartilaginous templates undergo hypertrophic differentiation and remodels into bone, except for the cartilage most adjacent to joint cavities where hypertrophic differentiation and endochondral bone formation are prevented, and chondrocytes instead form articular cartilage. The mechanisms that prevent hypertrophic differentiation and endochondral bone formation of the articular cartilage have not been elucidated. To explore the role of the synovial microenvironment in chondrocyte differentiation, osteochondral allografts consisting of articular cartilage, epiphyseal bone, and growth plate cartilage from distal femoral epiphyses of inbred Lewis rats expressing enhanced green fluorescent protein from a ubiquitous promoter were transplanted either in inverted or original (control) orientation to matching sites in wildtype littermates, thereby allowing for tracing of transplanted cells and their progenies. We found that no hypertrophic differentiation occurred in the growth plate cartilage ectopically placed at the joint surface. Instead, the transplanted growth plate cartilage, with time, remodeled into articular cartilage. This finding suggests that the microenvironment at the articular surface inhibits hypertrophic differentiation and supports articular cartilage formation. To explore this hypothesis, rat chondrocyte pellets were cultured with and without synoviocyte-conditioned media. Consistent with the hypothesis, hypertrophic differentiation was inhibited and expression of the articular surface marker lubricin (Prg4) was dramatically induced when chondrocyte pellets were exposed to synovium- or synoviocyte-conditioned media, but not to chondrocyte- or osteoblast-conditioned media. Taken together, we present evidence for a novel mechanism by which synoviocytes, through the secretion of a factor or factors, act directly on chondrocytes to inhibit hypertrophic differentiation and endochondral bone formation and promote articular cartilage formation. This mechanism may have important implications for articular cartilage development, maintenance, and regeneration.
Collapse
|
5
|
Fabrication of Tissue-Engineered Cartilage Using Decellularized Scaffolds and Chondrocytes. Polymers (Basel) 2022; 14:polym14142848. [PMID: 35890624 PMCID: PMC9316171 DOI: 10.3390/polym14142848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, we aim to explore the application value of tissue engineering for the construction of artificial cartilage in vitro. Chondrocytes from healthy porcine articular cartilage tissue were seeded on articular cartilage extracellular matrix (ACECM) scaffolds and cultivated. Type II collagen immunofluorescent staining was used to assess secretion from the extracellular matrix. Chondrocytes, which were mainly polygonal and cobblestone-shaped, were inoculated on ACECM-oriented scaffolding for 7 days, and the neo-tissue showed translucent shape and toughness. Using inverted and fluorescence microscopy, we found that chondrocytes on the scaffolds performed well in terms of adhesion and growth, and they secreted collagen type II. Moreover, the porcine ACECM scaffolds had good biocompatibility. The inflammatory cell detection, cellular immune response assay and humoral immune response assay showed porcine ACECM scaffolds were used for xenotransplantation without significant immune inflammatory response. All these findings reveal that ACECM-oriented scaffold is an ideal natural biomaterial for cartilage tissue engineering.
Collapse
|
6
|
Muder D, Vedung T. Reconstruction of the distal radioulnar joint with rib perichondrium - midterm follow-up. BMC Musculoskelet Disord 2022; 23:388. [PMID: 35473677 PMCID: PMC9039597 DOI: 10.1186/s12891-022-05335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022] Open
Abstract
Background Reconstruction of an osteoarthritic distal radioulnar joint (DRUJ) in patients with high physical demands and a long lifetime expectancy is challenging. A variety of methods like implant surgery and salvage procedures as partial or total ulnar head resection and the Sauve-Kapandji procedure are reasonable options in the elderly patient but not in young individuals since it often compromises manual power and stability and may cause impingement problems. Reconstruction of the DRUJ with rib perichondrium is a new treatment option with promising short-term outcome. The aim the present study was to investigate if the outcome is consistent over time. Methods Four female patients with a mean age of 40.5 years suffered severe unilateral osteoarthritis in the DRUJ. They underwent reconstruction of the joint with rib perichondrium transplants. Preoperatively, mean pain under manual load was 8.5 (range 7–10) and 4.2 (range 2–5) at rest, using the visual analogue scale (VAS). Range of motion (ROM) in forearm rotation was on average 118° and grip strength was 86% in comparison to the contralateral hand. The outcome was assessed at a clinical follow-up in 2016, measuring ROM, grip-strength, pain at rest and under manual load and DASH-score. Radiological examination was performed. An additional follow-up by letter was performed in 2021 using a patient-reported-outcome survey (PROS). The patients were asked to grade the ROM and grip-strength as changed or unchanged in comparison to the clinical follow-up in 2016. Results At clinical follow-up at a mean of 3.1 years (range 1–5) after surgery, pain level had decreased to VAS 1.5 (0–5) under load and all patients were pain free at rest. Forearm rotation was on average 156° (range 100–180) and grip strength was 97% of the unoperated hand. The mean DASH-score was 14.4 (0–45). An additional follow-up by letter was conducted at a mean of 7.5 years (5.5–9.5) after surgery. ROM and grip strength were reported as unchanged by all patients in relation to the previous clinical follow-up. No additional surgery or complications were reported. Conclusion Reconstruction of the osteoarthritic DRU-joint with rib perichondrium transplantation can provide good clinical outcome with perseverance over time. Level of evidence IV.
Collapse
Affiliation(s)
- Daniel Muder
- Department of Surgical Sciences/Orthopedics & Hand Surgery, Uppsala University, Entrance 70, 1st floor, 751 85, Uppsala, Sweden.,Department of Orthopedics, Falu Lasarett, Lasarettsvägen 10, 791 82, Falun, Sweden
| | - Torbjörn Vedung
- Department of Surgical Sciences/Orthopedics & Hand Surgery, Uppsala University, Entrance 70, 1st floor, 751 85, Uppsala, Sweden. .,Elisabeth Hospital, Aleris Healthcare AB, Geijersgatan 20, 752 26, Uppsala, Sweden.
| |
Collapse
|
7
|
Optimized protocols for in situ hybridization, immunohistochemistry, and immunofluorescence on skeletal tissue. Acta Histochem 2021; 123:151747. [PMID: 34217048 DOI: 10.1016/j.acthis.2021.151747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022]
Abstract
Assessment of gene and protein expression in tissue sections is instrumental in medical research. However, this is often challenging to perform on skeletal tissues that require prolonged decalcification and have poor adhesion to slides. In this study, we optimized selected steps of in situ hybridization (ISH), immunohistochemistry (IHC), and immunofluorescence (IF) for formalin fixed and decalcified skeletal tissues. Sections from distal femur of 6-, 8- and 14- week-old rats injected with BrdU with or without a hemizygous eGFP transgene expressed under the control of a ubiquitous promotor were used. We report that proteinase K digestion is critical for the sensitivity of ISH, as concentrations that were too strong and too mild both resulted in loss of signal. In addition, intensified RNase A digestion removed nonspecific riboprobe-mRNA hybrids. Furthermore, enzymatic antigen retrieval using proteinase K provided more consistent results in IHC and can therefore be a useful alternative to heat induced epitope retrieval (HIER) for skeletal tissues where such treatment often damages the morphology. A mild proteinase K digestion also improved IF detection of GFP and worked well for double labeling IF of GFP and osteocalcin on frozen sections of formalin fixed and decalcified rat bones while maintaining morphology. In summary, this study provides strategies to improve protocols for enzymatic digestion in ISH, IHC, and IF for skeletal tissues and also demonstrates the importance of careful optimization and validation with the use of these techniques.
Collapse
|